Skip to main content

Grain Legumes for the Sustainability of European Farming Systems

  • Chapter
  • First Online:
Sustainable Agriculture Reviews 32

Part of the book series: Sustainable Agriculture Reviews ((SARV,volume 32))

Abstract

Grain legumes offer many agronomic, environmental and socio-economic benefits when grown in succession with cereals. They can increase the yields of following crops in the rotation. They fix indirectly atmospheric nitrogen, which makes them economical and environmentally friendly. Globally grain legumes are cultivated on an area of 201,728 thousand ha with a total production of 383,728 thousand tones. In Europe, grain legumes are cultivated on an area of 5726 thousand ha, which represents only 1.8% of total arable lands in Europe. Cultivated area of grain legumes is very low as compared to other words countries and, consequently, Europe imports yearly 20 million tons of soybean meals and 12 million tons of soybean grain. Farmers show lack of interest in cultivating grain legumes due to many climatic, soils, technical, agronomic and economic constraints. These constraints can be removed by technological innovations, provision of more premiums, increasing the sale price and grain yield, and reduction in yield variability of grain legumes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • AEP (ed) (2004) Grain legumes and the environment: how to assess benefits and impacts? Zurich, November 18–19, 2004. AEP and FAL, pp 67–72

    Google Scholar 

  • Alpmann D, Braun J, Schäfer BC, (2013) Analyse einer Befragung unter erfolgreichen Körnerleguminosenanbauern im konventionellen Landbau. Erste Ergebnisse aus dem Forschungsprojekt LeguAN. In: Wintertagung DLG (ed) Im Fokus: Heimische Körnerleguminosen vom Anbau bis zur Nutzung Berlin, p 20

    Google Scholar 

  • Anonymous (1984) Legume inoculants and their use. FAO, Rome, pp 1–63

    Google Scholar 

  • Bachinger J, Zander J (2007) ROTOR, a tool for generating and evaluating crop rotations for organic farming systems. Eur J Agron 26:130–143

    Article  Google Scholar 

  • Baddeley JA, Jones S, Topp CFE, Watson CA, Helming J, Stoddard FL (2014) Integrated analysis of biological nitrogen fixation (BNF) in Europe. Legume futures deliverable report 1.5 pp

    Google Scholar 

  • Beaver JS, Rosas JC, Myers J, Acosta J, Kelly JD, Nchimbi-Msolla S, Misangu R, Bokosi J, Temple S, Arnaud-Santana E (2003) Contributions of the bean/cowpea CRSP program to cultivar and germplasm development in common bean. Field Crop Res 82:87–102

    Article  Google Scholar 

  • Bertoglio JC, Calvo MA, Hancke JL, Burgos RA, Riva A, Morazzoni P, Ponzone C, Magni C, Duranti M (2011) Hypoglycemic effect of lupin seed γ-conglutin in experimental animals and healthy human subjects. Fitoterapia 82:933–938

    Article  CAS  PubMed  Google Scholar 

  • Bouwman AF (1996) Direct emission of nitrous oxide from agricultural soils. Nutr Cycl Agroecosyst 46:53–70

    Article  CAS  Google Scholar 

  • Bruce RR, Wilkinson SR, Langdale GW (1987) Legume effects on soil erosion and productivity. In: Power JF (ed) The role of legumes in conservation tillage systems. Soil Conservation Society of America, Ankeny, pp 127–138

    Google Scholar 

  • Bues A, Preissel S, Reckling M, Zander P, Kuhlmann T, Topp K, Watson C, Lindström K, Stoddard FL, Murphy-Bokern D (2013) The environ- mental role of protein crops in the new common agricultural policy. In: directorate general for internal policies (ed) Agriculture and Rural Devel- opment, European Union Brussels, pp 113

    Google Scholar 

  • Bulson HAJ, Snaydon RW, Stopes CE (1997) Effects of plant density on intercropped wheat and field beans in an organic farming system. J Agric Sci 128:59–71

    Article  Google Scholar 

  • Burris RH, Roberts GP (1993) Biological nitrogen fixation. Annu Rev Nutr 13:317–335

    Article  CAS  PubMed  Google Scholar 

  • Byerlee D, White R (2000) Agricultural intensification and diversification through food legumes: technological and policy options. In: Knight R (ed) Linking Research and Marketing Opportunities for Pulses in the 21st Century. Kluwer Academic Publishers, Dordrecht, pp 31–46

    Chapter  Google Scholar 

  • Campbell BM, Costanza R, Van den Belt M (2000) Land use options in dry tropical woodland ecosystems in Zimbabwe: introduction, overview and synthesis. Ecol Econ 33:341–352

    Article  Google Scholar 

  • Carrouée B, Aveline A, Biarnes V, Charles R, Crozat Y, Jensen ES, Laurent F, Munier-Jolain N, Thévenet G, Viaux P (2002) Effets environnementaux des protéagineux dans les rotations de grandes cultures. Working document, UNIP, ITCF, INRA, ESA, Paris, p 32

    Google Scholar 

  • Carrouée B, Crépon K, Peyronnet C (2003) Les protéagineux: intérêt dans les systèmes de production fourragers français et européens. Fourrages 174:163–182

    Google Scholar 

  • Cassman KG, Dobermann A, Walters D (2002) Agroeco- systems, nitrogen-use efficiency, and nitrogen management. Ambio 31:132–140

    Article  PubMed  Google Scholar 

  • Cernay C, Ben-ari T, Pelzer E, Meynard J, Makowski D (2015) Estimating variability in grain legume yields across Europe and the Americas. Sci Rep 5:11171

    Article  PubMed  PubMed Central  Google Scholar 

  • Chalk PM (1998) Dynamics of biologically fixed N in legume-cereal rotations: a review. Aust J Agric Res 49:303–316

    Article  CAS  Google Scholar 

  • Chamber of Agriculture Ariege (2009) Annual agricultural statistics region Midi-Pyrenees. Agreste in the region, France, p 09

    Google Scholar 

  • Conrad R, Seiler W, Bunse G (1983) Factors influencing the loss of fertilizer nitrogen in the atmosphere as N2O. J Geophys Res 88:6709–6718

    Article  CAS  Google Scholar 

  • Coyne DP, Steadman JR, Godoy-Lutz G, Gilbertson R, Arnaud-Santana EA, Beaver JS, Myers JR (2003) Contributions of the bean/cowpea CRSP to the management of bean diseases. Field Crop Res 82:155–168

    Article  Google Scholar 

  • Crews TE, Peoples MB (2004) Legume versus fertilizer sources of nitrogen: ecological tradeoffs and human needs. Agric Ecosyst Environ 102:279–297

    Article  Google Scholar 

  • Dakora FD, Aboyinga RA, Mahama Y, Apaseku J (1987) Assessment of N2 fixation in groundnut (Arachis hypogea L.) and cowpea (Vigna unguiculata L. Walp.) and their relative N contribution to a succeeding maize crop in Northern Ghana. MIRCEN J 3:389–399

    Article  Google Scholar 

  • Dinnes DL, Karlen DL, Jaynes DB, Kaspar TC, Hatfield JL, Colvin TS, Cambardella CA (2002) Nitrogen management strategies to reduce nitrate leaching in tile-drained Midwestern soils. Agron J 94:153–171

    Article  Google Scholar 

  • Drinkwater LE, Wagoner P, Sarrantonio M (1998) Legume-based cropping systems have reduced carbon and nitrogen losses. Nature 396:262–264

    Article  CAS  Google Scholar 

  • Evans J, Scott G, Lemerle D, Kaiser A, Orchard B, Murray GM, Armstrong EL (2003) Impact of legume ‘break’ crops on the yield and grain quality of wheat and relationship with soil mineral N and crop N content. Aust J Agric Res 54:777–788

    Article  Google Scholar 

  • Fillery IRP (2001) The fate of biologically fixed nitrogen in legume-based dry land farming systems: a review. Aust J Exp Agric 41:361–381

    Article  CAS  Google Scholar 

  • Giambalvo D, Stringi L, Durante G, Amato G, Frenda AS (2004) Nitro- gen efficiency component analysis in wheat under rainfed Mediter- ranean conditions: effects of crop rotation and nitrogen fertilisation. In: Cantero-Martínez C, Gabina D (eds) Mediterranean rainfed agricul- ture: strategies for sustainability. Mediterranean Agronomic Institute of Zaragoza, pp 169–173

    Google Scholar 

  • Gierus M, Kleen J, Loges R, Taube F (2012) Forage legume species determine the nutritional quality of binary mixtures with perennial ryegrass in the first production year. Anim Feed Sci Technol 172:150–161

    Article  Google Scholar 

  • Giller KE (2001) Nitrogen fixation in tropical cropping systems. CABI Publishing, Wallingford

    Book  Google Scholar 

  • Glendining MJ, Powlson DS (1995) The effects of long continued applications of inorganic nitrogen fertilizer on soil organic nitrogen, a review. In: Lal R, Stewart BA (eds) Soil management, experimental basis for sustainability and environmental quality. CRC Press, Boca Raton, pp 385–446

    Google Scholar 

  • GL-Pro partners (2007) Guidelines for growing grain legumes in Europe. GL-Pro concerted action, p 8

    Google Scholar 

  • Graham PH, Vance CP (2003) Legumes: importance and constraints to greater utilization. Plant Physiol 131:872–877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gueguen J, Duc G, Boutin JP, Dronne Y, Munier-Jolain N, Sève B, Tivoli B (2008) La filière protéagineuse, quels défis pour la recherche ? Rencontre au Salon International de l‘Agriculture. INRA, Paris, p 6

    Google Scholar 

  • Haque I, Powell JM, Ehui SK (1995) Improved crop-livestock production strategies for sustainable soil management in tropical Africa. In: Lal R, Stewart BA (eds) Soil management: experimental basis for sustainability and environmental quality. CRC Press, Boca Raton, pp 293–345

    Google Scholar 

  • Harland JI, Haffner TA (2008) Systematic review, meta-analysis and regression of randomised controlled trials reporting an association between an intake of circa 25g soya protein per day and blood cholesterol. Atherosclerosis 200:13–27

    Article  CAS  PubMed  Google Scholar 

  • Hayer F, Bonnin E, Carrouée B, Gaillard G, Nemecek T, Schneider A, Vivier C (2012) Designing sustainable crop rotations using life cycle assessment of crop sequences. In: Corson MS, van der Werf HMG (eds) Proceedings of the 8th International Conference on Life Cycle Assessment in the Agri-Food Sector, 1–4 October 2012. INRA, Saint Malo, pp 828–829

    Google Scholar 

  • Jeanneret P, Baumgartner D, Freiermuth R, Gaillard G (2006) Méthod d‘évaluation de l‘impact des activités sur la biodiversité dans les bilans écologiqueses- SALCA-BD. Agroscope FAL Reck-enholz, p 67

    Google Scholar 

  • Jensen ES (1997) The role of grain legume N2 fixation in the nitrogen cycling of temperate cropping systems. Risø National Laboratory, Roskilde, p 107

    Google Scholar 

  • Jensen ES, Hauggaard-Nielsen H (2003) How can increased use of biological N2 fixation in agriculture benefit the environment? Plant Soil 252:177–186

    Article  CAS  Google Scholar 

  • Jensen CR, Joernsgaard B, Andersen MN, Christiansen JL, Mogensen VO, Friis P, Petersen CT (2004) The effect of lupins as compared with peas and oats on the yield of the subsequent winter barley crop. Eur J Agron 20:405–418

    Article  Google Scholar 

  • Jensen ES, Peoples MB, Boddey RM, Gresshoff PM, Hauggaard-Nielsen H, Bjr A, Morrison MJ (2011) Legumes for mitigation of climate change and the provision of feedstock for biofuels and biorefineries: a review. Agron Sustain Dev 32:329–364

    Article  CAS  Google Scholar 

  • Jeuffroy MH (2006) The ecological services of protein crops: the basis of sustainable farming systems. Meeting organized by the National institute of agricultural research at the international agricultural show, France. 6p

    Google Scholar 

  • Jeuffroy MH, Ney B (1997) Crop physiology and productivity. Field Crop Res 53:3–16

    Article  Google Scholar 

  • Joshi PK, Birthal PS, Bourai VA (2002) Socioeconomic constraints and opportunities in rainfed rabi cropping in rice fallow areas of India. Patancheru 502 324, Andhra Pradesh, India: international crops research institute for the semi-arid tropics, p 58

    Google Scholar 

  • Kabagambe EK, Baylin A, Ruiz-Narvarez E, Siles X, Campos H (2005) Decreased consumption of dried mature beans is positively associated with urbanization and nonfatal acute myocardial infarction. J Nutr 135:1770–1775

    Article  CAS  PubMed  Google Scholar 

  • Kennedy IR, Cocking EC (1997) Biological nitrogen fixation: the global challenge and future needs. Rockefeller foundation Bellagio conference proceedings. SUN Fix Press, University of Sydney, Sydney, p 83

    Google Scholar 

  • Kirkegaard JA, Christen O, Krupinsky J, Layzell D (2008) Break crop benefits in temperate wheat production. Field Crop Res 107:185–195

    Article  Google Scholar 

  • Lal R (2004) Carbon Emissions from Farm Operations. Environ Int 30:981–990

    Article  CAS  PubMed  Google Scholar 

  • Lal R, Wilson GF, Okigbo BN (1978) No-till farming after various grasses and leguminous cover crops in tropical alfisol. i. crop performance. Field Crop Res 1:71–84

    Article  Google Scholar 

  • Le syndicat agricole (2009) Les nouvelles aides 2010. [Consulté en Janvier 2010]. http://www.syndicatagricole.com/actualites/vie-pratique-pac-les-nouvelles-aides-2010&fldSearch=:FXZ5S215.html

  • Legume Futures (2014) Legume-supported cropping systems for Europe. General project project report. Available at www.legumefutures.de

  • Liebman M, Dyck E (1993) Crop rotation and intercropping strategies for weed management. Ecol Appl 3:92–122

    Article  PubMed  Google Scholar 

  • LMC International (2009) Evaluation of measures applied under the Common Agricultural Policy to the protein crop sector. Final report. http://ec.europa.eu/agriculture/eval/reports/protein_crops/(2013-02-25)

  • López-Fando C, Almendros G (1995) Interactive effects of tillage and crop Rota- tions on yield and chemical properties of soils in semi-arid Central Spain. Soil Tillage Res 36:45–57

    Article  Google Scholar 

  • Luetke-Entrup N, Schneider M, Stemann G, Gröblinghoff F-F, Heißenhuber A, Pahl H, Hülsbergen K-J, Maidl FX, Herr H, Sommer C, Korte K, Brunotte J, Kreye H, Lindwedel V, Zieseniß H, Gienapp C, Schulz RR, Propp J (2006) Bewertung von neuen Systemen der Bodenbewirtschaftung in erweiterten Fruchtfolgen mit Körnerraps und Körnerleguminosen. Abschlussbericht über die Versuchsjahre 2001–2005. Fachhochschule Südwestfalen, Fachbereich Agrarwirtschaft, Soest

    Google Scholar 

  • Magrini MB, Anton M, Cholez C, Corre-Hellou G, Duc G, Jeuffroy MH, Meynard JM, Pelzer E, Voisin AS, Walrand S (2016) Why are grain-legumes rarely present in cropping systems despite their environmental and nutritional benefits? Analyzing lock-in in the French agrifood system. Ecol Econ 126:152–162

    Article  Google Scholar 

  • Mahmood F (2011) Analysis of the conditions for the development of grain legumes in the midi-Pyrénées region (France), using the APES-FSSIM-indicators modeling chain. In: Systèmes Intégrés En Biologie, Agronomie, Géosciences, hydro- sciences et Environnement (SIBAGHE). Ecole National Supérieure Agronomique de de Montpellier, Montpellier, p 168

    Google Scholar 

  • Marchesi C, Paradis P, Schiffrin EL (2008) Role of the renin–angiotensin system in vascular inflammation. Trends Pharmacol Sci 29:367–374

    Article  CAS  PubMed  Google Scholar 

  • McEwen J, Darby RJ, Hewitt MV, Yeoman DP (1989) Effects of field beans, fallow, lupins, oats, oilseed rape, peas, ryegrass, sunflowers and wheat on nitrogen residues in the soil and on the growth of a subsequent wheat crop. J Agric Sci 115:209–219

    Article  Google Scholar 

  • Miller PR, McConkey BG, Clayton GW, Brandt SA, Staricka JA, Johnston AM, Lafond GP, Schatz BG, Baltensperger DD, Neill KE (2002) Pulse crop adaptation in the northern great plains. Agron J 94:261–272

    Article  Google Scholar 

  • MP3-Grain Legumes (2010) Enhanced food and feed security, nutritional balance, economic growth and soil health for smallholder farmers, CGIAR consortium board

    Google Scholar 

  • Mudahar MS, Hignett TP (1987) Energy requirements, technology, and resources in the fertilizer sector. In: Helsel ZR (ed) Energy in plant nutrition and Pest control, vol 2. Elsevier, Amsterdam, pp 26–61

    Google Scholar 

  • Munier-Jolain N, Collard A (2006) Grain legumes and weed management in crop rotations: opportunities and methodologies for reducing environmental impacts of weed control. In: AEP (ed) Grain legumes and the environment: how to assess benefits and impacts? Zurich, November 18–19, 2004. AEP and FAL, pp 67–72

    Google Scholar 

  • Mvondo H, Owona S, Mvondo Ondoua J, Essono J (2007) Tectonic evolution of the Yaoundé segment of the Neoproterozoic Central African orogenic belt in southern Cameroon. Can J Earth Sci 44:433–444

    Article  Google Scholar 

  • Mwanamwenge J, Loss SP, Siddique KHM, Cocks PS (1998) Growth, seed yield and water use of faba bean (Vicia faba L.) in a shortseason Mediter- raneantype environment. Aust J Exp Agric 38:171–180

    Article  Google Scholar 

  • Ncube B, Dimes J, Vanwijk M, Twomlow S, Giller K (2009) Productivity and residual benefits of grain legumes to sorghum under semi-arid conditions in South-Western Zimbabwe: unraveling the effects of water and nitrogen using a simulation model. Field Crop Res 110:173–184

    Article  Google Scholar 

  • Nemecek T, Erzinger S (2005) Modelling representative life cycle inventories for Swiss arable crops. Int J LCA 10:68–76

    Article  CAS  Google Scholar 

  • Nemecek T, GL-Pro partners (2006) Economic and environmental value of European cropping systems that include grain legumes. Grain Legumes No. 45 – 1st quarter 2006

    Google Scholar 

  • Nemecek T, von Richthofen JS, Dubois G, Casta P, Charles R, Pahl H (2008) Environmental impacts of introducing grain legumes into European crop rotations. Eur J Agron 28:380–393

    Article  Google Scholar 

  • Ondersteijn CJM, Harsh SB, Giesen GWJ, Beldman ACG, Huirne RBM (2002) Management strategies on Dutch dairy farms to meet environment regulations; a multi case study. Netherlands J Agric Sci 50:47–65

    Google Scholar 

  • Owens LB, Edwards WM, Van Keuren RW (1994) Groundwater nitrate levels under fertilized grass and grass- legume pastures. J Environ Qual 23:752–758

    Article  CAS  Google Scholar 

  • Pappa VA, Rees RM, Walker RL, Baddeley JA, Watson CA (2012) Legumes intercropped with spring barley contribute to increased biomass production and carry-over effects. J Agric Sci 150:584–594

    Article  Google Scholar 

  • Paustian K, Andren O, Janzen HH, Lal R, Smith G, Tian H, Tiesen M, Noordwijk V, Woomer P (1997b) Agricultural soil as a sink to offset CO2 emissions. Soil Use Manag 13:230–244

    Article  Google Scholar 

  • Paustian K, Colins HP, Paul EA (1997c) Management controls on soil carbon. In: Paul EA, Paustian K, Elliott ET, Cole CV (eds) Soil organic matter in temperate agro-ecosystems: long-term experiments in North America. CRC Press, Boca Raton, pp 15–49

    Google Scholar 

  • Peoples MB, Crasswell ET (1992) Biological nitrogen fixation: investments, expectations and actual contributions to agriculture. Plant Soil 141:13–39

    Article  CAS  Google Scholar 

  • Peoples MB, Herridge DF, Ladha JK (1995) Biological nitrogen fixation: an efficient source of nitrogen for sustainable agricultural production? Plant Soil 174:3–28

    Article  CAS  Google Scholar 

  • Peoples MB, Hauggaard-Nielsen H, Jensen ES (2009) The potential environmental benefits and risks derived from legumes in rotations. In: Nitrogen fixation in crop production. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison, pp 349–385

    Google Scholar 

  • Peoples M, Swan T, Goward L, Hunt J, Li G, Harris R, Ferrier D, Browne C, Craig S, van Rees H, Mwendwa J (2015) Legume effects on soil N dynamics-comparisons of crop response to legume and fertiliser N. Grains Research and Development Corporation, Government of Australia. Available at: http://grdc.com.au/Research-and-Development/GRDC-Update-Papers/2015/02/Legumeeffects-on-soil-N-dynamics%2D%2Dcomparisons-of-cropresponse-to-legume-and-fertiliser-N#sthash.9ncTiq1C.dpuf

  • Poss R, Saragoni H (1992) Leaching of nitrate. Fertil Res 33:123–133

    Article  CAS  Google Scholar 

  • Preissel S, Reckling M, Schläfke N, Zander P (2015) Field crops research magnitude and farm-economic value of grain legume pre-crop benefits in Europe: a review. Field Crop Res 175:64–79

    Article  Google Scholar 

  • Prew RD, Dyke GV (1979) Experiments comparing break crops as a preparation for winter-wheat followed by spring barley. J Agric Sci 92:189–201

    Article  Google Scholar 

  • Rao MR, Mathuva MN (1999) Legumes for improving maize yields and income in semi-arid Kenya. Agric Ecosyst Environ 78:123–137

    Article  Google Scholar 

  • Rao JK, Dart PJ, Sastry PV (1983) Residual effect of pigeonpea (Cajanus cajan) on yield and nitrogen response of maize. Exp Agric 19(2):131–141

    Article  Google Scholar 

  • Rao IM, Borrero V, Ricaurte J, Garcia R, Ayarza MA (1996) Adaptive attributes of tropical forage species to acid soils II. Differences in shoot and root growth responses to varying phosphorus supply and soil type. J Plant Nutr 19(2):323–352

    Article  CAS  Google Scholar 

  • Reckling M, Hecker JM, Schläfke N, Bachinger J, Zander P, Bergkvist G, Walker R, Maire J, Eory V, Topp CFA, Rees RA, Toncea I, Pristeri A, Stoddard FL (2014) Agronomic analysis of cropping strategies for each agroclimatic region. Legume Futures Report 1(4):75

    Google Scholar 

  • Reckling M, Hecker JM, Bergkvist G, Watson CA, Zander P, Schläfke N, Stoddard FL, Eory V, Topp CF, Maire J, Bachinger J (2016) A cropping system assessment framework-evaluating effects of introducing legumes into crop rotations. Eur J Agron 76:186–197

    Article  Google Scholar 

  • Rego TJ, Seeling B (1996) Long-term effects of legume-based cropping systems on soil nitrogen status and mineralization in Vertisols. In: Ito et al (eds) Roots and nitrogen in cropping systems of the Semi-arid Tropics. JIRCAS, pp 469–479

    Google Scholar 

  • Ribet J, Drevon JJ (1996) The phosphorus requirement of N2 fixing and urea-fed Acacia mangium. New Phytol 132:383–390

    Article  CAS  PubMed  Google Scholar 

  • Roberts TL (2009) The role of fertilizer in growing the world’s food. Better Crops 93(2):12–15

    Google Scholar 

  • Robson MC, Fowler SM, Lampkin NH, Leifert C, Leitch M, Robinson D, Watson CA, Litterick AM (2002) The agronomic and economic potential of break crops for ley/arable rotations in temperate organic agriculture. Adv Agron 77:369–427

    Article  Google Scholar 

  • Rochester IJ, Peoples MB, Constable GA, Gault RR (1998) Fababeans and other legumes add nitrogen to irrigated cotton cropping systems. Aust J Exp Agric 38:253–260

    Article  Google Scholar 

  • Roman GV, Epure LI, Toader M, Lombardi AR (2016) Grain legumes - main source of vegetal proteins for European consumption. Agro Life Sci J 5:178–183

    Google Scholar 

  • Salez P, Martin F (1992) Evolution de la production et de la fertilité du sol dans des rotations culturales incluant du sorgho, des légumineuses et du cotonnier. Document agronomique, n°3. p 17

    Google Scholar 

  • Salisbury F, Ross C (1978) Nitrogen fixation. In: plant physiology, 2nd edn. W. Pub. Co., Ca., pp 195–198

    Google Scholar 

  • Sanchez PA, Euhara G (1980) Management considerations for acid soils with high phosphorus fixation capacity. In: Khasawneh FE, Sample EC, Kamprath EJ (eds) The role of phosphorus in agriculture. American Society of Agronomy, Madison, pp 471–514

    Google Scholar 

  • Schneider A (2008) The dynamics controlling the grain legume sector – analysis of past trends helps to focus on future challenges. (AEP European association for grain legume research, www.grainlegumes.com)

  • Schreuder R, De Visser C (2014) Raport EIP-AGRI focus group on protein crops, Bruxelles

    Google Scholar 

  • Sinclair TR, Cassman KG (1999) Green revolution still too green. Nature 398:556

    Article  CAS  Google Scholar 

  • Sinclair TR, Muchow RC, Bennet JM, Hammond LC (1987) Relative sensitivity of nitrogen and biomass accumulation to drought in field-grown soyabean. Agron J 79:986–991

    Article  Google Scholar 

  • Singh RJ, Chung GH, Nelson RL (2007) Landmark research in legumes. Genome 50:525–537

    Article  CAS  PubMed  Google Scholar 

  • Sirtori CR, Mombelli G, Triolo M, Laaksonen R (2012) Clinical response to statins: mechanism (s) of variable activity and adverse effects. Ann Med 44:419–432

    Article  CAS  PubMed  Google Scholar 

  • Smil V (1999) Nitrogen in crop production. An account of global flows. Global Biogeochem Cycles 13:647–662

    Article  CAS  Google Scholar 

  • Smil V (2001) Enriching the earth. MIT Press, Cambridge, MA

    Google Scholar 

  • Stevenson FC, van Kessel C (1997) Nitrogen contribution of pea residue in a hum- mocky terrain. Soil Sci Soc Am J 61:494–503

    Article  CAS  Google Scholar 

  • Tharanathan RN, Mahadevamma S (2003) Grain legumes a boon to human nutrition. Trends Food Sci Technol 14:507–518

    Article  CAS  Google Scholar 

  • UNIP (2009) Les chiffres clés: Protéagineux, France

    Google Scholar 

  • UNIP/Arvalis-Institut du Végétal (2008) Se refaire un avis objectif sur le pois, la féverole et le lupin. UNIP, Paris

    Google Scholar 

  • Unkovich MJ, Pate JS (2000) An appraisal of recent field measurements of symbiotic N2 fixation by annual legumes. Field Crop Res 65:211–222

    Article  Google Scholar 

  • Van Kessel C, Hartley C (2000) Agricultural management of grain legumes: has it led to an increase in nitrogen fixation? Field Crops Res 65:165–181

    Article  Google Scholar 

  • Von Richthofen JS, GL- Pro partner (2006) Economic and environmental value of European cropping systems that include grain legumes. Grain legumes No. 45 – 1st quarter 2006 Special report UNIP, France

    Google Scholar 

  • Von Richthofen JS, Pahl H, Nemecek T, Odermatt O, Charles R, Casta P, Sombrero A, Lafarga A, Dubois G (2006) Economic interest of grain legumes in European crop rotations. GL-Pro Report, WP3. 58 pp

    Google Scholar 

  • Wani SP, McGill WB, Haugen-Koyzra KL, Robertson JA, Thurstson JJ (1994) Improved soil quality and barley yields with faba-beans, manure, forages, and crop rotation on a gray luvisol. Can J Soil Sci 74:75–84

    Article  Google Scholar 

  • Wani SP, Rego TJ, Iot O, Lee KK (1996) Nitrogen budget in soil under different cropping systems. In: Ito et al. (eds) Roots and nitrogen in cropping systems of the semi-arid tropics. JIRCAS, pp 481–492

    Google Scholar 

  • Wani SP, Pathak P, Jangawad LS, Eswaran H, Singh P (2003) Improved management of Vertisols in the semiarid tropics for increased productivity and soil carbon sequestration. Soil Use Manag 19(3):217–222

    Article  Google Scholar 

  • Weitbrecht B, Pahl H (2000) Lohnt sich der Anbau von Körnerleguminosen? Ökologie und Landbau 116:39–41

    Google Scholar 

  • Wery J (1987) Relations entre la nutrition azotée et la production chez les légumineuses. In Nutrition azotée des légumineuses‘. Les Colloques de l‘INRA, Paris, 37:199–223

    Google Scholar 

  • Wery J, Ahlawat IPS (2007) Analysing and improving the role of grain legumes in cropping system‘s sustainability: a system approach illustrated on chickpea in India and Europe. Proceeding of The Forth International Food Legumes Research Conference (IFLRC-IV), New Delhi, India

    Google Scholar 

  • White RE (1988) Leaching. In: Wilson JR (ed) Advances in nitrogen cycling in agricultural ecosystems. CAB International, Wallingford, pp 193–211

    Google Scholar 

  • Zander P, Amjath-Babu TS, Preissel S, Reckling M, Bues A, Schläfke N, Kuhlman T, Bachinger J, Uthes S, Stoddard F, Murphy-Bokern D (2016) Grain legume decline and potential recovery in European agriculture: a review. Agron Sustain Dev 36(2):26

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mahmood, F., Shahzad, T., Hussain, S., Shahid, M., Azeem, M., Wery, J. (2018). Grain Legumes for the Sustainability of European Farming Systems. In: Lichtfouse, E. (eds) Sustainable Agriculture Reviews 32. Sustainable Agriculture Reviews, vol 32. Springer, Cham. https://doi.org/10.1007/978-3-319-98914-3_5

Download citation

Publish with us

Policies and ethics