Virtual Reality Learning Environments in Materials Engineering: Rockwell Hardness Test

  • M. P. RubioEmail author
  • D. Vergara
  • S. RodríguezEmail author
  • J. Extremera
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 804)


The use of advanced Information and Communications Technology (ICT) is becoming really important in teaching-learning activities. This is especially relevant within the field of engineering where many teachers are beginning to use sophisticated virtual laboratories (VL) and computer applications in the classroom. Indeed, results of many teaching experiences validate the usefulness of such virtual tools due to their high efficiency in the teaching-learning process. However, some of the ICT tools and applications used in engineering education are becoming excessively complex and require extensive training to use them, which may be even more difficult than the knowledge they wish to teach. This communication deals with the development of new teaching technologies used in Materials Science and Engineering, specifically a VL based on the step-by-step performance of a Rockwell hardness testing machine. To achieve this goal, a realistic 3D scenario based on non-immersive virtual reality design −similar to the usual videogame environments − is used to increase students’ motivation regarding the study of hardness testing of metals. Like any virtual tool which begins to be used, some changes or potential areas of improvement will arise when applied in the classroom during the subsequent years. Any improvement should take into account students’ opinions and also consider that a virtual tool must be implemented within an appropriate teaching methodology with an educational aim.


Virtual reality Virtual labs Materials Science Interactivity 



This work has been supported by project “IOTEC: Development of Technological Capacities around the Industrial Application of Internet of Things (IoT)”. 0123_IOTEC_3_E. Project financed with FEDER funds, Interreg Spain-Portugal (PocTep).


  1. 1.
    Heradio, R., de la Torre, L., Galán, D., Cabrerizo, F.J., Herrera-Viedma, E., Dormido, S.: Virtual and remote labs in education: a bibliometric analysis. Comput. Educ. 98, 14–38 (2016)CrossRefGoogle Scholar
  2. 2.
    Vergara, D., Lorenzo, M., Rubio, M.P.: On the use of virtual environments in engineering education. Int. J. Qual. Assur. Eng. Technol. Educ. 5(2), 30–41 (2016)CrossRefGoogle Scholar
  3. 3.
    García, J., Entrialgo, J.: Using computer virtualization and software tools to implement a low cost laboratory for the teaching of storage area networks. Comput. Appl. Eng. Educ. 23, 715–723 (2015)CrossRefGoogle Scholar
  4. 4.
    Hilfert, T., König, M.: Low-cost virtual reality environment for engineering and construction. Vis. Eng. 4, 1–18 (2016)CrossRefGoogle Scholar
  5. 5.
    Vergara, D., Rubio, M.P., Prieto, F., Lorenzo, M.: Enhancing the teaching/learning of materials mechanical characterization by using virtual reality. J. Mater. Educ. 38, 63–74 (2016)Google Scholar
  6. 6.
    Vergara, D., Rodríguez, M., Rubio, M.P., Ferrer, J., Núñez, F.J., Moralejo, L.: Formación de personal técnico en ensayos no destructivos por ultrasonidos mediante realidad virtual. Dyna 93(2), 150–154 (2018)CrossRefGoogle Scholar
  7. 7.
    Vergara, D., Rubio, M.P., Lorenzo, M.: New approach for the teaching of concrete compression tests in large groups of engineering students. J. Prof. Issues Eng. Educ. Pract. 143(2) (2017). paper 05016009CrossRefGoogle Scholar
  8. 8.
    Boukerche, A., Al Hamidi, A., Pazzi, R., Ahmad, L.: Architectural design for the 3D virtual radiology department using virtual reality technology. In: IEEE Workshop on Computational Intelligence in Virtual Environments, pp. 45–52 (2009)Google Scholar
  9. 9.
    Vergara, D., Rubio, M.P.: The application of didactic virtual tools in the instruction of industrial radiography. J. Mater. Educ. 37(1–2), 17–26 (2015)Google Scholar
  10. 10.
    Xie, Q., Tinker, R.: Molecular dynamics simulations of chemical reactions for use in education. J. Chem. Educ. 83(1), 77–83 (2006)CrossRefGoogle Scholar
  11. 11.
    Dobrzański, L.A., Honysz, R.: On the implementation of virtual machines in computer aided education. J. Mater. Educ. 31(1–2), 131–140 (2009)Google Scholar
  12. 12.
    Koretsky, M.D., Kelly, Ch.: Industrially situated virtual laboratories. Chem. Eng. Educ. 45(3), 219–228 (2011)Google Scholar
  13. 13.
    Autodesk 3D Studio MAX: Accessed 01 Feb 2018
  14. 14.
    Unreal Engine 4: Accessed 01 Feb 2018
  15. 15.
    Li, T., Sun, S., Bolić, M., Corchado, J.M.: Algorithm design for parallel implementation of the SMC-PHD filter. Signal Process. 119, 115–127 (2016). Scholar
  16. 16.
    Lima, A.C.E.S., De Castro, L.N., Corchado, J.M.: A polarity analysis framework for Twitter messages. Appl. Math. Comput. 270, 756–767 (2015). Scholar
  17. 17.
    Redondo-Gonzalez, E., De Castro, L.N., Moreno-Sierra, J., De Las Casas, M.L.M., Vera-Gonzalez, V., Ferrari, D.G., Corchado, J.M.: Bladder carcinoma data with clinical risk factors and molecular markers: a cluster analysis. BioMed Res. Int. 2015, 14 (2015). Scholar
  18. 18.
    Palomino, C.G., Nunes, C.S., Silveira, R.A., González, S.R., Nakayama, M.K.: Adaptive agent-based environment model to enable the teacher to create an adaptive class. In: Advances in Intelligent Systems and Computing, vol. 617 (2017). Scholar
  19. 19.
    Li, T., Sun, S., Corchado, J.M., Siyau, M.F.: A particle dyeing approach for track continuity for the SMC-PHD filter. In: FUSION 2014 - 17th International Conference on Information Fusion (2014)Google Scholar
  20. 20.
    Coria, J.A.G., Castellanos-Garzón, J.A., Corchado, J.M.: Intelligent business processes composition based on multi-agent systems. Expert Syst. Appl. 41(4 PART 1), 1189–1205 (2014). Scholar
  21. 21.
    De La Prieta, F., Navarro, M., García, J.A., González, R., Rodríguez, S.: Multi-agent system for controlling a cloud computing environment. In: LNCS (LNAI and LNBI), (vol. 8154 LNAI). Scholar
  22. 22.
    Tapia, D.I., Fraile, J.A., Rodríguez, S., Alonso, R.S., Corchado, J.M.: Integrating hardware agents into an enhanced multi-agent architecture for ambient Intelligence systems. Inf. Sci. 222, 47–65 (2013). Scholar
  23. 23.
    Costa, Â., Novais, P., Corchado, J.M., Neves, J.: Increased performance and better patient attendance in an hospital with the use of smart agendas. Logic J. IGPL 20(4), 689–698 (2012). Scholar
  24. 24.
    Rodríguez, S., De La Prieta, F., Tapia, D.I., Corchado, J.M.: Agents and computer vision for processing stereoscopic images. In: LNCS (LNAI and LNBI), (vol. 6077 LNAI) (2010). Scholar
  25. 25.
    Rodríguez, S., Gil, O., De La Prieta, F., Zato, C., Corchado, J.M., Vega, P., Francisco, M.: People detection and stereoscopic analysis using MAS. In: Proceedings of the INES 2010 - 14th International Conference on Intelligent Engineering Systems (2010).
  26. 26.
    Baruque, B., Corchado, E., Mata, A., Corchado, J.M.: A forecasting solution to the oil spill problem based on a hybrid intelligent system. Inf. Sci. 180(10), 2029–2043 (2010). Scholar
  27. 27.
    Tapia, D.I., Corchado, J.M.: An ambient intelligence based multi-agent system for Alzheimer health care. Int. J. Ambient Comput. Intell. 1(1), 15–26 (2009). Scholar
  28. 28.
    Mata, A., Corchado, J.M.: Forecasting the probability of finding oil slicks using a CBR system. Expert Syst. Appl. 36(4), 8239–8246 (2009). Scholar
  29. 29.
    Glez-Peña, D., Díaz, F., Hernández, J.M., Corchado, J.M., Fdez-Riverola, F.: geneCBR: a translational tool for multiple-microarray analysis and integrative information retrieval for aiding diagnosis in cancer research. BMC Bioinform. 10, 187 (2009). Scholar
  30. 30.
    Fernández-Riverola, F., Díaz, F., Corchado, J.M.: Reducing the memory size of a fuzzy case-based reasoning system applying rough set techniques. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 37(1), 138–146 (2007). Scholar
  31. 31.
    Méndez, J.R., Fdez-Riverola, F., Díaz, F., Iglesias, E.L., Corchado, J.M.: A comparative performance study of feature selection methods for the anti-spam filtering domain. In: LNCS (LNAI and LNBI), (vol. 4065 LNAI), pp. 106–120 (2006)CrossRefGoogle Scholar
  32. 32.
    Fdez-Rtverola, F., Corchado, J.M.: FSfRT: Forecasting system for red tides. Appl. Intell. 21(3), 251–264 (2004). Scholar
  33. 33.
    Corchado, J.M., Pavón, J., Corchado, E.S., Castillo, L.F.: Development of CBR-BDI agents: a tourist guide application. In: LNCS (LNAI and LNBI), vol. 3155, pp. 547–559 (2004).
  34. 34.
    Laza, R., Pavón, R., Corchado, J.M.: A reasoning model for CBR_BDI agents using an adaptable fuzzy inference system. In: LNCS (LNAI and LNBI), vol. 3040, pp. 96–106. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  35. 35.
    Corchado, J.A., Aiken, J., Corchado, E.S., Lefevre, N., Smyth, T.: Quantifying the ocean’s CO2 budget with a CoHeL-IBR system. In: Proceedings of the Advances in Case-Based Reasoning, vol. 3155, pp. 533–546 (2004)Google Scholar
  36. 36.
    Corchado, J.M., Borrajo, M.L., Pellicer, M.A., Yáñez, J.C.: Neuro-symbolic system for business internal control. In: Industrial Conference on Data Mining, pp. 1–10 (2004). Scholar
  37. 37.
    Corchado, J.M., Corchado, E.S., Aiken, J., Fyfe, C., Fernandez, F., Gonzalez, M.: Maximum likelihood Hebbian learning based retrieval method for CBR systems. In: LNCS (LNAI and LNBI), vol. 2689, pp. 107–121 (2003).
  38. 38.
    Fdez-Riverola, F., Corchado, J.M.: CBR based system for forecasting red tides. Knowl. Based Syst. 16(5–6 SPEC), 321–328 (2003). Scholar
  39. 39.
    Glez-Bedia, M., Corchado, J.M., Corchado, E.S., Fyfe, C.: Analytical model for constructing deliberative agents. Int. J. Eng. Intell. Syst. Electr. Eng. Commun. 10(3), 173–185 (2002)Google Scholar
  40. 40.
    Corchado, J.M., Aiken, J.: Hybrid artificial intelligence methods in oceanographic forecast models. IEEE Trans. Syst. Man Cybern. Part C-Appl. Rev. 32(4), 307–313 (2002). Scholar
  41. 41.
    Fyfe, C., Corchado, J.M.: Automating the construction of CBR systems using kernel methods. Int. J. Intell. Syst. 16(4), 571–586 (2001). Scholar
  42. 42.
    Corchado, J.M., Fyfe, C.: Unsupervised neural method for temperature forecasting. Artif. Intell. Eng. 13(4), 351–357 (1999). Scholar
  43. 43.
    Corchado, J., Fyfe, C., Lees, B.: Unsupervised learning for financial forecasting. In: Proceedings of the IEEE/IAFE/INFORMS 1998 Conference on Computational Intelligence for Financial Engineering (CIFEr), (Cat. No.98TH8367), pp. 259–263 (1998).
  44. 44.
    Li, T.-C., Su, J.-Y., Liu, W., Corchado, J.M.: Approximate Gaussian conjugacy: parametric recursive filtering under nonlinearity, multimodality, uncertainty, and constraint, and beyond. Front. Inf. Technol. Electron. Eng. 18(12), 1913–1939 (2017)CrossRefGoogle Scholar
  45. 45.
    Wang, X., Li, T., Sun, S., Corchado, J.M.: A survey of recent advances in particle filters and remaining challenges for multitarget tracking. Sensors 17(12), 2707 (2017)CrossRefGoogle Scholar
  46. 46.
    Morente-Molinera, J.A., Kou, G., González-Crespo, R., Corchado, J.M., Herrera-Viedma, E.: Solving multi-criteria group decision making problems under environments with a high number of alternatives using fuzzy ontologies and multi-granular linguistic modelling methods. Knowl Based Syst. 137, 54–64 (2017)CrossRefGoogle Scholar
  47. 47.
    Pinto, T., Gazafroudi, A.S., Prieto-Castrillo, F., Santos, G., Silva, F., Corchado, J.M., Vale, Z.: Reserve costs allocation model for energy and reserve market simulation. In: 2017 19th International Conference on Intelligent System Application to Power Systems, ISAP 2017, Article no. 8071410 (2017)Google Scholar
  48. 48.
    Oliver, M., Molina, J.P., Fernández-Caballero, A., González, P.: Collaborative computer-assisted cognitive rehabilitation system. ADCAIJ Adv. Distrib. Comput. Artif. Intell. J. 6(3), 57–74 (2017). ISSN 2255-2863Google Scholar
  49. 49.
    Ueno, M., Suenaga, M., Isahara, H.: Classification of two comic books based on convolutional neural networks. ADCAIJ Adv. Distrib. Comput. Artif. Intell. J. 6(1), 5–12 (2017). ISSN 2255-2863Google Scholar
  50. 50.
    Silveira, R., Da Silva, G.K., Bitencourt, T., Gelaim, A., Marchi, J., De La Prieta, F.: Towards a model of open and reliable cognitive multiagent systems: dealing with trust and emotions. ADCAIJ Adv. Distrib. Comput. Artif. Intell. J. 4(3), 57–86 (2015). ISSN 2255-2863Google Scholar
  51. 51.
    Chamoso, P., De La Prieta, F.: Simulation environment for algorithms and agents evaluation. ADCAIJ Adv. Distrib. Comput. Artif. Intell. J. 4(3), 87–96 (2015). ISSN 2255-2863Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University of SalamancaSalamancaSpain
  2. 2.Catholic University of ÁvilaÁvilaSpain

Personalised recommendations