Skip to main content

Cloning of High-Dimensional Quantum States

  • Chapter
  • First Online:
  • 426 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

In Chap. 2, I describe a simple intercept-and-resend attack that an eavesdropper can perform on a QKD link. I explain how Alice encoding information in two or more randomly chosen mutually unbiased bases compels Eve to measure the quantum states in incorrect basis, resulting in increased quantum bit error rate in the raw key. In principle, Eve could circumvent detection if she was in possession of a quantum device that could copy an information-carrying photon on a different photon. Such a device would allow her to copy all the quantum states in the channel, one at a time, and then measure the quantum states after Alice and Bob discuss their basis choice. However, as discussed in Chap. 1, there is a fundamental limiting principle, known as the no-cloning theorem, that forbids Eve from cloning unknown quantum states in the quantum channel.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. S. Aaronson, A. Arkhipov, in Proceedings of the 43rd Annual ACM Symposium Theory of Computing, STOC ’11 (ACM, New York, 2011), pp. 333–342. https://doi.org/10.1145/1993636.1993682

    Google Scholar 

  2. F. Bouchard, R. Fickler, R.W. Boyd, E. Karimi, Sci. Adv. 3 (2017). https://doi.org/10.1126/sciadv.1601915, http://advances.sciencemag.org/content/3/2/e1601915.full.pdf

    Article  ADS  Google Scholar 

  3. V. Bužek, M. Hillery, Phys. Rev. A 54, 1844 (1996). https://doi.org/10.1103/PhysRevA.54.1844

    Article  ADS  MathSciNet  Google Scholar 

  4. N. Gisin, S. Popescu, Phys. Rev. Lett. 83, 432 (1999). https://doi.org/10.1103/PhysRevLett.83.432

    Article  ADS  Google Scholar 

  5. N. Herbert, Found. Phys. 12, 1171 (1982). https://doi.org/10.1007/BF00729622

    Article  ADS  Google Scholar 

  6. C.K. Hong, Z.Y. Ou, L. Mandel, Phys. Rev. Lett. 59, 2044 (1987). https://doi.org/10.1103/PhysRevLett.59.2044

    Article  ADS  Google Scholar 

  7. N. Sangouard, C. Simon, H. de Riedmatten, N. Gisin, Rev. Mod. Phys. 83, 33 (2011). https://doi.org/10.1103/RevModPhys.83.33

    Article  ADS  Google Scholar 

  8. V. Scarani, S. Iblisdir, N. Gisin, A. Acín, Rev. Mod. Phys. 77, 1225 (2005). https://doi.org/10.1103/RevModPhys.77.1225

    Article  ADS  Google Scholar 

  9. V. Scarani, H. Bechmann-Pasquinucci, N.J. Cerf, M. Dušek, N. Lütkenhaus, M. Peev, Rev. Mod. Phys. 81, 1301 (2009). https://doi.org/10.1103/RevModPhys.81.1301

    Article  ADS  Google Scholar 

  10. L. Sheridan, V. Scarani, Phys. Rev. A 82, 030301 (2010). https://doi.org/10.1103/PhysRevA.82.030301

    Article  ADS  Google Scholar 

  11. R. Valivarthi, Q. Zhou, C. John, F. Marsili, V.B. Verma, M.D. Shaw, S.W. Nam, D. Oblak, W. Tittel, Quantum Sci. Tech. 2, 04LT01 (2017). http://stacks.iop.org/2058-9565/2/i=4/a=04LT01

  12. R.F. Werner, Phys. Rev. A 58, 1827 (1998). https://doi.org/10.1103/PhysRevA.58.1827

    Article  ADS  Google Scholar 

  13. W.K. Wootters, W.H. Zurek, Nature 299, 802 (1982)

    Article  ADS  Google Scholar 

  14. F. Xu, M. Curty, B. Qi, H.-K. Lo, New J. Phys. 15, 113007 (2013). http://stacks.iop.org/1367-2630/15/i=11/a=113007

    Article  ADS  Google Scholar 

  15. X. Yuan, Z. Zhang, N. Lütkenhaus, X. Ma, Phys. Rev. A 94, 062305 (2016). https://doi.org/10.1103/PhysRevA.94.062305

    Article  ADS  Google Scholar 

  16. Y. Zhang, F.S. Roux, T. Konrad, M. Agnew, J. Leach, A. Forbes, Sci. Adv. 2 (2016). https://doi.org/10.1126/sciadv.1501165, http://advances.sciencemag.org/content/2/2/e1501165.full.pdf

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Islam, N.T. (2018). Cloning of High-Dimensional Quantum States. In: High-Rate, High-Dimensional Quantum Key Distribution Systems. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-98929-7_6

Download citation

Publish with us

Policies and ethics