Skip to main content

Introduction

  • Chapter
  • First Online:
Hot Stamping of Ultra High-Strength Steels

Abstract

Vehicle manufacturers are under pressure of reducing fuel consumption and greenhouse gas emissions and still improving safety. One method to reduce the consumption and emissions is to make the vehicles lighter. Several approaches are employed to make cars lighter and yet stronger to ensure safety standards:

  1. (1)

    to use high strength-to-weight ratio materials (higher strength steels, Aluminum, Magnesium, Carbon Fiber Reinforced Polymers, etc.) and

  2. (2)

    to reduce the material use wherever possible.

This chapter discusses the material requirements in a car body, steel grades used in automotive industry and introduces the hot stamping process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. N. Asnafi, On strength, stiffness and dent resistance of car body panels. J. Mater. Process. Technol. 49(1), 13–31 (1995)

    Article  Google Scholar 

  2. L. Morello, L.R. Rossini, G. Pia, A. Tonoli, The Automotive Body: Volume I: Components Design. Mechanical Engineering Series (Springer, Netherlands, 2011)

    Google Scholar 

  3. R. Wohlecker, R. Henn, H. Wallentowitz, J. Leyers, Mass reduction. fka Report 56690, fka Aachen (2006)

    Google Scholar 

  4. J. Reed, Advanced High-Strength Steel Technologies in the 2015 Ford Edge. Presented at Great Designs in Steel 2015, May 13, Livonia, MI, USA (2015)

    Google Scholar 

  5. E. Hilfrich, D. Seidner, Crash Safety with High Strength Steels. Presented at International Automotive Congress, Shengyang (2008)

    Google Scholar 

  6. D. Smith, Grand Cherokee. Presented at Great Designs in Steel 2011, May 18, Livonia, MI, USA (2011)

    Google Scholar 

  7. E. Billur, T. Altan, Challenges in forming advanced high strength steels, in Proceedings of New Developments in Sheet Metal Forming Conference, Stuttgart, Germany (2010), pp. 285–304

    Google Scholar 

  8. E. Billur, B. Çetin, M. Gürleyik, New generation advanced high strength steels: developments, trends and constraints. Int. J. Sci. Technol. Res. 2(1), 50–62 (2016)

    Google Scholar 

  9. R. Rana, W. Bleck, S.B. Singh, O.N. Mohanty, Development of high strength interstitial free steel by copper precipitation hardening. Mater. Lett. 61(14–15), 2919–2922 (2007)

    Article  Google Scholar 

  10. J. Dykeman, Advanced high strength steel - recent progress, ongoing challenges, and future opportunities, in International Symposium on New Developments in Advanced High-Strength Sheet Steels. AIST (2013), pp. 15–28

    Google Scholar 

  11. S. Keeler, M. Kimchi, Advanced high-strength steels application guidelines version 5.0. By WorldAutoSteel (2014)

    Google Scholar 

  12. ArcelorMittal, Extract from the product catalogue (2015). Accessed 10 June 2015

    Google Scholar 

  13. Posco, Automotive steel data book (2016)

    Google Scholar 

  14. voestalpine Stahl GmbH, Cold-rolled steel strip, technical terms of delivery. Product Catalogue (2012)

    Google Scholar 

  15. European Committee for Standardization, EN 10325:2006: Steel - Determination of yield strength increase by the effect of heat treatment [Bake-Hardening-Index] (2006)

    Google Scholar 

  16. Y. Okano, H. Shirasawa, Present state and future prospects of high tensile strength steel sheets. Res. Dev. - Kobe 47, 38–41 (1997)

    Google Scholar 

  17. K. Osawa, Y. Suzuki, S. Tanaka, TS590 \(\sim \) 980 MPa| grade low-carbon equivalent type galvannealed sheet steels with superior spot-weldability. Kawasaki Steel Tech. Rep. 48, 9–16 (2003)

    Google Scholar 

  18. R.Z. Mallen, S. Tarr, J. Dykeman, Recent applications of high strength steels in North American Honda production. Presented at Great Designs in Steel 2008, April 9, Livonia, MI, USA (2008)

    Google Scholar 

  19. ArcelorMittal North America, Driving advanced automotive steel solutions (2014)

    Google Scholar 

  20. M. Wilhelm, Materials used in automobile manufacture-current state and perspectives. Le Journal de Physique IV 3(C7), 31–40 (1993)

    Google Scholar 

  21. K. Fredin, Future materials for body structure applications. Presented at Uddeholm Automotive Seminar, Sunne, Sweden (2005)

    Google Scholar 

  22. L. Samek, D. Krizan, Steel–material of choice for automotive lightweight applications. Metal Review (2012), pp. 1–6

    Google Scholar 

  23. W. Wang, X. Wei, The effect of martensite volume and distribution on shear fracture propagation of 600–1000 MPa dual phase sheet steels in the process of deep drawing. Int. J. Mech. Sci. 67, 100–107 (2013)

    Article  Google Scholar 

  24. E. Billur, T. Altan, Three generations of advanced high-strength steels for automotive applications, Part I. Stamp. J. 16–17 (2013)

    Google Scholar 

  25. D.K. Matlock, J.G. Speer, E. De Moor, P.J. Gibbs, Recent developments in advanced high strength sheet steels for automotive applications: an overview. Jestech 15(1), 1–12 (2012)

    Google Scholar 

  26. H.M. Cobb, The History of Stainless Steel (ASM International, 2010)

    Google Scholar 

  27. H. Wilde, H. Hunger, R. Erbe, H. Fuest, Die karosserie des neuen Audi A6. Proc. EuroCarBody 2004, 315–333 (2004)

    Google Scholar 

  28. Dr. Ing. h. c. F. Porsche AG Presse-Datenbank. http://presse.porsche.de

  29. E. Billur, B. Çetin, M.M. Yılmaz, A.G. Oğuz, A. Atay, K. Ersoy, R.O. Uğuz, B. Kaftanoğlu, Forming of new generation AHSS using servo presses, in 5th International Conference on Accuracy in Forming Technologies, Chemnitz, Germany (2015), pp. 175–191

    Google Scholar 

  30. D. Guo, Body light weight and cost control, in Proceedings of the FISITA 2012 World Automotive Congress (Springer, Berlin, 2013), pp. 977–985

    Google Scholar 

  31. J.B. Nam, Development of new auto steels and application technology, in China Automotive Steel Conference, World Steel/CISA (2013)

    Google Scholar 

  32. M. Schneider, M. Gramling, High strength and ductility - a new steel generation for future developments. Presented at Automotive Expo, June 5, Nürnberg, Germany (2013)

    Google Scholar 

  33. K. Lee, Introduction to development and application of automotive steels of Posco, in Posco Gloval EVI Forum (2014)

    Google Scholar 

  34. S. Maggi, C. Federici, F. D’Aiuto, TWIP Steel application on the Fiat Nuova Panda body, in Materials in Car Body Engineering 2012 (2012)

    Google Scholar 

  35. Renault Media Services, http://media.renault.com

  36. Z.C. Xia, AHSS Stamping Project –A/SP 050. Auto/Steel Partnership (2011)

    Google Scholar 

  37. J. Shaw, Development of complex, UHS steels to provide vehicle OEMs with a commercially viable option to meet fuel economy standards. Auto/Steel Partnership (2012)

    Google Scholar 

  38. J. Speer, D. Matlock, E. De Moor, D. Edmonds, Quenching and partitioning: science and technology. Powerpoint presentation (2013), p. 23

    Google Scholar 

  39. G. Thomas, D. Matlock, R. Rana, L. Hector, F. Abu-Farha, ICME 3G AHSS lab heat results supporting DOE targets. Presented at Great Designs in Steel 2015, May 13, Livonia, MI, USA (2015)

    Google Scholar 

  40. Y. Gao, Sustainable steel solutions for Chinese cars. Presented at Green Manufacturing – the Future of Steel and Automobile, November 21, Guangzhou, China (2013)

    Google Scholar 

  41. D. Branagan, Overview of a new category of 3rd generation AHSS. Presented at Great Designs in Steel 2013, May 1, Livonia, MI, USA (2013)

    Google Scholar 

  42. D. Branagan, Launch of a new class of 3rd generation cold formable AHSS. Presented at Great Designs in Steel 2016, May 16, Livonia, MI, USA (2016)

    Google Scholar 

  43. Y. Kang, Synthetic properties and potentialities of future automobile steel. Presented at Green Manufacturing – the Future of Steel and Automobile, November 21, Guangzhou, China (2013)

    Google Scholar 

  44. J.G. Speer, F.C.R. Assunção, D.K. Matlock, D.V. Edmonds, The “quenching and partitioning” process: background and recent progress. Mater. Res. 8(4), 417–423 (2005)

    Article  Google Scholar 

  45. L. Wang, W. Feng, Development and Application of Q&P Sheet Steels (Springer, Berlin, 2011), pp. 255–258

    Chapter  Google Scholar 

  46. G.A. Thomas, E. De Moor, J.G. Speer, Advanced high strength steel - recent progress, ongoing challenges, and future opportunities. Presented at AIST Symposium, Vail, CO, USA (2013)

    Google Scholar 

  47. G. Hsiung, Advanced high-strength steel stamping – A/SP 050. Auto/Steel Partnership (2012)

    Google Scholar 

  48. H. Du, Y. Li, H. Jie, K. Bai, The automobile steel of the third generation in b-pillar reinforced panel. Eng. Sci. 10(6), 20–22 (2012)

    Google Scholar 

  49. K. Sugimoto, J. Sakaguchi, T. Iida, T. Kashima, Stretch-flangeability of a high-strength TRIP type bainitic sheet steel. ISIJ Int. 40(9), 920–926 (2000)

    Article  Google Scholar 

  50. N. Fonstein, Advanced High Strength Sheet Steels (Springer, Berlin, 2015)

    Chapter  Google Scholar 

  51. T. Kimura, Formability of trip type banitic ferrite steel sheet. Kobelco Technol. Rev. 30, 85–89 (2011)

    Google Scholar 

  52. S. Jacque, K. Obayashi, Renault and Nissan light weight body engineering strategy. Presented at Strategies in Car Body Engineering 2012, March 21–22, Bad Nauheim, Germany (2012)

    Google Scholar 

  53. T. Kondo, K. Ishiuchi, 1.2GPa advanced high strength steel with high formability, in SAE Technical Paper. (SAE International, 2014), p. 04

    Google Scholar 

  54. D. Coakley, Nissan Murano. Presented at Great Designs in Steel 2015, May 13, Livonia, MI, USA (2015)

    Google Scholar 

  55. ArcelorMittal, Steels for cold stamping -Fortiform> (2014). Accessed 10 June 2015

    Google Scholar 

  56. H. So, D. Faßmann, H. Hoffmann, R. Golle, M. Schaper, An investigation of the blanking process of the quenchable boron alloyed steel 22MnB5 before and after hot stamping process. J. Mater. Process. Technol. 212(2), 437–449 (2012)

    Article  Google Scholar 

  57. H. Engels, O. Schalmin, C. Müller-Bollenhagen, Controlling and monitoring of the hot-stamping process of boron-alloyed heat-treated steels, in The International Conference on New Development in Sheet Metal Forming Technology, Stuttgart, Germany (2006), pp. 135–150

    Google Scholar 

  58. W.D. Callister, D.G. Rethwisch, Fundamentals of Materials Science and Engineering, vol. 21 (Wiley, New York, 2013)

    Google Scholar 

  59. E. Billur, C. Wang, C. Bloor, M. Holecek, H. Porzner, T. Altan, Advancements in tailored hot stamping simulations: cooling channel and distortion analyses. AIP Conf. Proc. 1567(1), 1079–1084 (2013)

    Article  Google Scholar 

  60. T. Kurz, New developments in zinc coated steel for press hardening. Presented at Insight Edition Conference, September 20-21, Gothenburg, Sweden (2011)

    Google Scholar 

  61. T. Kurz, G. Luckeneder, T. Manzenreiter, H. Schwinghammer, A. Sommer, Zinc coated press-hardening steel - challenges and solutions, in SAE Technical Paper. SAE International (2015), p. 04

    Google Scholar 

  62. J. Watkins, Material development. Presented at AP&T Press Hardening, Next Step Seminar, Novi, MI (2011)

    Google Scholar 

  63. S. Sepeur, The company Nano-X GmbH: products for the automotive industry. Presentation at Deutsche Börse, July 10th, Frankfurt, Germany (2006)

    Google Scholar 

  64. ThyssenKrupp Steel Europe, Warmumformung im Automobilbau. Die Bibliothek der Technik (2012)

    Google Scholar 

  65. W. Runge, Technology Entrepreneurship: A Treatise on Entrepreneurs and Entrepreneurship for and in Technology Ventures, vol. 2. KIT Scientific Publishing, Karlsruhe (2014)

    Google Scholar 

  66. I. Martin, M. López, P. Raya, A. Sunden, D. Berglund, K. Isaksson, S. Isaksson, Press systems and methods, US Patent 9,492,859 (2016). Accessed 15 Nov 2016

    Google Scholar 

  67. P. Belanger, Steel innovations in hot stamping, in Great Designs in Steel 2016 (2016)

    Google Scholar 

  68. I.M. Gonzalez, O. Straube, Development of zinc coated parts for hotstamping, in Proceedings of New Developments in Sheet Metal Forming Conference, Stuttgart, Germany (2016), pp. 265–276

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eren Billur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Billur, E. (2019). Introduction. In: Billur, E. (eds) Hot Stamping of Ultra High-Strength Steels. Springer, Cham. https://doi.org/10.1007/978-3-319-98870-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98870-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98868-9

  • Online ISBN: 978-3-319-98870-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics