Skip to main content

The Radiopharmaceutical Chemistry of the Radioisotopes of Iodine

  • Chapter
  • First Online:
Book cover Radiopharmaceutical Chemistry

Abstract

Radioisotopes of iodine have been incorporated into a wide variety of radiopharmaceuticals ranging from small, low molecular weight compounds to large molecules like antibodies. Because of the routine availability of radioisotopes of iodine with different nuclear decay properties, radioiodination is an attractive strategy because the same chemistry can be utilized for both radionuclide imaging and targeted radiotherapy. Over the years, various methods have been developed for the synthesis of radioiodinated compounds. This chapter gives an overview of these methods as well as their potential advantages and disadvantages. Some useful tips and tactics for the radioiodination chemistry are provided. Important milestones in radioiodination chemistry are summarized and some thoughts about the future of radioiodination as a radiopharmaceutical chemistry strategy are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mennicke E, Holschbach M, Coenen HH. Direct n.c.a. electrophilic radioiodination of deactivated arenes with N-chlorosuccinimide. J Labelled Compd Radiopharm. 2000;43(7):721–37.

    CAS  Google Scholar 

  2. Takahashi M, Seki K, Nishijima K, Zhao S, Kuge Y, Tamaki N, et al. Synthesis of a radioiodinated thymidine phosphorylase inhibitor and its preliminary evaluation as a potential SPECT tracer for angiogenic enzyme expression. J Labelled Compd Radiopharm. 2008;51(11–12):384–7.

    CAS  Google Scholar 

  3. Racys DT, Sharif SA, Pimlott SL, Sutherland A. Silver(I)-catalyzed iodination of Arenes: tuning the Lewis acidity of N-Iodosuccinimide activation. J Org Chem. 2016;81(3):772–80.

    CAS  PubMed  Google Scholar 

  4. Tamborini L, Chen Y, Foss CA, Pinto A, Horti AG, Traynelis SF, et al. Development of radiolabeled ligands targeting the glutamate binding site of the N-methyl-d-aspartate receptor as potential imaging agents for brain. J Med Chem. 2016;59(24):11110–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Jia J, Song J, Dai J, Liu B, Cui M. Optically pure diphenoxy derivatives as more flexible probes for beta-amyloid plaques. ACS Chem Neurosci. 2016;7(9):1275–82.

    CAS  PubMed  Google Scholar 

  6. Vaidyanathan G, Affleck DJ, Alston KL, Zalutsky MR. A tin precursor for the synthesis of no-carrier-added [*I]MIBG and [211At]MABG. J Labelled Compd Radiopharm. 2007;50(3–4):177–82.

    CAS  Google Scholar 

  7. Garg S, Garg PK, Zalutsky MR. N-succinimidyl 5-(trialkylstannyl)-3-pyridinecarboxylates: a new class of reagents for protein radioiodination. Bioconjug Chem. 1991;2(1):50–6.

    CAS  PubMed  Google Scholar 

  8. Chen K, He P, Zhang S, Li PF. Synthesis of aryl trimethylstannanes from aryl halides: an efficient photochemical method. Chem Commun. 2016;52(58):9125–8.

    CAS  Google Scholar 

  9. Seevers RH, Counsell RE. Radioiodination techniques for small organic molecules. Chem Rev. 1982;82(6):575–90.

    CAS  Google Scholar 

  10. Zea-Ponce Y, Baldwin RM, Zoghbi SS, Innis RB. Formation of 1-[123I]iodobutane in labeling [123I]iomazenil by iododestannylation: implications for the reaction mechanism. Appl Radiat Isot. 1994;45(1):63–8.

    CAS  PubMed  Google Scholar 

  11. Arstad E, Hoff P, Skattebol L, Skretting A, Breistol K. Studies on the synthesis and biological properties of non-carrier-added [125I and 131I]-labeled arylalkylidenebisphosphonates: potent bone-seekers for diagnosis and therapy of malignant osseous lesions. J Med Chem. 2003;46(14):3021–32.

    PubMed  Google Scholar 

  12. Vaidyanathan G, Zalutsky MR. No-carrier-added synthesis of meta-[131I]iodobenzylguanidine. Appl Radiat Isot. 1993;44(3):621–8.

    CAS  PubMed  Google Scholar 

  13. Green M, Lowe J, Kadirvel M, McMahon A, Westwood N, Chua S, et al. Radiosynthesis of no-carrier-added meta-[124I]iodobenzylguanidine for PET imaging of metastatic neuroblastoma. J Radioanal Nucl Chem. 2017;311(1):727–32.

    PubMed  PubMed Central  Google Scholar 

  14. Champion S, Gross J, Robichaud AJ, Pimlott S. Radiosynthesis of 123I-labelled benzimidazoles as novel single-photon emission computed tomography tracers for the histamine H3 receptor. J Labelled Compd Radiopharm. 2011;54(9–10):674–7.

    CAS  Google Scholar 

  15. Tang P, Ritter T. Silver-mediated fluorination of aryl silanes. Tetrahedron. 2011;67(24):4449–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Wilbur DS, Svitra ZV. Organopentafluorosilicates – reagents for rapid and efficient incorporation of no-carrier-added radiobromine and radioiodine. J Labelled Compd Radiopharm. 1983;20(5):619–26.

    CAS  Google Scholar 

  17. McNeill E, Barder TE, Buchwald SL. Palladium-catalyzed silylation of aryl chlorides with hexamethyldisilane. Org Lett. 2007;9(19):3785–8.

    CAS  PubMed  Google Scholar 

  18. Coenen HH, Moerlein SM, Stocklin G. No-carrier-added radiohalogenation methods with heavy halogens. Radiochim Acta. 1983;34(1–2):47–68.

    CAS  Google Scholar 

  19. Foulon CF, Zhang YZ, Adelstein SJ, Kassis AI. Instantaneous preparation of radiolabeled 5-iodo-2′-deoxyuridine. Appl Radiat Isot. 1995;46(10):1039–46.

    CAS  PubMed  Google Scholar 

  20. Kawai K, Ohta H, Kubodera A, Channing MA, Eckelman WC. Synthesis and evaluation of radioiodinated 6-iodo-L-DOPA as a cerebral L-amino acid transport marker. Nucl Med Biol. 1996;23(3):251–5.

    CAS  PubMed  Google Scholar 

  21. Hylarides MD, Wilbur DS, Hadley SW, Fritzberg AR. Synthesis and iodination of methyl 4-tri-normal-butylstannylbenzoate, para-(methoxycarbonyl) phenylmercuric chloride and para-(methoxycarbonyl) phenylboronic acid. J Organomet Chem. 1989;367(3):259–65.

    CAS  Google Scholar 

  22. Kabalka GW, Yao ML. No-carrier-added radiohalogenations utilizing organoboranes: the synthesis of iodine-123 labeled curcumin. J Organomet Chem. 2009;694(11):1638–41.

    CAS  Google Scholar 

  23. Kabalka GW, Sastry KAR, Muralidhar K. Synthesis of iodine-125 labeled aryl and vinyl iodides. J Labelled Compd Radiopharm. 1982;19(6):795–9.

    CAS  Google Scholar 

  24. Kabalka GW, Akula MR, Zhang J. Synthesis of radioiodinated aryl iodides via boronate precursors. Nucl Med Biol. 2002;29(8):841–3.

    CAS  PubMed  Google Scholar 

  25. Kabalka GW, Tang G, Mereddy AR. No-carrier-added radiohalogenations utilizing organoborates. J Labelled Compd Radiopharm. 2007;50(5–6):446–7.

    CAS  Google Scholar 

  26. Akula MR, Yao ML, Kabalka GW. Triolborates: water-soluble complexes of arylboronic acids as precursors to iodoarenes. Tetrahedron Lett. 2010;51(8):1170–1.

    CAS  Google Scholar 

  27. Moerlein SM. Regiospecific incorporation of no-carrier-added radiobromine and radioiodine into aromatic rings via halodegermylation. J Chem Soc Perkin Trans 1. 1985;8:1687–92.

    Google Scholar 

  28. Haberkorn U, Kinscherf R, Krammer PH, Mier W, Eisenhut M. Investigation of a potential scintigraphic marker of apoptosis: radioiodinated Z-Val-Ala-DL-Asp(O-methyl)-fluoromethyl ketone. Nucl Med Biol. 2001;28(7):793–8.

    CAS  PubMed  Google Scholar 

  29. Ronnest MH, Nissen F, Pedersen PJ, Larsen TO, Mier W, Clausen MH. A mild method for regioselective labeling of aromatics with radioactive iodine. Eur J Org Chem. 2013;19:3970–3.

    Google Scholar 

  30. Wieland DM, Mangner TJ, Inbasekaran MN, Brown LE, Wu JL. Adrenal medulla imaging agents: a structure-distribution relationship study of radiolabeled aralkylguanidines. J Med Chem. 1984;27(2):149–55.

    CAS  PubMed  Google Scholar 

  31. Mertens J, Vanryckeghem W, Bossuyt A. High-yield preparation of 123I-N-isopropyl-para-iodoamphetamine (Iamp) in presence of Cu(I). J Labelled Compd Radiopharm. 1985;22(1):89–93.

    CAS  Google Scholar 

  32. Eersels JLH, Mertens J, Herscheid JDM. Optimization of the labeling yield by determination of the Cu+-acetonitrile complex constant in Cu+-catalyzed nucleophilic exchange reactions in mixed solvent conditions. J Radioanal Nucl Chem. 2011;288(1):291–6.

    Google Scholar 

  33. Eersels JL, Mertens J, Herscheid JD. The Cu+-assisted radioiodination kit: mechanistic study of unexplored parameters concerning the acidity and redox properties of the reaction medium. Appl Radiat Isot. 2010;68(2):309–13.

    CAS  PubMed  Google Scholar 

  34. Eersels JLH, Travis MJ, Herscheid JDM. Manufacturing I-123-labelled radiopharmaceuticals. Pitfalls and solutions. J Labelled Compd Radiopharm. 2005;48(4):241–57.

    CAS  Google Scholar 

  35. Chacko AM, Divgi CR. Radiopharmaceutical chemistry with iodine-124: a non-standard radiohalogen for positron emission tomography. Med Chem. 2011;7(5):395–412.

    CAS  PubMed  Google Scholar 

  36. Eersels JLH, Mertens J, Herscheid JDM. New insights into the Cu plus -assisted nucleophilic radioiodination of bromopyridine and iodopyridine analogues. J Labelled Compd Radiopharm. 2012;55(4):135–9.

    CAS  Google Scholar 

  37. Cant AA, Champion S, Bhalla R, Pimlott SL, Sutherland A. Nickel-mediated radioiodination of aryl and heteroaryl bromides: rapid synthesis of tracers for SPECT imaging. Angew Chem Int Ed Engl. 2013;52(30):7829–32.

    CAS  PubMed  Google Scholar 

  38. Wilson TC, McSweeney G, Preshlock S, Verhoog S, Tredwell M, Cailly T, et al. Radiosynthesis of SPECT tracers via a copper mediated 123I iodination of (hetero)aryl boron reagents. Chem Commun (Camb). 2016;52(90):13277–80.

    CAS  PubMed  Google Scholar 

  39. Zhang P, Zhuang R, Guo Z, Su X, Chen X, Zhang X. A highly efficient copper-mediated radioiodination approach using aryl boronic acids. Chemistry. 2016;22(47):16783–6.

    CAS  PubMed  Google Scholar 

  40. Michelot JM, Moreau MF, Labarre PG, Madelmont JC, Veyre AJ, Papon JM, et al. Synthesis and evaluation of new iodine-125 radiopharmaceuticals as potential tracers for malignant melanoma. J Nucl Med. 1991;32(8):1573–80.

    CAS  PubMed  Google Scholar 

  41. Pickett JE, Nagakura K, Pasternak AR, Grinnell SG, Majumdar S, Lewis JS, et al. Sandmeyer reaction repurposed for the site-selective, non-oxidizing radioiodination of fully-deprotected peptides: studies on the endogenous opioid peptide alpha-neoendorphin. Bioorg Med Chem Lett. 2013;23(15):4347–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Vivier M, Rapp M, Papon J, Labarre P, Galmier MJ, Sauziere J, et al. Synthesis, radiosynthesis, and biological evaluation of new proteasome inhibitors in a tumor targeting approach. J Med Chem. 2008;51(4):1043–7.

    CAS  PubMed  Google Scholar 

  43. Khalaj A, Beiki D, Rafiee H, Najafi R. A new and simple synthesis of N-succinimidyl-4-[127/125I] iodobenzoate involving a microwave-accelerated iodination step. J Labelled Compd Radiopharm. 2001;44(3):235–40.

    CAS  Google Scholar 

  44. Foster NI, Dannals R, Burns HD, Heindel ND. A condition variation study for radioiodination via triazene intermediates. J Radioanal Chem. 1981;65(1–2):95–105.

    CAS  Google Scholar 

  45. Hu B, Miller WH, Neumann KD, Linstad EJ, DiMagno SG. An alternative to the Sandmeyer approach to aryl iodides. Chemistry. 2015;21(17):6394–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. DiMagno SG. WO 2016201128 A1 20161215 preparation of guanidinium compounds; 2016.

    Google Scholar 

  47. Guerard F, Lee YS, Baidoo K, Gestin JF, Brechbiel MW. Unexpected behavior of the heaviest halogen astatine in the nucleophilic substitution of aryliodonium salts. Chemistry. 2016;22(35):12332–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Kothari P, De BP, He B, Chen A, Chiuchiolo MJ, Kim D, et al. Radioiodinated capsids facilitate in vivo non-invasive tracking of adeno-associated gene transfer vectors. Sci Rep. 2017;7:39594.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Culbert PA, Hunter DH. Polymer-supported radiopharmaceuticals – 123I labeled and 131I-labeled N-isopropyl-4-iodoamphetamine. React Polym. 1993;19(3):247–53.

    Google Scholar 

  50. Hunter DH, Zhu XZ. Polymer-supported radiopharmaceuticals: [131I]MIBG and [123I]MIBG. J Labelled Compd Radiopharm. 1999;42(7):653–61.

    CAS  Google Scholar 

  51. Chin BB, Kronauge JF, Femia FJ, Chen J, Maresca KP, Hillier S, et al. Phase-1 clinical trial results of high-specific-activity carrier-free 123I-iobenguane. J Nucl Med. 2014;55(5):765–71.

    CAS  PubMed  Google Scholar 

  52. Gifford AN, Kuschel S, Shea C, Fowler JS. Polymer-supported organotin reagent for prosthetic group labeling of biological macromolecules with radioiodine. Bioconjug Chem. 2011;22(3):406–12.

    CAS  PubMed  Google Scholar 

  53. Janabi M, Pollock CM, Chacko AM, Hunter DH. Resin-supported arylstannanes as precursors for radiolabeling with iodine: benzaldehydes, benzoic acids, benzamides, and NHS esters. Can J Chem. 2015;93(2):207–17.

    CAS  Google Scholar 

  54. Kabalka GW, Namboodiri V, Akula MR. Synthesis of 123I labeled Congo red via solid phase organic chemistry. J Labelled Compd Radiopharm. 2001;44(13):921–9.

    CAS  Google Scholar 

  55. Hernan AG, Horton PN, Hursthouse MB, Kilburn JD. New and efficient synthesis of solid-supported organotin reagents and their use in organic synthesis. J Organomet Chem. 2006;691(8):1466–75.

    CAS  Google Scholar 

  56. Rajerison H, Faye D, Roumesy A, Louaisil N, Boeda F, Faivre-Chauvet A, et al. Ionic liquid supported organotin reagents to prepare molecular imaging and therapy agents. Org Biomol Chem. 2016;14(6):2121–6.

    CAS  PubMed  Google Scholar 

  57. Wang G, Chen ZM, Wu EM, Wang Y, Huang HY. A convenient method for the preparation of radioiodinated meta-iodobenzylguanidine at a no-carrier-added level. J Labelled Compd Radiopharm. 2015;58(11–12):442–4.

    CAS  Google Scholar 

  58. Dzandzi JP, Beckford Vera DR, Genady AR, Albu SA, Eltringham-Smith LJ, Capretta A, et al. Fluorous analogue of chloramine-t: preparation, x-ray structure determination, and use as an oxidant for radioiodination and s-tetrazine synthesis. J Org Chem. 2015;80(14):7117–25.

    CAS  PubMed  Google Scholar 

  59. Dzandzi JP, Vera DR, Valliant JF. A hybrid solid-fluorous phase radioiodination and purification platform. J Labelled Compd Radiopharm. 2014;57(9):551–7.

    CAS  Google Scholar 

  60. Donovan A, Forbes J, Dorff P, Schaffer P, Babich J, Valliant JF. A new strategy for preparing molecular imaging and therapy agents using fluorine-rich (fluorous) soluble supports. J Am Chem Soc. 2006;128(11):3536–7.

    CAS  PubMed  Google Scholar 

  61. Billaud EM, Vidal A, Vincenot A, Besse S, Bouchon B, Debiton E, et al. Development and preliminary evaluation of TFIB, a new bimodal prosthetic group for bioactive molecule labeling. ACS Med Chem Lett. 2015;6(2):168–72.

    CAS  PubMed  Google Scholar 

  62. Carter RL, Johnson BF, Sood A, Rishel MJ, Valliant JF, Stephenson KA, et al. Biotin stannane for HPLC-free radioiodination. CA 28855223 A1. Google Patents 28 Mar 2013. https://www.google.com/patents/CA2866223A1?cl=en.

  63. Wu T, Yang Y, Stephenson K, Valliant J, Carter R, Johnson B, et al. Biotin stannanes for HPLC-free radioiodination (abstract). J Nucl Med. 2013;54(Suppl 2):496.

    Google Scholar 

  64. Nakagawa C, Toyama M, Takeuchi R, Takahashi T, Tanaka H. Synthesis of [I-123]-iodometomidate from a polymer-supported precursor with a large excluded volume. RSC Adv. 2016;6(15):12215–8.

    CAS  Google Scholar 

  65. Yong L, Yao ML, Kelly H, Green JF, Kabalka GW. Radioiodination of polymer-supported organotrifluoroborates. J Labelled Compd Radiopharm. 2011;54(4):173–4.

    CAS  Google Scholar 

  66. Spivey AC, Tseng CC, Jones TC, Kohler AD, Ellames GJ. A method for parallel solid-phase synthesis of iodinated analogues of the CB1 receptor inverse agonist rimonabant. Org Lett. 2009;11(20):4760–3.

    CAS  PubMed  Google Scholar 

  67. Doll S, Woolum K, Kumar K. Radiolabeling of a cyclic RGD (cyclo Arg-Gly-Asp-d-Tyr-Lys) peptide using sodium hypochlorite as an oxidizing agent. J Labelled Compd Radiopharm. 2016;59(11):462–6.

    CAS  Google Scholar 

  68. Haubner R, Wester HJ, Reuning U, Senekowitsch-Schmidtke R, Diefenbach B, Kessler H, et al. Radiolabeled αvβ3 integrin antagonists: a new class of tracers for tumor targeting. J Nucl Med. 1999;40(6):1061–71.

    Google Scholar 

  69. Terriere D, Chavatte K, Ceusters M, Tourwe D, Mertens J. Radiosynthesis of new radio neurotensin (8-13) analogues. J Labelled Compd Radiopharm. 1998;41(1):19–27.

    CAS  Google Scholar 

  70. Vaidyanathan G, Affleck D, Welsh P, Srinivasan A, Schmidt M, Zalutsky MR. Radioiodination and astatination of octreotide by conjugation labeling. Nucl Med Biol. 2000;27(4):329–37.

    CAS  PubMed  Google Scholar 

  71. Dissoki S, Hagooly A, Elmachily S, Mishani E. Labeling approaches for the GE11 peptide, an epidermal growth factor receptor biomarker. J Labelled Compd Radiopharm. 2011;54(11):693–701.

    CAS  Google Scholar 

  72. Rossouw DD. Radioiodine labelling of a small chemotactic peptide, utilizing two different prosthetic groups: a comparative study. J Labelled Compd Radiopharm. 2008;51(1–2):48–53.

    CAS  Google Scholar 

  73. Kondo N, Temma T, Shimizu Y, Ono M, Saji H. Radioiodinated peptidic imaging probes for in vivo detection of membrane type-1 matrix metalloproteinase in cancers. Biol Pharm Bull. 2015;38(9):1375–82.

    CAS  PubMed  Google Scholar 

  74. Bhojani MS, Ranga R, Luker GD, Rehemtulla A, Ross BD, Van Dort ME. Synthesis and investigation of a radioiodinated F3 peptide analog as a SPECT tumor imaging radioligand. PLoS One. 2011;6(7):e22418.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Amartey JK, Esguerra C. A facile method for post-conjugation prosthetic radioiodination of “mini-peptides”. Appl Radiat Isot. 2006;64(12):1549–54.

    CAS  PubMed  Google Scholar 

  76. Vaidyanathan G, Affleck DJ, Schottelius M, Wester H, Friedman HS, Zalutsky MR. Synthesis and evaluation of glycosylated octreotate analogues labeled with radioiodine and 211At via a tin precursor. Bioconjug Chem. 2006;17(1):195–203.

    CAS  PubMed  Google Scholar 

  77. Choi MH, Shim HE, Yun SJ, Kim HR, Mushtaq S, Lee CH, et al. Highly efficient method for 125I-radiolabeling of biomolecules using inverse-electron-demand Diels-Alder reaction. Bioorg Med Chem. 2016;24:2589–94.

    CAS  Google Scholar 

  78. Verel I, Visser GW, Vosjan MJ, Finn R, Boellaard R, van Dongen GA. High-quality 124I-labelled monoclonal antibodies for use as PET scouting agents prior to 131I-radioimmunotherapy. Eur J Nucl Med Mol Imaging. 2004;31(12):1645–52.

    CAS  PubMed  Google Scholar 

  79. Lane DJR, Richardson DR. Revolutions in the labelling of proteins with radionuclides of iodine: William Hunter and radioiodination. Biochem J. 2011;4:34–8.

    Google Scholar 

  80. Vaidyanathan G, Zalutsky MR. Preparation of N-succinimidyl 3-[*I]iodobenzoate: an agent for the indirect radioiodination of proteins. Nat Protoc. 2006;1(2):707–13.

    CAS  PubMed  Google Scholar 

  81. Wilbur DS, Hadley SW, Hylarides MD, Abrams PG, Beaumier PA, Morgan AC, et al. Development of a stable radioiodinating reagent to label monoclonal antibodies for radiotherapy of cancer. J Nucl Med. 1989;30(2):216–26.

    CAS  PubMed  Google Scholar 

  82. Tolmachev V, Orlova A, Lundqvist H. Approaches to improve cellular retention of radiohalogen labels delivered by internalising tumour-targeting proteins and peptides. Curr Med Chem. 2003;10(22):2447–60.

    CAS  PubMed  Google Scholar 

  83. Sugiura G, Kuhn H, Sauter M, Haberkorn U, Mier W. Radiolabeling strategies for tumor-targeting proteinaceous drugs. Molecules. 2014;19(2):2135–65.

    PubMed  PubMed Central  Google Scholar 

  84. Yan R, Sander K, Galante E, Rajkumar V, Badar A, Robson M, et al. A one-pot three-component radiochemical reaction for rapid assembly of 125I-labeled molecular probes. J Am Chem Soc. 2013;135(2):703–9.

    CAS  PubMed  Google Scholar 

  85. Ono M, Watanabe H, Ikehata Y, Ding N, Yoshimura M, Sano K, et al. Radioiodination of BODIPY and its application to a nuclear and optical dual functional labeling agent for proteins and peptides. Sci Rep. 2017;7(1):3337.

    PubMed  PubMed Central  Google Scholar 

  86. Reist CJ, Archer GE, Kurpad SN, Wikstrand CJ, Vaidyanathan G, Willingham MC, et al. Tumor-specific anti-epidermal growth factor receptor variant III monoclonal antibodies: use of the tyramine-cellobiose radioiodination method enhances cellular retention and uptake in tumor xenografts. Cancer Res. 1995;55(19):4375–82.

    CAS  PubMed  Google Scholar 

  87. Choi J, Vaidyanathan G, Koumarianou E, McDougald D, Pruszynski M, Osada T, et al. N-Succinimidyl guanidinomethyl iodobenzoate protein radiohalogenation agents: influence of isomeric substitution on radiolabeling and target cell residualization. Nucl Med Biol. 2014;41(10):802–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Shankar S, Vaidyanathan G, Affleck DJ, Peixoto K, Bigner DD, Zalutsky MR. Evaluation of an internalizing monoclonal antibody labeled using N-succinimidyl 3-[131I]iodo-4-phosphonomethylbenzoate ([131I]SIPMB), a negatively charged substituent bearing acylation agent. Nucl Med Biol. 2004;31(7):909–19.

    CAS  PubMed  Google Scholar 

  89. Karmani L, Leveque P, Bouzin C, Bol A, Dieu M, Walrand S, et al. Biodistribution of 125I-labeled anti-endoglin antibody using SPECT/CT imaging: impact of in vivo deiodination on tumor accumulation in mice. Nucl Med Biol. 2016;43(7):415–23.

    CAS  PubMed  Google Scholar 

  90. Pruszynski M, Koumarianou E, Vaidyanathan G, Chitneni S, Zalutsky MR. D-amino acid peptide residualizing agents bearing N-hydroxysuccinimido- and maleimido-functional groups and their application for trastuzumab radioiodination. Nucl Med Biol. 2015;42(1):19–27.

    CAS  PubMed  Google Scholar 

  91. Lee FT, Burvenich IJ, Guo N, Kocovski P, Tochon-Danguy H, Ackermann U, et al. l-tyrosine confers residualizing properties to a d-amino acid-rich residualizing peptide for radioiodination of internalizing antibodies. Mol Imaging. 2016. https://doi.org/10.1177/15:1536012116647535.

  92. van Schaijk FG, Broekema M, Oosterwijk E, van Eerd JE, McBride BJ, Goldenberg DM, et al. Residualizing iodine markedly improved tumor targeting using bispecific antibody-based pretargeting. J Nucl Med. 2005;46(6):1016–22.

    PubMed  Google Scholar 

  93. Boswell CA, Marik J, Elowson MJ, Reyes NA, Ulufatu S, Bumbaca D, et al. Enhanced tumor retention of a radiohalogen label for site-specific modification of antibodies. J Med Chem. 2013;56(23):9418–26.

    CAS  PubMed  Google Scholar 

  94. Vaidyanathan G, White BJ, Affleck DJ, Zhao XG, Welsh PC, McDougald D, et al. SIB-DOTA: a trifunctional prosthetic group potentially amenable for multi-modal labeling that enhances tumor uptake of internalizing monoclonal antibodies. Bioorg Med Chem. 2012;20(24):6929–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Albu SA, Al-Karmi SA, Vito A, Dzandzi JP, Zlitni A, Beckford-Vera D, et al. 125I-Tetrazines and inverse-electron-demand diels-alder chemistry: a convenient radioiodination strategy for biomolecule labeling, screening, and biodistribution studies. Bioconjug Chem. 2016;27(1):207–16.

    CAS  PubMed  Google Scholar 

  96. Cavina L, van der Born D, Klaren PHM, Feiters MC, Boerman OC, Rutjes F. Design of radioiodinated pharmaceuticals: structural features affecting metabolic stability towards in vivo deiodination. Eur J Org Chem. 2017;2017(24):3387–414.

    CAS  Google Scholar 

  97. Genady AR, Tan J, El-Zaria ME, Zlitni A, Janzen N, Valliant JF. Reprint of: synthesis, characterization and radiolabeling of carborane-functionalized tetrazines for use in inverse electron demand Diels-Alder ligation reactions. J Organomet Chem. 2015;798:278–88.

    CAS  Google Scholar 

  98. DiMagno SG. US 20140275539 A1. Preparation of radioiodinated and astatinated organic compounds as imaging agents; 2014.

    Google Scholar 

  99. Sajjad M, Lambrecht RM, Bakr SA. Autoradiolytic decomposition of reductant-free sodium I-124 iodide and I-123 iodide. Radiochim Acta. 1990;50(1–2):123–7.

    CAS  Google Scholar 

  100. Sartor J, Guhlke S, Tentler M, Biersack HJ. A simple and efficient method for purification and reduction of radioiodine for pharmaceutical syntheses. J Nucl Med. 1998;39(5):143P.

    Google Scholar 

  101. Sahu S, Sahoo PR, Patel S, Mishra BK. Oxidation of thiourea and substituted thioureas: a review. J Sulfur Chem. 2011;32(2):171–97.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ganesan Vaidyanathan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vaidyanathan, G., Zalutsky, M.R. (2019). The Radiopharmaceutical Chemistry of the Radioisotopes of Iodine. In: Lewis, J., Windhorst, A., Zeglis, B. (eds) Radiopharmaceutical Chemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-98947-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98947-1_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98946-4

  • Online ISBN: 978-3-319-98947-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics