Skip to main content

Preclinical Experimentation in Neurology

  • Chapter
  • First Online:
  • 4276 Accesses

Abstract

The development of radiopharmaceuticals for positron emission tomography (PET) is an emerging area of research in neuroscience that allows for the early and differential diagnosis of neurological disorders and enables the assessment of the effects of drugs on the central nervous system (CNS). A radiopharmaceutical must fulfill several requirements to be a successful PET tracer in the CNS. These criteria include high specificity and selectivity for the intended target, the efficient penetration of the blood-brain barrier (BBB), high target-to-background contrast ratios, fast clearance from the brain, and a lack of radiolabeled metabolites with the ability to enter the brain. Furthermore, several preclinical in vitro and in vivo experiments must be performed to check if these requirements are met before a tracer can be translated to the clinic. These procedures include binding assays using recombinant proteins and tissue homogenates, in vitro autoradiography experiments using human and animal brain slices, plasma protein binding assays, and in vivo PET studies in rats and mice. Since each of these experiments requires careful consideration, this chapter will give a detailed description of each method and provide practical protocols to ensure that the data can be collected, analyzed, and interpreted in an unbiased manner.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Zhang L, Villalobos A, Beck EM, Bocan T, Chappie TA, Chen L, et al. Design and selection parameters to accelerate the discovery of novel central nervous system positron emission tomography (PET) ligands and their application in the development of a novel phosphodiesterase 2A PET ligand. J Med Chem. 2013;56(11):4568–79.

    CAS  PubMed  Google Scholar 

  2. Cheng Y, Prusoff WH. Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol. 1973;22(23):3099–108.

    CAS  PubMed  Google Scholar 

  3. Auld DS, Farmer MW, Kahl SD, Kriauciunas A, McKnight KL, Montrose C, et al. Receptor binding assays for HTS and drug discovery. In: Sittampalam GS, Coussens NP, Brimacombe K, editors. Assay guidance manual. Bethesda: Eli Lilly & Company and the National Center for Advancing Translational Sciences; 2012. p. 1–49.

    Google Scholar 

  4. Hulme EC, Trevethick MA. Ligand binding assays at equilibrium: validation and interpretation. Br J Pharmacol. 2010;161:1219–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Strome EM, Jivan S, Doudet DJ. Quantitative in vitro phosphor imaging using [3H] and [18F] radioligands: the effects of chronic desipramine treatment on serotonin 5-HT2 receptors. J Neurosci Methods. 2005;141(1):143–54.

    CAS  PubMed  Google Scholar 

  6. Sihver W, Sihver S, Bergstrom M, Murata T, Matsumura K, Onoe H, et al. Methodological aspects for in vitro characterization of receptor binding using 11C-labeled receptor ligands: a detailed study with the benzodiazepine receptor antagonist [11C]Ro 15-1788. Nucl Med Biol. 1997;24(8):723–31.

    CAS  PubMed  Google Scholar 

  7. Marsteller DA, Barbarich-Marsteller NC, Fowler JS, Schiffer WK, Alexoff DL, Rubins DJ, et al. Reproducibility of intraperitoneal 2-deoxy-2-[18F]-fluoro-D-glucose cerebral uptake in rodents through time. Nucl Med Biol. 2006;33(1):71–9.

    CAS  PubMed  Google Scholar 

  8. Wong KP, Sha W, Zhang X, Huang SC. Effects of administration route, dietary condition, and blood glucose level on kinetics and uptake of 18F-FDG in mice. J Nucl Med. 2011;52(5):800–7.

    PubMed  PubMed Central  Google Scholar 

  9. Mizuma H, Shukuri M, Hayashi T, Watanabe Y, Onoe H. Establishment of in vivo brain imaging method in conscious mice. J Nucl Med. 2010;51(7):1068–75.

    PubMed  Google Scholar 

  10. Hosoi R, Matsumura A, Mizokawa S, Tanaka M, Nakamura F, Kobayashi K, et al. MicroPET detection of enhanced 18F-FDG utilization by PKA inhibitor in awake rat brain. Brain Res. 2005;1039(1–2):199–202.

    CAS  PubMed  Google Scholar 

  11. Momosaki S, Hatano K, Kawasumi Y, Kato T, Hosoi R, Kobayashi K, et al. Rat-PET study without anesthesia: anesthetics modify the dopamine D1 receptor binding in rat brain. Synapse. 2004;54(4):207–13.

    CAS  PubMed  Google Scholar 

  12. Matsumura A, Mizokawa S, Tanaka M, Wada Y, Nozaki S, Nakamura F, et al. Assessment of microPET performance in analyzing the rat brain under different types of anesthesia: comparison between quantitative data obtained with microPET and ex vivo autoradiography. NeuroImage. 2003;20(4):2040–50.

    PubMed  Google Scholar 

  13. Chatziioannou A, Qi J, Moore A, Annala A, Nguyen K, Leahy R, et al. Comparison of 3-D maximum a posteriori and filtered backprojection algorithms for high-resolution animal imaging with microPET. IEEE Trans Med Imaging. 2000;19(5):507–12.

    CAS  PubMed  Google Scholar 

  14. Cheng JC, Shoghi K, Laforest R. Quantitative accuracy of MAP reconstruction for dynamic PET imaging in small animals. Med Phys. 2012;39(2):1029–41.

    PubMed  PubMed Central  Google Scholar 

  15. Torrent E, Farre M, Abasolo I, Millan O, Llop J, Gispert JD, et al. Optimization of [(11)C]raclopride positron emission tomographic rat studies: comparison of methods for image quantification. Mol Imaging. 2013;12(4):257–62.

    CAS  PubMed  Google Scholar 

  16. Wallsten E, Axelsson J, Karlsson M, Riklund K, Larsson A. A study of dynamic PET frame-binning on the reference Logan binding potential. IEEE Trans Radiat Plasma Med Sci. 2017;1(2):128–35.

    Google Scholar 

  17. Tahari AK, Chien D, Azadi JR, Wahl RL. Optimum lean body formulation for correction of standardized uptake value in PET imaging. J Nucl Med. 2014;55(9):1481–4.

    PubMed  PubMed Central  Google Scholar 

  18. Hinderling PH, Hartmann D. The pH dependency of the binding of drugs to plasma proteins in man. Ther Drug Monit. 2005;27(1):71–85.

    CAS  PubMed  Google Scholar 

  19. Patt M, Becker GA, Grossmann U, Habermann B, Schildan A, Wilke S, et al. Evaluation of metabolism, plasma protein binding and other biological parameters after administration of (-)-[18F]Flubatine in humans. Nucl Med Biol. 2014;41:489–94.

    CAS  PubMed  Google Scholar 

  20. Sorger D, Becker GA, Hauber K, Schildan A, Patt M, Birkenmeier G, et al. Binding properties of the cerebral α4β2 nicotinic acetylcholine receptor ligand 2-[18F]fluoro-A-85380 to plasma proteins. Nucl Med Biol. 2006;33:899–906.

    CAS  PubMed  Google Scholar 

  21. Tonietto M, Rizzo G, Veronese M, Fujita M, Zoghbi SS, Zanotti-Fregonara P, et al. Plasma radiometabolite correction in dynamic PET studies: insights on the available modeling approaches. J Cereb Blood Flow Metab. 2016;36(2):326–39.

    CAS  PubMed  Google Scholar 

  22. Napieczynska H, Kolb A, Katiyar P, Tonietto M, Ud-Dean M, Stumm R, et al. Impact of the Arterial Input Function Recording Method on Kinetic Parameters in Small-Animal PET. J Nucl Med. 2018;59(7):1159–64.

    CAS  PubMed  Google Scholar 

  23. Convert L, Morin-Brassard G, Cadorette J, Archambault M, Bentourkia M, Lecomte R. A new tool for molecular imaging: the microvolumetric beta blood counter. J Nucl Med. 2007;48(7):1197–206.

    CAS  PubMed  Google Scholar 

  24. Pain F, Laniece P, Mastrippolito R, Gervais P, Hantraye P, Besret L. Arterial input function measurement without blood sampling using a beta-microprobe in rats. J Nucl Med. 2004;45(9):1577–82.

    PubMed  Google Scholar 

  25. Fang YH, Muzic RF Jr. Spillover and partial-volume correction for image-derived input functions for small-animal 18F-FDG PET studies. J Nucl Med. 2008;49(4):606–14.

    PubMed  Google Scholar 

  26. Kimura Y, Seki C, Hashizume N, Yamada T, Wakizaka H, Nishimoto T, et al. Novel system using microliter order sample volume for measuring arterial radioactivity concentrations in whole blood and plasma for mouse PET dynamic study. Phys Med Biol. 2013;58(22):7889–903.

    PubMed  Google Scholar 

  27. Kellner E, Gall P, Gunther M, Reisert M, Mader I, Fleysher R, et al. Blood tracer kinetics in the arterial tree. PLoS One. 2014;9(10):e109230.

    PubMed  PubMed Central  Google Scholar 

  28. Iida H, Kanno I, Miura S, Murakami M, Takahashi K, Uemura K. Error analysis of a quantitative cerebral blood flow measurement using H2(15)O autoradiography and positron emission tomography, with respect to the dispersion of the input function. J Cereb Blood Flow Metab. 1986;6(5):536–45.

    CAS  PubMed  Google Scholar 

  29. Fischer K, Sossi V, Schmid A, Thunemann M, Maier FC, Judenhofer MS, et al. Noninvasive nuclear imaging enables the in vivo quantification of striatal dopamine receptor expression and raclopride affinity in mice. J Nucl Med. 2011;52(7):1133–41.

    PubMed  Google Scholar 

  30. McGonigle P. Animal models of CNS disorders. Biochem Pharmacol. 2014;87(1):140–9.

    CAS  PubMed  Google Scholar 

  31. Vingill S, Connor-Robson N, Wade-Martins R. Are rodent models of Parkinson’s disease behaving as they should? Behav Brain Res. 2017;352:133–41.

    PubMed  Google Scholar 

  32. Blesa J, Phani S, Jackson-Lewis V, Przedborski S. Classic and new animal models of Parkinson’s disease. J Biomed Biotechnol. 2012;2012:845618.

    PubMed  PubMed Central  Google Scholar 

  33. Duty S, Jenner P. Animal models of Parkinson’s disease: a source of novel treatments and clues to the cause of the disease. Br J Pharmacol. 2011;164(4):1357–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Francardo V. Modeling Parkinson’s disease and treatment complications in rodents: potentials and pitfalls of the current options. Behav Brain Res. 2017;352:142–50.

    PubMed  Google Scholar 

  35. Tronci E, Francardo V. Animal models of L-DOPA-induced dyskinesia: the 6-OHDA-lesioned rat and mouse. J Neural Transm (Vienna). 2017;125(8):1137–44.

    PubMed  Google Scholar 

  36. Chesselet MF. In vivo alpha-synuclein overexpression in rodents: a useful model of Parkinson’s disease? Exp Neurol. 2008;209(1):22–7.

    CAS  PubMed  Google Scholar 

  37. Bury A, Pienaar IS. Behavioral testing regimens in genetic-based animal models of Parkinson’s disease: cogencies and caveats. Neurosci Biobehav Rev. 2013;37(5):846–59.

    PubMed  Google Scholar 

  38. Kirik D, Rosenblad C, Burger C, Lundberg C, Johansen TE, Muzyczka N, et al. Parkinson-like neurodegeneration induced by targeted overexpression of alpha-synuclein in the nigrostriatal system. J Neurosci. 2002;22(7):2780–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Lo Bianco C, Ridet JL, Schneider BL, Deglon N, Aebischer P. Alpha -Synucleinopathy and selective dopaminergic neuron loss in a rat lentiviral-based model of Parkinson’s disease. Proc Natl Acad Sci U S A. 2002;99(16):10813–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Klein RL, King MA, Hamby ME, Meyer EM. Dopaminergic cell loss induced by human A30P alpha-synuclein gene transfer to the rat substantia nigra. Hum Gene Ther. 2002;13(5):605–12.

    CAS  PubMed  Google Scholar 

  41. Volpicelli-Daley LA, Kirik D, Stoyka LE, Standaert DG, Harms AS. How can rAAV-alpha-synuclein and the fibril alpha-synuclein models advance our understanding of Parkinson’s disease? J Neurochem. 2016;139(Suppl 1):131–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Braak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur EN, Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging. 2003;24(2):197–211.

    PubMed  Google Scholar 

  43. Chu Y, Kordower JH. The prion hypothesis of Parkinson’s disease. Curr Neurol Neurosci Rep. 2015;15(5):28.

    PubMed  Google Scholar 

  44. Luk KC, Kehm V, Carroll J, Zhang B, O’Brien P, Trojanowski JQ, et al. Pathological alpha-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science. 2012;338(6109):949–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Volpicelli-Daley LA, Kirik D, Stoyka LE, Standaert DG, Harms AS. How can rAAV-alpha-synuclein and the fibril alpha-synuclein models advance our understanding of Parkinson disease? J Neurochem. 2016;139(Suppl 1):131–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Guo JL, Covell DJ, Daniels JP, Iba M, Stieber A, Zhang B, et al. Distinct alpha-synuclein strains differentially promote tau inclusions in neurons. Cell. 2013;154(1):103–17.

    CAS  PubMed  Google Scholar 

  47. Klunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G, Holt DP, et al. Imaging brain amyloid in Alzheimer's disease with Pittsburgh Compound-B. Ann Neurol. 2004;55(3):306–19.

    CAS  PubMed  Google Scholar 

  48. Mathis CA, Mason NS, Lopresti BJ, Klunk WE. Development of positron emission tomography beta-amyloid plaque imaging agents. Semin Nucl Med. 2012;42(6):423–32.

    PubMed  PubMed Central  Google Scholar 

  49. Klunk WE, Wang Y, Huang GF, Debnath ML, Holt DP, Shao L, et al. The binding of 2-(4′-methylaminophenyl)benzothiazole to postmortem brain homogenates is dominated by the amyloid component. J Neurosci. 2003;23(6):2086–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Mathis CA, Wang Y, Holt DP, Huang GF, Debnath ML, Klunk WE. Synthesis and evaluation of 11C-labeled 6-substituted 2-arylbenzothiazoles as amyloid imaging agents. J Med Chem. 2003;46(13):2740–54.

    CAS  PubMed  Google Scholar 

  51. Vandenberghe R, Van Laere K, Ivanoiu A, Salmon E, Bastin C, Triau E, et al. 18F-flutemetamol amyloid imaging in Alzheimer disease and mild cognitive impairment: a phase 2 trial. Ann Neurol. 2010;68(3):319–29.

    PubMed  Google Scholar 

  52. Rowe CC, Ackerman U, Browne W, Mulligan R, Pike KL, O'Keefe G, et al. Imaging of amyloid beta in Alzheimer’s disease with 18F-BAY94-9172, a novel PET tracer: proof of mechanism. Lancet Neurol. 2008;7(2):129–35.

    CAS  PubMed  Google Scholar 

  53. Wong DF, Rosenberg PB, Zhou Y, Kumar A, Raymont V, Ravert HT, et al. In vivo imaging of amyloid deposition in Alzheimer disease using the radioligand 18F-AV-45 (florbetapir [corrected] F 18). J Nucl Med. 2010;51(6):913–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Okamura N, Suemoto T, Furumoto S, Suzuki M, Shimadzu H, Akatsu H, et al. Quinoline and benzimidazole derivatives: candidate probes for in vivo imaging of tau pathology in Alzheimer's disease. J Neurosci. 2005;25(47):10857–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Fodero-Tavoletti MT, Okamura N, Furumoto S, Mulligan RS, Connor AR, McLean CA, et al. 18F-THK523: a novel in vivo tau imaging ligand for Alzheimer’s disease. Brain. 2011;134(Pt 4):1089–100.

    PubMed  Google Scholar 

  56. Lockhart SN, Baker SL, Okamura N, Furukawa K, Ishiki A, Furumoto S, et al. Dynamic PET measures of tau accumulation in cognitively normal older adults and Alzheimer’s disease patients measured using [18F] THK-5351. PLoS One. 2016;11(6):e0158460.

    PubMed  PubMed Central  Google Scholar 

  57. Holt DP, Ravert HT, Dannals RF. Synthesis and quality control of [(18) F]T807 for tau PET imaging. J Labelled Comp Radiopharm. 2016;59(10):411–5.

    CAS  PubMed  Google Scholar 

  58. Xia CF, Arteaga J, Chen G, Gangadharmath U, Gomez LF, Kasi D, et al. [(18)F]T807, a novel tau positron emission tomography imaging agent for Alzheimer's disease. Alzheimers Dement. 2013;9(6):666–76.

    PubMed  Google Scholar 

  59. Wang M, Gao M, Xu Z, Zheng QH. Synthesis of a PET tau tracer [(11)C]PBB3 for imaging of Alzheimer's disease. Bioorg Med Chem Lett. 2015;25(20):4587–92.

    CAS  PubMed  Google Scholar 

  60. Hashimoto H, Kawamura K, Igarashi N, Takei M, Fujishiro T, Aihara Y, et al. Radiosynthesis, photoisomerization, biodistribution, and metabolite analysis of 11C-PBB3 as a clinically useful PET probe for imaging of tau pathology. J Nucl Med. 2014;55(9):1532–8.

    CAS  PubMed  Google Scholar 

  61. Kikuchi A, Takeda A, Okamura N, Tashiro M, Hasegawa T, Furumoto S, et al. In vivo visualization of alpha-synuclein deposition by carbon-11-labelled 2-[2-(2-dimethylaminothiazol-5-yl)ethenyl]-6-[2-(fluoro)ethoxy]benzoxazole positron emission tomography in multiple system atrophy. Brain. 2010;133(Pt 6):1772–8.

    PubMed  Google Scholar 

  62. Bagchi DP, Yu L, Perlmutter JS, Xu J, Mach RH, Tu Z, et al. Binding of the radioligand SIL23 to alpha-synuclein fibrils in Parkinson disease brain tissue establishes feasibility and screening approaches for developing a Parkinson disease imaging agent. PLoS One. 2013;8(2):e55031.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhang X, Jin H, Padakanti PK, Li J, Yang H, Fan J, et al. Radiosynthesis and in Vivo evaluation of two PET Radioligands for imaging alpha-Synuclein. Appl Sci (Basel). 2014;4(1):66–78.

    Google Scholar 

  64. Chu W, Zhou D, Gaba V, Liu J, Li S, Peng X, et al. Design, synthesis, and characterization of 3-(benzylidene)indolin-2-one derivatives as ligands for alpha-synuclein fibrils. J Med Chem. 2015;58(15):6002–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Guo Q, Brady M, Gunn RN. A biomathematical modeling approach to central nervous system radioligand discovery and development. J Nucl Med. 2009;50(10):1715–23.

    CAS  PubMed  Google Scholar 

  66. Guo Q, Owen DR, Rabiner EA, Turkheimer FE, Gunn RN. Identifying improved TSPO PET imaging probes through biomathematics: the impact of multiple TSPO binding sites in vivo. NeuroImage. 2012;60(2):902–10.

    PubMed  PubMed Central  Google Scholar 

  67. Jiang Z, Reilly J, Everatt B, Briard E. A rapid vesicle electrokinetic chromatography method for the in vitro prediction of non-specific binding for potential PET ligands. J Pharm Biomed Anal. 2011;54(4):722–9.

    CAS  PubMed  Google Scholar 

  68. Friden M, Wennerberg M, Antonsson M, Sandberg-Stall M, Farde L, Schou M. Identification of positron emission tomography (PET) tracer candidates by prediction of the target-bound fraction in the brain. EJNMMI Res. 2014;4(1):50.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristina Herfert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Herfert, K. et al. (2019). Preclinical Experimentation in Neurology. In: Lewis, J., Windhorst, A., Zeglis, B. (eds) Radiopharmaceutical Chemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-98947-1_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98947-1_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98946-4

  • Online ISBN: 978-3-319-98947-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics