Advertisement

Emojis’ Psychophysics: Measuring Emotions in Technology Enhanced Learning Contexts

  • Roberto Burro
  • Margherita Pasini
  • Daniela Raccanello
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 804)

Abstract

Emojis are pictorial representations of human facial expressions which are becoming particularly popular in computer-mediated communication. Within text-based messages, they function as surrogates of real nonverbal elements to convey emotional meanings, but in absence of a verbal label they can result ambiguous. In addition, a quantification of how much positive and/or negative valence is expressed by different emojis is still missing. We asked to 110 adults to evaluate 81 emojis on two scales, relating to positive and negative valence. Through Rasch models, we quantified the amount of positive and negative valence expressed by each emoji, deleting those emojis that were not scalable on the considered dimensions. This study is a preliminary step for the development of a set of scales formed by emojis representing discrete emotions, to be used in a variety of ways in psychological research as well as in technological learning contexts or for product evaluation purposes.

Keywords

Emotions Emojis Learning Fundamental measurement Rasch models Psychophysical scaling 

References

  1. 1.
    Aldunate, N., González-Ibáñez, R.: An integrated review of emoticons in computer-mediated communication. Front. Psychol. 7i, 1–6 (2017).  https://doi.org/10.3389/fpsyg.2016.02061CrossRefGoogle Scholar
  2. 2.
    Andrich, D.: Rasch models for measurement. Quantitative applications in the social sciences, vol. 68. Sage Publications, London (1988)CrossRefGoogle Scholar
  3. 3.
    Asghar, M.Z., Khan, A., Ahmad, S., Qasim, M., Khan, I.A.: Lexicon-enhanced sentiment analysis framework rule-based classification scheme. PLoS ONE 12(2), 1–22 (2017).  https://doi.org/10.1371/journal.pone.0171649CrossRefGoogle Scholar
  4. 4.
    Bianchi, I., Savardi, U., Burro, R.: Perceptual ratings of opposite spatial properties: do they lie on the same dimension? Acta Physiol. 138, 405–418 (2011).  https://doi.org/10.1016/j.actpsy.2011.08.003CrossRefGoogle Scholar
  5. 5.
    Bland, J.M., Altman, D.G.: Multiple significance tests: the Bonferroni method. Br. Med. J. 310(6973), 170 (1995)CrossRefGoogle Scholar
  6. 6.
    Bond, T., Fox, C.M.: Applying the Rasch model: fundamental measurement in the human sciences, 3rd edn. Routledge, New York (2015)CrossRefGoogle Scholar
  7. 7.
    Brondino, M., Dodero, G., Gennari, R., Melonio, A., Pasini, M., Raccanello, M., Torello, S.: Emotions and inclusion in co-design at school: let’s measure them. In: Advances in Intelligent and Soft Computing, vol. 374, pp. 1–8 (2015).  https://doi.org/10.1007/978-3-319-19632-9_1Google Scholar
  8. 8.
    Burro, R.: To be objective in experimental phenomenology: a psychophysics application. SpringerPlus 5(1), 1720 (2016).  https://doi.org/10.1186/s40064-016-3418-4CrossRefGoogle Scholar
  9. 9.
    Burro, R., Raccanello, D., Pasini, M., Brondino, M.: An estimation of a nonlinear dynamic process using latent class extended mixed models. Affect profiles after terrorist attacks. Nonlinear Dyn. Psychol. Life Sci. 22(1), 35–52 (2018)Google Scholar
  10. 10.
    Burro, R., Sartori, R., Vidotto, G.: The method of constant stimuli with three rating categories and the use of Rasch models. Qual. Quant. 45(1), 43–58 (2011).  https://doi.org/10.1007/s11135-009-9282-3CrossRefGoogle Scholar
  11. 11.
    Campbell, N.R.: Physics: the Eements. Cambridge University Press, Cambridge (2013)Google Scholar
  12. 12.
    Derks, D., Bos, A.E.S., von Grumbkow, J.: Emoticons in computer-mediated communication: social motives and social context. CyberPsychol. Behav. 11(1), 99–101 (2008).  https://doi.org/10.1089/cpb.2007.9926CrossRefGoogle Scholar
  13. 13.
    Ekman, P.: An argument for basic emotions. Cogn. Emot. 6(3–4), 169–200 (1992).  https://doi.org/10.1080/02699939208411068CrossRefGoogle Scholar
  14. 14.
    Emojipedia (2018). http://emojipedia.org
  15. 15.
    Feldman, R.S., White, J.B., Lobato, D.: Social skills and nonverbal behavior. In: Feldman, R.S. (ed.) Development of nonverbal behavior in children, pp. 259–277. Springer, New York, NY (1982)CrossRefGoogle Scholar
  16. 16.
    Gallo, K.E., Swaney-Stueve, M., Chambers, D.H.: A focus group approach to understanding food-related emotions with children using words and emojis. J. Sens. Stud. 32(e12264), 1–10 (2016).  https://doi.org/10.1111/joss.12264CrossRefGoogle Scholar
  17. 17.
    Gennari, R., Melonio, A., Raccanello, D., Brondino, M., Dodero, G., Pasini, M., Torello, S.: Children’s emotions and quality of products in participatory game design. Int. J. Hum Comput Stud. 101, 45–61 (2017).  https://doi.org/10.1016/j.ijhcs.2017.01.006CrossRefGoogle Scholar
  18. 18.
    Giampaglia, G.: How many and which response categories? A Rasch model contribution to develop a good questionnaire [Quante e quali categorie di risposta? Il contributo del modello di Rasch alla costruzione di un buon questionario]. Polena 3(3), 1000–1034 (2004)Google Scholar
  19. 19.
    Graesser, A.C., D’Mello, S.K., Strain, A.C.: Emotions in advanced learning technologies. In: Pekrun, R., Linnenbrink-Garcia, L. (eds.) International handbook of emotions in education, pp. 473–493. Taylor and Francis, New York (2014)Google Scholar
  20. 20.
    Hsieh, S.H., Tseng, T.H.: Playfulness in mobile instant messaging: examining the influence of emoticons and text messaging on social interaction. Comput. Hum. Behav. 69, 405–414 (2017).  https://doi.org/10.1016/j.chb.2016.12.052CrossRefGoogle Scholar
  21. 21.
    Mair, P., Hatzinger, R.: Extended Rasch modeling: the eRm package for the application of IRT models. R. J. Stat. Softw. 20(9), 1–20 (2007)CrossRefGoogle Scholar
  22. 22.
    Masters, G.N.: A Rasch model for partial credit scoring. Psychometrika 47(2), 149–174 (1982)CrossRefGoogle Scholar
  23. 23.
    Meschtscherjakov, A., Weiss, A., Scherndl, T.: Utilizing emoticons on mobile devices within ESM studies to measure emotions in the field. In: Proceedings of the 11th International Conference on Human-Computer Interaction with Mobile Devices and Services, MobileHCI 2009, pp. 1–4 (2009)Google Scholar
  24. 24.
    Pasini, M., Brondino, M., Burro, R., Raccanello, D., Gallo, S.: The use of different multiple devices for an ecological assessment in psychological research: an experience with a daily affect assessment. In: Advances in Intelligent and Soft Computing, vol. 478, pp. 121–129 (2016).  https://doi.org/10.1007/978-3-319-40165-2_13Google Scholar
  25. 25.
    Pekrun, R., Bühner, M.: Self-report measures of academic emotions. In: Pekrun, R., Linnenbrink-Garcia, L. (eds.) International handbook of emotions in education, pp. 561–579. Taylor and Francis, New York (2014)CrossRefGoogle Scholar
  26. 26.
    Raccanello, D., Bianchetti, C.: Pictorial representations of achievement emotions: preliminary data with primary school children and adults. In: Advances in Intelligent and Soft Computing, vol. 292, pp. 127–134 (2014).  https://doi.org/10.1007/978-3-319-07698-0Google Scholar
  27. 27.
    Raccanello, D., Brondino, M., Pasini, M.: Achievement emotions in technology enhanced learning: development and validation of self-report instruments in the Italian context. Interact. Des. Archit. J. 23, 68–81 (2014)Google Scholar
  28. 28.
    Raccanello, D., Burro, R., Brondino, M., Pasini, M.: Relevance of terrorism for Italian students not directly exposed to it: the affective impact of the 2015 Paris and the 2016 Brussels attacks. Stress Health 34, 338–343 (2017).  https://doi.org/10.1002/smi.2793CrossRefGoogle Scholar
  29. 29.
    Raccanello, D., Burro, R., Brondino, M., Pasini, M.: Use of internet and wellbeing: a mixed-device survey. In: Advances in Intelligent and Soft Computing, vol. 617, pp. 65–73 (2017).  https://doi.org/10.1007/978-3-319-60819-8_8Google Scholar
  30. 30.
    Raccanello, D., Burro, R., Hall, R.: Children’s emotional experience two years after an earthquake: an exploration of knowledge of earthquakes and associated emotions. PLoS ONE 12(2), 1–21 (2017).  https://doi.org/10.1371/journal.pone.0189633CrossRefGoogle Scholar
  31. 31.
    Rasch, G.: Probabilistic models for some intelligence and attainment tests. MESA Press, Copenhagen (1993)Google Scholar
  32. 32.
    Schmitz, C.: LimeSurvey: an open source survey tool. LimeSurvey Project Hamburg, Germany (2018). http://www.limesurvey.org
  33. 33.
  34. 34.
    Toepoel, V., Lugtig, P.: Online surveys are mixed-device surveys. Issues associated with the use of different (mobile) devices in web surveys. Methods Data Anal. 9(2), 155–162 (2015).  https://doi.org/10.12758/mda.2015.00933CrossRefGoogle Scholar
  35. 35.
    Widen, S.C., Russell, J.A.: Children acquire emotion categories gradually. Cogn. Develop. 23(2), 291–312 (2008).  https://doi.org/10.1016/j.cogdev.2008.01.002CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Roberto Burro
    • 1
  • Margherita Pasini
    • 1
  • Daniela Raccanello
    • 1
  1. 1.Department of Human SciencesUniversity of VeronaVeronaItaly

Personalised recommendations