Skip to main content

Targeted Next-Generation Sequencing in Head and Neck Cancer

  • Chapter
  • First Online:
Critical Issues in Head and Neck Oncology
  • 429 Accesses

Abstract

Rapid technical advances in the molecular characterization of tumors, enabling complete gene sequencing of multiple cancers in the Cancer Genome Project, have led to a largely increased knowledge of the molecular pathways that underlie cancer. The integration of high-throughput sequencing, known more commonly as “next-generation” sequencing (NGS), into standard clinical practice has enabled more targeted treatment of various malignancies based on the presence of specific alterations. Despite notable successes in other tumor entities, individual treatment selection for patients with squamous cell carcinoma of the head and neck (HNSCC) based on molecular tumor profiles has not yet become clinical practice. In the following chapters, we describe the genomic alterations detected in NGS studies of HNSCC which define specific molecular subgroups and whose contribution to oncogenesis provide a biological rationale for the use of a specific targeted therapy. We highlight different tumor sequencing strategies currently used for precision oncology and describe their individual strengths and weaknesses. We also discuss unresolved hurdles in the translation of molecular findings into concepts for personalized HNSCC treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schwaederle M, Zhao M, Lee JJ, et al. Impact of precision medicine in diverse cancers: a meta-analysis of phase II clinical trials. J Clin Oncol. 2015;33(32):3817–25.

    Article  CAS  Google Scholar 

  2. Slamon DJ, Leyland-Jones B, Shak S, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med. 2001;344(11):783–92.

    Article  CAS  Google Scholar 

  3. Chapman PB, Hauschild A, Robert C, et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med. 2011;364(26):2507–16.

    Article  CAS  Google Scholar 

  4. Lynch TJ, Bell DW, Sordella R, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med. 2004;350(21):2129–39.

    Article  CAS  Google Scholar 

  5. Vermorken JB, Mesia R, Rivera F, et al. Platinum-based chemotherapy plus cetuximab in head and neck cancer. N Engl J Med. 2008;359(11):1116–27.

    Article  CAS  Google Scholar 

  6. Braig F, Voigtlaender M, Schieferdecker A, et al. Liquid biopsy monitoring uncovers acquired RAS-mediated resistance to cetuximab in a substantial proportion of patients with head and neck squamous cell carcinoma. Oncotarget. 2016;7(28):42988–95.

    Article  Google Scholar 

  7. Stabile LP, He G, Lui VW, et al. C-Src activation mediates erlotinib resistance in head and neck cancer by stimulating c-Met. Clin Cancer Res. 2013;19(2):380–92.

    Article  CAS  Google Scholar 

  8. Madoz-Gurpide J, Zazo S, Chamizo C, et al. Activation of MET pathway predicts poor outcome to cetuximab in patients with recurrent or metastatic head and neck cancer. J Transl Med. 2015;13:282.

    Article  Google Scholar 

  9. Szturz P, Seiwert TY, Vermorken JB. How standard is second-line cetuximab in recurrent or metastatic head and neck cancer in 2017? J Clin Oncol. 2017;35(20):2229–31.

    Article  CAS  Google Scholar 

  10. Grunwald V, Keilholz U, Boehm A, et al. TEMHEAD: a single-arm multicentre phase II study of temsirolimus in platin- and cetuximab refractory recurrent and/or metastatic squamous cell carcinoma of the head and neck (SCCHN) of the German SCCHN Group (AIO). Ann Oncol. 2015;26(3):561–7.

    Article  CAS  Google Scholar 

  11. Soulieres D, Faivre S, Mesia R, et al. Buparlisib and paclitaxel in patients with platinum-pretreated recurrent or metastatic squamous cell carcinoma of the head and neck (BERIL-1): a randomised, double-blind, placebo-controlled phase 2 trial. Lancet Oncol. 2017;18(3):323–35.

    Article  CAS  Google Scholar 

  12. Agrawal N, Frederick MJ, Pickering CR, et al. Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1. Science. 2011;333(6046):1154–7.

    Article  CAS  Google Scholar 

  13. Stransky N, Egloff AM, Tward AD, et al. The mutational landscape of head and neck squamous cell carcinoma. Science. 2011;333(6046):1157–60.

    Article  CAS  Google Scholar 

  14. Prime SS, Eveson JW, Guest PG, et al. Early genetic and functional events in the pathogenesis of oral cancer. Radiat Oncol Investig. 1997;5(3):93–6.

    Article  CAS  Google Scholar 

  15. Soria JC, Morat L, Commo F, et al. Telomerase activation cooperates with inactivation of p16 in early head and neck tumorigenesis. Br J Cancer. 2001;84(4):504–11.

    Article  CAS  Google Scholar 

  16. Kresty LA, Mallery SR, Knobloch TJ, et al. Alterations of p16(INK4a) and p14(ARF) in patients with severe oral epithelial dysplasia. Cancer Res. 2002;62(18):5295–300.

    CAS  PubMed  Google Scholar 

  17. Marcos CA, Alonso-Guervos M, Prado NR, et al. Genetic model of transformation and neoplastic progression in laryngeal epithelium. Head Neck. 2011;33(2):216–24.

    Article  Google Scholar 

  18. Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature. 2015;517(7536):576–82.

    Article  Google Scholar 

  19. Lechner M, Frampton GM, Fenton T, et al. Targeted next-generation sequencing of head and neck squamous cell carcinoma identifies novel genetic alterations in HPV+ and HPV− tumors. Genome Med. 2013;5(5):49.

    Article  Google Scholar 

  20. Chung CH, Guthrie VB, Masica DL, et al. Genomic alterations in head and neck squamous cell carcinoma determined by cancer gene-targeted sequencing. Ann Oncol. 2015;26(6):1216–23.

    Article  CAS  Google Scholar 

  21. Seiwert TY, Zuo Z, Keck MK, et al. Integrative and comparative genomic analysis of HPV-positive and HPV-negative head and neck squamous cell carcinomas. Clin Cancer Res. 2015;21(3):632–41.

    Article  CAS  Google Scholar 

  22. Tinhofer I, Budach V, Saki M, et al. Targeted next-generation sequencing of locally advanced squamous cell carcinomas of the head and neck reveals druggable targets for improving adjuvant chemoradiation. Eur J Cancer. 2016;57:78–86.

    Article  CAS  Google Scholar 

  23. Liu J, Lichtenberg T, Hoadley KA, et al. An integrated TCGA pan-cancer clinical data resource to drive high-quality survival outcome analytics. Cell. 2018;173(2):400–16.e11.

    Article  CAS  Google Scholar 

  24. Er TK, Wang YY, Chen CC, et al. Molecular characterization of oral squamous cell carcinoma using targeted next-generation sequencing. Oral Dis. 2015;21(7):872–8.

    Article  Google Scholar 

  25. Chau NG, Li YY, Jo VY, et al. Incorporation of next-generation sequencing into routine clinical care to direct treatment of head and neck squamous cell carcinoma. Clin Cancer Res. 2016;22(12):2939–49.

    Article  CAS  Google Scholar 

  26. van Ginkel JH, de Leng WW, de Bree R, et al. Targeted sequencing reveals TP53 as a potential diagnostic biomarker in the post-treatment surveillance of head and neck cancer. Oncotarget. 2016;7(38):61575–86.

    PubMed  PubMed Central  Google Scholar 

  27. Tinhofer I, Stenzinger A, Eder T, et al. Targeted next-generation sequencing identifies molecular subgroups in squamous cell carcinoma of the head and neck with distinct outcome after concurrent chemoradiation. Ann Oncol. 2016;27(12):2262–8.

    Article  CAS  Google Scholar 

  28. Nakagaki T, Tamura M, Kobashi K, et al. Profiling cancer-related gene mutations in oral squamous cell carcinoma from Japanese patients by targeted amplicon sequencing. Oncotarget. 2017;8(35):59113–22.

    Article  Google Scholar 

  29. Oikawa Y, Morita KI, Kayamori K, et al. Receptor tyrosine kinase amplification is predictive of distant metastasis in patients with oral squamous cell carcinoma. Cancer Sci. 2017;108(2):256–66.

    Article  CAS  Google Scholar 

  30. Dubot C, Bernard V, Sablin MP, et al. Comprehensive genomic profiling of head and neck squamous cell carcinoma reveals FGFR1 amplifications and tumour genomic alterations burden as prognostic biomarkers of survival. Eur J Cancer. 2018;91:47–55.

    Article  CAS  Google Scholar 

  31. Song X, Xia R, Li J, et al. Common and complex Notch1 mutations in Chinese oral squamous cell carcinoma. Clin Cancer Res. 2014;20(3):701–10.

    Article  CAS  Google Scholar 

  32. Lindenbergh-van der Plas M, Brakenhoff RH, Kuik DJ, et al. Prognostic significance of truncating TP53 mutations in head and neck squamous cell carcinoma. Clin Cancer Res. 2011;17(11):3733–41.

    Article  CAS  Google Scholar 

  33. Skinner HD, Sandulache VC, Ow TJ, et al. TP53 disruptive mutations lead to head and neck cancer treatment failure through inhibition of radiation-induced senescence. Clin Cancer Res. 2012;18(1):290–300.

    Article  CAS  Google Scholar 

  34. Manterola L, Aguirre P, Larrea E, et al. Mutational profiling can identify laryngeal dysplasia at risk of progression to invasive carcinoma. Sci Rep. 2018;8(1):6613.

    Article  Google Scholar 

  35. Saba NF, Wilson M, Doho G, et al. Mutation and transcriptional profiling of formalin-fixed paraffin embedded specimens as companion methods to immunohistochemistry for determining therapeutic targets in oropharyngeal squamous cell carcinoma (OPSCC): a pilot of proof of principle. Head Neck Pathol. 2015;9(2):223–35.

    Article  Google Scholar 

  36. de Leng WW, Gadellaa-van Hooijdonk CG, Barendregt-Smouter FA, et al. Targeted next generation sequencing as a reliable diagnostic assay for the detection of somatic mutations in tumours using minimal DNA amounts from formalin fixed paraffin embedded material. PLoS One. 2016;11(2):e0149405.

    Article  Google Scholar 

  37. Roychowdhury S, Iyer MK, Robinson DR, et al. Personalized oncology through integrative high-throughput sequencing: a pilot study. Sci Transl Med. 2011;3(111):111ra21.

    Article  Google Scholar 

  38. Morris LG, Chandramohan R, West L, et al. The molecular landscape of recurrent and metastatic head and neck cancers: insights from a precision oncology sequencing platform. JAMA Oncol. 2017;3(2):244–55.

    Article  Google Scholar 

  39. Horak P, Klink B, Heining C, et al. Precision oncology based on omics data: the NCT Heidelberg experience. Int J Cancer. 2017;141(5):877–86.

    Article  CAS  Google Scholar 

  40. Boland GM, Piha-Paul SA, Subbiah V, et al. Clinical next generation sequencing to identify actionable aberrations in a phase I program. Oncotarget. 2015;6(24):20099–110.

    Article  Google Scholar 

  41. Rodon J, Soria JC, Berger R, et al. Challenges in initiating and conducting personalized cancer therapy trials: perspectives from WINTHER, a worldwide innovative network (WIN) consortium trial. Ann Oncol. 2015;26(8):1791–8.

    Article  CAS  Google Scholar 

  42. Schuh A, Dreau H, Knight SJL, et al. Clinically actionable mutation profiles in patients with cancer identified by whole-genome sequencing. Cold Spring Harb Mol Case Stud. 2018;4(2):a002279.

    Article  Google Scholar 

  43. Doebele RC, Davis LE, Vaishnavi A, et al. An oncogenic NTRK fusion in a patient with soft-tissue sarcoma with response to the tropomyosin-related kinase inhibitor LOXO-101. Cancer Discov. 2015;5(10):1049–57.

    Article  CAS  Google Scholar 

  44. Laetsch TW, DuBois SG, Mascarenhas L, et al. Larotrectinib for paediatric solid tumours harbouring NTRK gene fusions: phase 1 results from a multicentre, open-label, phase 1/2 study. Lancet Oncol. 2018;19(5):705–14.

    Article  CAS  Google Scholar 

  45. Lehmann S, Bykov VJ, Ali D, et al. Targeting p53 in vivo: a first-in-human study with p53-targeting compound APR-246 in refractory hematologic malignancies and prostate cancer. J Clin Oncol. 2012;30(29):3633–9.

    Article  CAS  Google Scholar 

  46. McKeown MR, Bradner JE. Therapeutic strategies to inhibit MYC. Cold Spring Harb Perspect Med. 2014;4(10):a014266.

    Article  Google Scholar 

  47. Dickson MA, Tap WD, Keohan ML, et al. Phase II trial of the CDK4 inhibitor PD0332991 in patients with advanced CDK4-amplified well-differentiated or dedifferentiated liposarcoma. J Clin Oncol. 2013;31(16):2024–8.

    Article  CAS  Google Scholar 

  48. Froyen G, Broekmans A, Hillen F, et al. Validation and application of a custom-designed targeted next-generation sequencing panel for the diagnostic mutational profiling of solid tumors. PLoS One. 2016;11(4):e0154038.

    Article  Google Scholar 

  49. Turner N, Tutt A, Ashworth A. Hallmarks of ‘BRCAness’ in sporadic cancers. Nat Rev Cancer. 2004;4(10):814–9.

    Article  CAS  Google Scholar 

  50. McCabe N, Turner NC, Lord CJ, et al. Deficiency in the repair of DNA damage by homologous recombination and sensitivity to poly(ADP-ribose) polymerase inhibition. Cancer Res. 2006;66(16):8109–15.

    Article  CAS  Google Scholar 

  51. Kiberstis PA. Tumor-agnostic therapy gets on TRK. Science. 2018;360(6384):45–6.

    Google Scholar 

  52. Drilon A, Laetsch TW, Kummar S, et al. Efficacy of Larotrectinib in TRK fusion-positive cancers in adults and children. N Engl J Med. 2018;378(8):731–9.

    Article  CAS  Google Scholar 

  53. Alexandrov LB, Nik-Zainal S, Wedge DC, et al. Signatures of mutational processes in human cancer. Nature. 2013;500(7463):415–21.

    Article  CAS  Google Scholar 

  54. Zhang XC, Xu C, Mitchell RM, et al. Tumor evolution and intratumor heterogeneity of an oropharyngeal squamous cell carcinoma revealed by whole-genome sequencing. Neoplasia. 2013;15(12):1371–8.

    Article  Google Scholar 

  55. Ledgerwood LG, Kumar D, Eterovic AK, et al. The degree of intratumor mutational heterogeneity varies by primary tumor sub-site. Oncotarget. 2016;7(19):27185–98.

    Article  Google Scholar 

  56. Tabatabaeifar S, Thomassen M, Larsen MJ, et al. The subclonal structure and genomic evolution of oral squamous cell carcinoma revealed by ultra-deep sequencing. Oncotarget. 2017;8(10):16571–80.

    Article  Google Scholar 

  57. Bettegowda C, Sausen M, Leary RJ, et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med. 2014;6(224):224ra24.

    Article  Google Scholar 

  58. Li M, Diehl F, Dressman D, et al. BEAMing up for detection and quantification of rare sequence variants. Nat Methods. 2006;3:95.

    Article  CAS  Google Scholar 

  59. Kinde I, Wu J, Papadopoulos N, et al. Detection and quantification of rare mutations with massively parallel sequencing. Proc Natl Acad Sci. 2011;108(23):9530–5.

    Article  Google Scholar 

  60. Newman AM, Bratman SV, To J, et al. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat Med. 2014;20(5):548–54.

    Article  CAS  Google Scholar 

  61. Soulieres D, Licitra L, Mesia R, et al. Molecular alterations and Buparlisib efficacy in patients with squamous cell carcinoma of the head and neck: biomarker analysis from BERIL-1. Clin Cancer Res. 2018;24(11):2505–16.

    Article  CAS  Google Scholar 

  62. Chae YK, Davis AA, Jain S, et al. Concordance of genomic alterations by next-generation sequencing in tumor tissue versus circulating tumor DNA in breast Cancer. Mol Cancer Ther. 2017;16(7):1412–20.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingeborg Tinhofer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tinhofer, I. (2018). Targeted Next-Generation Sequencing in Head and Neck Cancer. In: Vermorken, J., Budach, V., Leemans, C., Machiels, JP., Nicolai, P., O'Sullivan, B. (eds) Critical Issues in Head and Neck Oncology. Springer, Cham. https://doi.org/10.1007/978-3-319-98854-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98854-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98853-5

  • Online ISBN: 978-3-319-98854-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics