Skip to main content

Climate Change Signals Over Senegal River Basin Using Regional Climate Models of the CORDEX Africa Simulations

  • Conference paper
  • First Online:
Innovations and Interdisciplinary Solutions for Underserved Areas (InterSol 2018)

Abstract

This study provides an overview of the impact of a statistical bias correction based on histogram equalization functions on a set of high resolution climate simulations over the Senegal River Basin. Regarding the future changes of extreme precipitation (greater than 50 mm), the models diverge in predicting heavy rainfall events in the majority of the basin. However, an increase of extreme precipitation is found around the Guinean Highlands. The results show also an increase of dry day’s length and a decrease of wet days spells by all the RCMs, except one model that shows an opposite change of these climate indices. The bias correction affects mainly the magnitude of the climate change signals of extreme precipitation. Changes under the Representative Concentration Pathways (RCP8.5) are the most pronounced with uncorrected data. Bias corrected RCMs data are potentially useful for climate change impact studies over the Senegal River Basin. This study highlights a convergence of all RCMs (except for RCA RCM) in projecting a decrease of wet days and an increase of dry days over the Senegal River Basin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vizy, E.K., Cook, K.H.: Mid-twenty-first-century changes in extreme events over Northern and Tropical Africa. J. Clim. 25, 5748–5767 (2012)

    Article  Google Scholar 

  2. Hagemann, S., et al.: Climate change impact on available water resources obtained using multiple global climate and hydrology models. Earth Syst. Dynam. 4, 129–144 (2013). https://doi.org/10.5194/esd-4-129

    Article  MathSciNet  Google Scholar 

  3. Giorgi, F., Jones, C., Asrar, G.: Addressing climate information needs at the regional level: the CORDEX framework. World. Meteorol. Org. Bull. 58, 175–183 (2009)

    Google Scholar 

  4. Klutse, N.A.B., Sylla, M.B., Diallo, I., et al.: Daily characteristics of West African summer monsoon precipitation in CORDEX simulations. Theor. Appl. Climatol. 123, 369 (2016). https://doi.org/10.1007/s00704-014-1352-3

    Article  Google Scholar 

  5. Haensler, A., Hagemann, S., Jacob, D.: The role of simulation setup in a long-term high resolution climate change projection for southern African region. Theor. Appl. Climatol. 106, 153–169 (2011). https://doi.org/10.1007/s00704-011-0420-1

    Article  Google Scholar 

  6. van Roosmalen, L., Sonnenborg, T.O., Jensen, K.H., Christensen, J.H.: Comparison of hydrological simulations of climate change using perturbation of observations and distribution-based scaling. Vadose Zone J. 10(1), 136–150 (2011). https://doi.org/10.2136/vzj2010.0112

    Article  Google Scholar 

  7. Ly, M., Traore, S.B., Alhassane, A., Sarr, B.: Evolution of some observed climate extremes in the West African Sahel. Weather Clim. Extremes 1, 19–25 (2013). https://doi.org/10.1016/j.wace.2013.07.005

    Article  Google Scholar 

  8. Faramarzi, M., et al.: Modeling impacts of climate change on freshwater availability in Africa. J. Hydrol. 480, 85–101 (2013)

    Article  Google Scholar 

  9. Sarr, M.A., Zorome, M., Seidou, O., Bryant, C.R., Gachon, P.: Recent trends in selected extreme precipitation indices in Senegal – a change-point approach. J. Hydrol. 505, 326–333 (2013)

    Article  Google Scholar 

  10. Sarr, M., Seidou, O., Tramblay, Y., El Adlouni, S.: Comparison of downscaling methods for mean and extreme precipitation in Senegal. J. Hydrol. Reg. Stud. 4, 369–385 (2015)

    Article  Google Scholar 

  11. McSweeney, C., New, M., Lizcano, G.: UNDP Climate Change Country Profiles: Senegal (2010a). http://country-profiles.geog.ox.ac.uk/. Accessed 24 Feb 2018

  12. McSweeney, C., New, M., Lizcano, G., Lu, X.: The UNDP climate change country profiles improving the accessibility of observed and projected climate information for studies of climate change in developing countries. Bull. Am. Meteor. Soc. 91, 157–166 (2010)

    Article  Google Scholar 

  13. Giraldo Osorio, J.D., García Galiano, S.G.: Building hazard maps of extreme daily rainy events from PDF ensemble, via REA method, on Senegal River Basin. Hydrol. Earth Syst. Sci. 15, 3605–3615 (2011). https://doi.org/10.5194/hess-15-3605-2011

    Article  Google Scholar 

  14. Haerter, J.O., Hagemann, S., Moseley, C., Piani, C.: Climate model bias correction and the role of timescales. Hydrol. Earth Syst. Sci. 15, 1065–1079 (2011). www.hydrol-earth-syst-sci.net/15/1065/2011/, http://doi.org/10.5194/hess-15-1065

  15. Hagemann, S., Chen, C., Haerter, J.O., Heinke, J., Gerten, D., Piani, C.: Impact of a statistical bias correction on the projected hydrological changes obtained from three GCMs and two hydrology models. J. Hydrometeor 12, 556–578 (2011). https://doi.org/10.1175/2011JHM1336.1

    Article  Google Scholar 

  16. Schoetter, R., Hoffmann, P., Rechid, D., Schlünzen, K.H.: Evaluation and bias correction of regional climate model results using model evaluation measures. J. Appl. Meteor. Climatol. 51, 1670–1684 (2012). https://doi.org/10.1175/JAMC-D-11-0161.1

    Article  Google Scholar 

  17. Chen, C., Haerter, J.O., Hagemann, S., Piani, C.: On the contribution of statistical bias correction to the uncertainty in the projected hydrological cycle. Geophys. Res. Letters 38, L20403 (2011)

    Google Scholar 

  18. Dosio, A., Paruolo, P.: Bias correction of the ENSEMBLES high-resolution climate change projections for use by impact models: evaluation on the present climate. J. Geophys. Res. 116, D16106 (2011). https://doi.org/10.1029/2011JD015934

    Article  Google Scholar 

  19. Piani, C., et al.: Statistical bias correction of global simulated daily precipitation and temperature for the application of hydrological models. J. Hydrol. 395, 199–215 (2010). https://doi.org/10.1016/j.jhydrol.2010.10.024

    Article  Google Scholar 

  20. OMVS: Sdage du fleuve Sénégal, rapport de phase 1: etat des lieux et diagnostic. version finale Decembre, 457 pp. (2009)

    Google Scholar 

  21. Weedon, G.P., Balsamo, G., Bellouin, N., Gomes, S., Best, M.J., Viterbo, P.: The WFDEI meteorological forcing data set: WATCH forcing data methodology applied to ERA-Interim reanalysis data. Water Resour. Res. 50, 7505–7514 (2014). https://doi.org/10.1002/2014WR015638

    Article  Google Scholar 

  22. Mbaye, M.L., Haensler, A., Hagemann, S., Gaye, A.T., Moseley, C., Afouda, A.: Impact of statistical bias correction on the projected climate change signals of the regional climate model REMO over the Senegal River Basin. Int. J. Climatol. 36, 2035–2049 (2016). https://doi.org/10.1002/joc.4478

    Article  Google Scholar 

  23. Baldauf, M.: Stability analysis for linear discretisations of the advection equation with Runge-Kutta time integration. J. Comput. Phys. 227 (2008). https://doi.org/10.1016/j.jcp.2008.03.025

  24. Tiedtke, M.: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Weather Rev. 117, 1779–1800 (1989)

    Article  Google Scholar 

  25. Kain, J.S., Fritsch, J.M.: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci. 47, 2784–2802 (1990)

    Article  Google Scholar 

  26. Kain, J.S., Fritsch, J.M.: Convective parameterization for Mesoscale models: the Kain-Fritsch scheme. In: Emanuel, K.A., Raymond, D.J. (eds.) The Representation of Cumulus Convection in Numerical Models. MM, pp. 165–170. American Meteorological Society, Boston, MA (1993). https://doi.org/10.1007/978-1-935704-13-3_16

    Chapter  Google Scholar 

Download references

Acknowledgments

We thank the Laboratoire Physique de l’Atmosphère et de l’Océan (LPAO/ESP/UCAD/SENEGAL) and the Laboratoire d’Océanographie, des Sciences de l’Environnement et du Climat (LOSEC/UFR ST/Physics Department/UASZ/SENEGAL) where this work has been done. Many thanks to Stefan Hagemann, Andreas Haensler, Tobias Stacke and Christopher Moseley for their supports during our stay in Hamburg (Germany).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mamadou Lamine Mbaye .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mbaye, M.L., Diatta, S., Gaye, A.T. (2018). Climate Change Signals Over Senegal River Basin Using Regional Climate Models of the CORDEX Africa Simulations. In: Kebe, C., Gueye, A., Ndiaye, A., Garba, A. (eds) Innovations and Interdisciplinary Solutions for Underserved Areas. InterSol 2018. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 249. Springer, Cham. https://doi.org/10.1007/978-3-319-98878-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98878-8_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98877-1

  • Online ISBN: 978-3-319-98878-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics