Skip to main content

Interval-Level Variables

  • Chapter
  • First Online:
The Measurement of Association

Abstract

This chapter describes permutation statistical methods for measures of association designed for two or more interval-level variables. Included in this chapter are simple and multiple ordinary least squares (OLS) regression, simple and multiple least absolute deviation (LAD) regression, point-biserial correlation, and biserial correlation. Fisher’s Z transform for non-normal distributions is examined and evaluated. This chapter concludes with a discussion of the intraclass correlation coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this chapter, a caret (∧) over a symbol such as \(\hat {\alpha }\) or \(\hat {\beta }\) indicates an OLS regression model predicted value of a corresponding population parameter, while a tilde (∼) over a symbol such as \(\tilde {\alpha }\) or \(\tilde {\beta }\) indicates a LAD regression model predicted value of a corresponding population parameter.

  2. 2.

    For comparison, the top of Mount Everest is approximately 8.85 km with a pressure of about 300 millibars.

  3. 3.

    For real-life applications and comparisons of OLS and LAD regression applied to meteorological forecasting, see two articles in Weather and Forecasting by Mielke, Berry, Landsea, and Gray [39, 40].

  4. 4.

    It is probably safe to assume that in any actual research situation, the population correlation coefficient is always not equal to zero.

  5. 5.

    The problem is not confined to r pb. In general, the problem is called the base-rate problem or the marginal-dependent problem. See two excellent discussions of the problem by Goodman [19] and McGrath and Meyer [31].

  6. 6.

    For many years height has been considered as normally distributed, but recent research indicates that this is not necessarily the case [30, pp. 205–207].

  7. 7.

    Note that the sum of squared deviation is divided by N, not N − 1 and the symbol for the standard deviation is S y with an uppercase letter S to distinguish it from the usual sample standard deviation denoted by s y.

References

  1. Barrodale, I., Roberts, F.D.K.: A improved algorithm for discrete 1 linear approximation. J. Num. Anal. 10, 839–848 (1973)

    Article  MathSciNet  Google Scholar 

  2. Barrodale, I., Roberts, F.D.K.: Solution of an overdetermined system of equations in the 1 norm. Commun. ACM 17, 319–320 (1974)

    Article  Google Scholar 

  3. Bartko, J.J.: The intraclass correlation coefficient as a measure of reliability. Psychol. Rep. 19, 3–11 (1966)

    Article  Google Scholar 

  4. Bartko, J.J.: On various intraclass correlation reliability coefficients. Psychol. Bull. 83, 762–765 (1976)

    Article  Google Scholar 

  5. Berry, K.J., Mielke, P.W.: A Monte Carlo investigation of the Fisher Z transformation for normal and nonnormal distributions. Psychol. Rep. 87, 1101–1114 (2000)

    Article  Google Scholar 

  6. Berry, K.J., Mielke, P.W., Johnston, J.E.: Permutation Statistical Methods: An Integrated Approach. Springer–Verlag, Cham, CH (2016)

    Google Scholar 

  7. David, F.N.: Tables of the Distribution of the Correlation Coefficient. Cambridge University Press, Cambridge, UK (1938)

    Google Scholar 

  8. Dielman, T.E.: A comparison of forecasts from least absolute and least squares regression. J. Forecasting 5, 189–195 (1986)

    Article  Google Scholar 

  9. Dielman, T.E.: Corrections to a comparison of forecasts from least absolute and least squares regression. J. Forecasting 8, 419–420 (1989)

    Article  Google Scholar 

  10. Dielman, T.E., Pfaffenberger, R.: Least absolute value regression: Necessary sample sizes to use normal theory inference procedures. Dec. Sci. 19, 734–743 (1988)

    Article  Google Scholar 

  11. Endler, J.A., Mielke, P.W.: Comparing entire colour patterns as birds see them. Biol. J. Linn. Soc. 86, 405–431 (2005)

    Article  Google Scholar 

  12. Feinstein, A.R.: Clinical Biostatistics XXIII: The role of randomization in sampling, testing, allocation, and credulous idolatry (Part 2). Clin. Pharmacol. Ther. 14, 898–915 (1973)

    Article  Google Scholar 

  13. Fisher, R.A.: Frequency distribution of the values of the correlation coefficient in samples from an indefinitely large population. Biometrika 10, 507–521 (1915)

    Google Scholar 

  14. Fisher, R.A.: Studies in crop variation, I. An examination of the yield of dressed grain from Broadbalk. J. Agric. Sci. 11, 107–135 (1921)

    Google Scholar 

  15. Fisher, R.A.: Statistical Methods for Research Workers, 5th edn. Oliver and Boyd, Edinburgh (1934)

    MATH  Google Scholar 

  16. Flanagan, J.C.: General considerations in the selection of test items and a short method of estimating the product-moment coefficient from the data at the tails of the distribution. J. Educ. Psych. 30, 674–680 (1939)

    Article  Google Scholar 

  17. Gayen, A.K.: The frequency distribution of the product-moment correlation coefficient in random samples of any size drawn from non-normal universes. Biometrika 38, 219–247 (1951)

    Article  MathSciNet  Google Scholar 

  18. Geary, R.C.: Testing for normality. Biometrika 34, 209–242 (1947)

    Article  MathSciNet  Google Scholar 

  19. Goodman, L.A.: Measures, models, and graphical displays in the analysis of cross-classified data. J. Am. Stat. Assoc. 86, 1085–1111 (1991)

    Article  MathSciNet  Google Scholar 

  20. Haggard, E.A.: Intraclass Correlation and the Analysis of Variance. Dryden, New York (1958)

    MATH  Google Scholar 

  21. Hotelling, H.: New light on the correlation coefficient and its transforms. J. R. Stat. Soc. Meth 15, 193–232 (1953)

    MathSciNet  MATH  Google Scholar 

  22. Jeyaratnam, S.: Confidence intervals for the correlation coefficient. Stat. Probab. Lett. 15, 389–393 (1992)

    Article  MathSciNet  Google Scholar 

  23. Johnston, J.E., Berry, K.J., Mielke, P.W.: Permutation tests: Precision in estimating probability values. Percept. Motor Skill 105, 915–920 (2007)

    Article  Google Scholar 

  24. Kaufman, E.H., Taylor, G.D., Mielke, P.W., Berry, K.J.: An algorithm and FORTRAN program for multivariate LAD ( 1 of 2) regression. Computing 68, 275–287 (2002)

    Article  MathSciNet  Google Scholar 

  25. Kraemer, H.C.: Improved approximation to the non-null distribution of the correlation coefficient. J. Am. Stat. Assoc. 68, 1004–1008 (1973)

    Article  MathSciNet  Google Scholar 

  26. Kraemer, H.C., Thiemann, S.: How Many Subjects? Sage, Newbury Park, CA (1987)

    Google Scholar 

  27. Krause, E.F.: Taxicab Geometry. Addison–Wesley, Menlo Park, CA (1975)

    Google Scholar 

  28. Liu, W.C., Woodward, J.A., Bonett, D.G.: The generalized likelihood ratio test for the Pearson correlation. Commun. Stat. Simul. C 25, 507–520 (1996)

    Article  Google Scholar 

  29. Mathew, T., Nordström, K.: Least squares and least absolute deviation procedures in approximately linear models. Stat. Probab. Lett. 16, 153–158 (1993)

    Article  MathSciNet  Google Scholar 

  30. Matthews, R.: Beautiful, but dangerous. Significance 13, 30–31 (2016)

    Article  Google Scholar 

  31. McGrath, R.E., Meyer, G.J.: When effect sizes disagree: The case of r and d. Psychol. Meth. 11, 386–401 (2006)

    Article  Google Scholar 

  32. McGraw, K.O., Wong, S.P.: Forming inferences about some intraclass correlation coefficients. Psychol. Meth. 1, 30–46 (1996)

    Article  Google Scholar 

  33. Micceri, T.: The unicorn, the normal curve, and other improbable creatures. Psychol. Bull. 105, 156–166 (1989)

    Article  Google Scholar 

  34. Mielke, P.W.: Asymptotic behavior of two-sample tests based on powers of ranks for detecting scale and location alternatives. J. Am. Stat. Assoc. 67, 850–854 (1972)

    Article  MathSciNet  Google Scholar 

  35. Mielke, P.W.: Another family of distributions for describing and analyzing precipitation data. J. Appl. Meteor. 12, 275–280 (1973). [Corrigendum: J. Appl. Meteor. 13, 516 (1973)]

    Article  Google Scholar 

  36. Mielke, P.W., Berry, K.J.: Multivariate multiple regression analyses: A permutation method for linear models. Psychol. Rep. 91, 3–9 (2002)

    Article  Google Scholar 

  37. Mielke, P.W., Berry, K.J.: Multivariate multiple regression prediction models: A Euclidean distance approach. Psychol. Rep. 92, 763–769 (2003)

    Article  Google Scholar 

  38. Mielke, P.W., Berry, K.J.: Permutation Methods: A Distance Function Approach, 2nd edn. Springer–Verlag, New York (2007)

    MATH  Google Scholar 

  39. Mielke, P.W., Berry, K.J., Landsea, C.W., Gray, W.M.: Artificial skill and validation in meteorological forecasting. Weather Forecast 11, 153–169 (1996)

    Article  Google Scholar 

  40. Mielke, P.W., Berry, K.J., Landsea, C.W., Gray, W.M.: A single-sample estimate of shrinkage in meteorological forecasting. Weather Forecast 12, 847–858 (1997)

    Article  Google Scholar 

  41. Mudholkar, G.S., Chaubey, Y.P.: On the distribution of Fisher’s transformation of the correlation coefficient. Commun. Stat. Simul. C 5, 163–172 (1976)

    Article  Google Scholar 

  42. Nunnally, J.C.: Psychometric Theory, 2nd edn. McGraw–Hill, New York (1978)

    Google Scholar 

  43. Pearson, E.S.: Some notes on sampling with two variables. Biometrika 21, 337–360 (1929)

    Article  Google Scholar 

  44. Pfaffenberger, R., Dinkel, J.: Absolute deviations curve-fitting: An alternative to least squares. In: David, H.A. (ed.) Contributions to Survey Sampling and Applied Statistics, pp. 279–294. Academic Press, New York (1978)

    Chapter  Google Scholar 

  45. Pillai, K.C.S.: Confidence interval for the correlation coefficient. Sankhyā 7, 415–422 (1946)

    MathSciNet  MATH  Google Scholar 

  46. Robinson, W.S.: The statistical measurement of agreement. Am. Sociol. Rev. 22, 17–25 (1957)

    Article  Google Scholar 

  47. Rousseeuw, P.J.: Least median of squares regression. J. Am. Stat. Assoc. 79, 871–880 (1984)

    Article  MathSciNet  Google Scholar 

  48. Ruben, H.: Some new results on the distribution of the sample correlation coefficient. J. R. Stat. Soc. 28, 513–525 (1966)

    MathSciNet  MATH  Google Scholar 

  49. Samiuddin, M.: On a test for an assigned value of correlation in a bivariate normal distribution. Biometrika 57, 461–464 (1970)

    MathSciNet  Google Scholar 

  50. Shrout, P.E., Fleiss, J.L.: Intraclass correlations: Uses in assessing rater relaibility. Psychol. Bull. 86, 420–428 (1979)

    Article  Google Scholar 

  51. Sitgreaves, R.: Review of “Intraclass Correlation and the Analysis of Variance” by E. A. Haggard. J. Am. Stat. Assoc. 55, 384–385 (1960)

    Article  Google Scholar 

  52. Taylor, L.D.: Estimation by minimizing the sum of absolute errors. In: Zarembka, P. (ed.) Frontiers in Econometrics, pp. 169–190. Academic Press, New York (1974)

    Google Scholar 

  53. Thompson, D.: Volcano Cowboys. St. Martin’s Press, New York (2000)

    Google Scholar 

  54. von Eye, A., Mun, E.Y.: Analyzing Rater Agreement. Lawrence Erlbaum, Mahwah, NJ (2005)

    Google Scholar 

  55. Wilson, H.G.: Least squares versus minimum absolute deviations estimation in linear models. Dec. Sci. 9, 322–325 (1978)

    Article  Google Scholar 

  56. Winer, B.J.: Statistical Principles in Experimental Design, 2nd edn. McGraw–Hill, New York (1971)

    Google Scholar 

  57. Wong, S.P., McGraw, K.O.: Confidence intervals and F tests for intraclass correlations based on three-way random effects models. Educ. Psychol. Meas. 59, 270–288 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Berry, K.J., Johnston, J.E., Mielke, P.W. (2018). Interval-Level Variables. In: The Measurement of Association. Springer, Cham. https://doi.org/10.1007/978-3-319-98926-6_7

Download citation

Publish with us

Policies and ethics