Skip to main content
Book cover

Cave Ecology pp 351–368Cite as

Researches in Sulphide-Based Ecosystems

  • Chapter
  • First Online:

Part of the book series: Ecological Studies ((ECOLSTUD,volume 235))

Abstract

Caves are habitats characterised by partial/complete darkness, constant climate (constant air/water temperature, relative humidity) and restricted input of nutrients. Based on their speleogenesis, caves can be epigenic—when formed by the movement of water from overlying or immediately adjacent recharge surfaces to springs in nearby valleys—or hypogenic, when formed by fluids ascending through various geological and tectonic settings at different depths by different dissolution mechanisms. In contrast to the majority of caves (epigenic) that have at least one opening towards the surface, and where the underground biocenosis dependent on the input of exogenous organic matters (litter, logs, animals, etc.), the hypogenic caves present a high degree of isolation from the surface, the energy in these systems being mainly provided by the rising fluids and gases such as H2S and CH4, in the ascending water. These compounds are the energy source for chemolithotrophic bacteria forming the base of the underground trophic web. Here, we present a completely isolated hypogenic cave, the Movile Cave (Romania) and its unusually rich and diverse biocenosis and Cueva de Villa Luz (Mexico), another hypogenic cave presenting several underground habitats, due to various conditions (skylights, river, sulphurous/unsulphurous water, etc.) in which specific organisms thrive.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Borgonie G, Dierick M, Houthoofd W et al (2010) Refuge from predation, the benefit of living in an extreme acidic environment? Biol Bull 219:268–276

    Article  CAS  Google Scholar 

  • Chen Y, Wu L, Boden R et al (2009) Life without light: microbial diversity and evidence of sulfur- and ammonium-based chemolithotrophy in Movile Cave. ISME J 3:1093–1104

    Article  CAS  Google Scholar 

  • Dworkin M (2012) Sergei Winogradsky: a founder of modern microbiology and the first microbial ecologist. FEMS Microbiol Rev 36:364–379

    Article  CAS  Google Scholar 

  • Falniowski A, Szarowska M, Sirbu I et al (2008) Heleobia dobrogica (Grossu & Negrea, 1989) (Gastropoda: Rissooidea: Cochliopidae) and the estimated time of its isolation in a continental analogue of hydrothermal vents. Molluscan Res 28:165–170

    Google Scholar 

  • Forti P, Galdenzi S, Sarbu SM (2002) The hypogenic caves: a powerful tool for the study of seeps and their environmental effects. Cont Shelf Res 22:2373–2386

    Article  Google Scholar 

  • Gamboa VJ, Ku I (1998) Descripción de la cueva “Las Sardinas”, Villa Luz, Tabasco, México. Mundos Subterraneos 9:51–54

    Google Scholar 

  • Gazert L, Schirmack J, Alawi M et al (2014) Methanosarcina spelaei sp. nov., a methanogenicarchaeon isolated from a floating biofilm of a subsurface sulphurous lake. Int J Syst Evol Microbiol 64:3478–3484

    Article  Google Scholar 

  • Gordon MS, Rosen DE (1962) A cavernicolous form of the poeciliid fish Poecilia sphenops from Tabasco, Mexico. Copeia 1962:360–368

    Article  Google Scholar 

  • Greenway R, Arias-Rodriguez L, Diaz P et al (2014) Patterns of macroinvertebrates and fish diversity in freshwater sulphide springs. Diversity 6:597–632

    Article  Google Scholar 

  • Horoi V (1994) The corrosion process in “Peştera de la Movile” Cave (Southern Dobrugja—Romania). Theor Appl Karstol 7:187–191

    Google Scholar 

  • Horstkotte J, Riesch R, Plath M, Jäger P (2010) Predation by three species of spiders on a cave fish in a Mexican sulphur cave. Bull Br Arachnol Soc 15(2):55–58

    Article  Google Scholar 

  • Hose LD, Pisarowicz JA (1999) Cueva de Villa Luz, Tabasco, Mexico: reconnaissance study of an active sulfur spring cave and ecosystem. J Cave Karst Stud 61:13–21

    CAS  Google Scholar 

  • Hose LD, Palmer AN, Palmer MV et al (2000) Microbiology and geochemistry in a hydrogen-sulphide-rich karst environment. Chem Geol 169:399–423

    Article  CAS  Google Scholar 

  • Hubka V, Nováková A, Kolařík M et al (2015) Revision of Aspergillus section Flavipedes: seven new species and proposal of section Jani sect. nov. Mycologia 107:169–208

    Article  Google Scholar 

  • Hubka V, Nováková A, Samson RA et al (2016) Aspergillus europaeus sp. nov., a widely distributed soil-borne species related to A. wentii (section Cremei). Plant Syst Evol 302:641–650

    Article  CAS  Google Scholar 

  • Hutchens E, Radajewski S, Dumont MG et al (2004) Analysis of methanotrophic bacteria in Movile Cave by stable isotope probing. Environ Microbiol 6:111–120

    Article  CAS  Google Scholar 

  • Jones DS, Schaperdoth I, Macalady JL (2016) Biogeography of sulfur-oxidizing Acidithiobacillus populations in extremely acidic cave biofilms. ISME J 10:2879–2891

    Article  Google Scholar 

  • Klimchouk A (2009) Principal characteristics of hypogene speleogenesis. In: Advances in hypogene karst studies, National Cave and Karst Research Institute Symposium 1, pp 1–11

    Google Scholar 

  • Kumaresan D, Wischer D, Stephenson J et al (2014) Microbiology of movile cave—a chemolithoautotrophic ecosystem. Geomicrobiol J 31:186–193

    Article  CAS  Google Scholar 

  • Lascu C (1989) Paleogeographical and hydrogeological hypothesis regarding the origin of a peculiar cave fauna. Miscellanea Speologica Romanica 1:13–18

    Google Scholar 

  • Lascu C, Popa R, Sarbu S (1995) Le karst de Movile (Dobroudja de Sud) (II). Rev Roum Géogr 39:31–40

    Google Scholar 

  • Levy G (2007) The first troglobite scorpion from Israel and a new chaetoid family (Arachnida: Scorpiones). Zool Middle East 40:91–96

    Article  Google Scholar 

  • Muschiol D, Giere O, Traunspurger W (2015) Population dynamics of a cavernicolous nematode community in a chemoautotrophic groundwater system. Limnol Oceanogr 60:127–135

    Article  Google Scholar 

  • Nováková A, Hubka V, Valinová Š et al (2018) Cultivable microscopic fungi from an underground chemosynthesis-based ecosystem: a preliminary study. Folia Microbiol 63:43–55

    Article  Google Scholar 

  • Palacios M, Arias-Rodriguez L, Plath M et al (2013) The rediscovery of a long described species reveals additional complexity in speciation patterns of poeciliid fishes in sulfide springs. PLoS One 8:e71069

    Article  CAS  Google Scholar 

  • Palacios-Vargas JG (2009) Los estudios bioespeleologicos de la cueva de Las Sardinas y sus perspectivas. Mundos Subterraneos 20:170–173

    Google Scholar 

  • Palacios-Vargas JG, Castaño-Meneses G, Estrada DA (2011) Diversity and dynamics of microarthropods from different biotopes of Las Sardinas cave (Mexico). Subterr Biol 9:113–126

    Article  Google Scholar 

  • Palacios-Vargas JG, Juberthie C, Reddell JR (2014–2015) Mexico. In: Encyclopaedia Biospeologica, vol IIa, 25–26. Mundos Subterráneos, México, pp 1–101

    Google Scholar 

  • Palmer AN (1991) Origin and morphology of limestone caves. Geol Soc Am Bull 103:1–21

    Article  Google Scholar 

  • Panin N, Strechie C (2006) Late quaternary sea-level and environmental changes in the Black Sea: a brief review of published data. J Archaeomythol 2:3–16

    Google Scholar 

  • Por FD, Dimentman C, Frumkin A et al (2013) Animal life in the chemoautotrophic ecosystem of the hypogenic groundwater cave of Ayyalon (Israel): a summing up. Nat Sci 5:7–13

    Google Scholar 

  • Rohwerder T, Sand W, Lascu C (2003) Preliminary evidence for a sulphur cycle in Movile Cave, Romania. Acta Biotechnol 23:101–107

    Article  CAS  Google Scholar 

  • Sarbu SM (2000) Movile Cave: a chemoautotrophically based groundwater ecosystem. In: Wilken H, Culver DC, Humphreys WF (eds) Subterranean ecosystems. Elsevier, Amsterdam, pp 319–343

    Google Scholar 

  • Sarbu SM, Kane TC (1995) A subterranean chemoautotrophically based ecosystem. J Cave Karst Stud 57:91–98

    Google Scholar 

  • Sarbu S, Lascu C (1997) Condensation corrosion in Movile Cave, Romania. J Cave Karst Stud 59:99–102

    CAS  Google Scholar 

  • Sarbu SM, Kinkle BK, Vlasceanu L et al (1994a) Microbiological characterisation of a sulfide-rich groundwater ecosystem. Geomicrobiol J 12:175–182

    Article  Google Scholar 

  • Sarbu SM, Vlasceanu L, Popa R et al (1994b) Microbial mats in a thermomineral sulfurous cave. In: Stal LJ, Caumeue P (eds) Microbial mats, NATO ASI series G, vol 35. Springer, Berlin

    Google Scholar 

  • Sarbu SM, Kane TC, Kinkle BK (1996) A chemoautotrophically based groundwater ecosystem. Science 272:1953–1955

    Article  CAS  Google Scholar 

  • Sarbu SM, Lascu C, Brad T (2018) Dobrogea: movile cave. In: Ponta GML, Onac BP (eds) Cave and karst systems of Romania. Cave and karst systems of the world. Springer, ISBN: 978-3-319-90745-1. https://doi.org/10.1007/978-3-319-90747-5_48

    Google Scholar 

  • Schirmack J, Mangelsdorf K, Ganzert L et al (2014) Methanobacterium movilense sp. nov., a hydrogenotrophic, secondary-alcohol-utilizing methanogen from the anoxic sediment of a subsurface lake. Int J Syst Evol Microbiol 64:522–527

    Article  CAS  Google Scholar 

  • Schirmack J, Alawi M, Wagner D (2015) Influence of Martian regolith analogs on the activity and growth of methanogenic archaea, with special regard to long-term desiccation. Front Microbiol 6:210

    Article  Google Scholar 

  • Stocchino GA, Sluys R, Kawakatsu M et al (2017) A new species of freshwater flat worm (Platyhelminthes, Tricladida, Dendrocoelidae) inhabiting a chemoautotrophic groundwater ecosystem in Romania. Eur J Taxon 342:1–21

    Google Scholar 

  • Summers Engel A (2007) Observations on the biodiversity of sulfidic karst habitats. J Cave Karst Stud 69:187–206

    Google Scholar 

  • Tobler M, Schlupp I, Heubel KU et al (2006) Life on the edge: hydrogen sulfide and the fish communities of a Mexican cave and surrounding waters. Extremophiles 10:577–585

    Article  CAS  Google Scholar 

  • Tobler M, Schlupp I, Plath M (2007) Predation of a cave fish (Poecilia mexicana, Poeciliidae) by a giant water-bug (Belostoma, Belostomatidae) in a Mexican sulphur cave. Ecol Entomol 32:492–495

    Article  Google Scholar 

  • Tobler M, DeWitt TJ, Schlupp I et al (2008) Toxic hydrogen sulfide and dark caves: phenotypic and genetic divergence across two abiotic environmental gradients in Poecilia mexicana. Evolution 62:2643–2659

    Article  Google Scholar 

  • Tobler M, Culumber ZW, Plath M et al (2011) An indigenous religious ritual selects for resistance to a toxicant in a livebearing fish. Biol Lett 7:229–232

    Article  CAS  Google Scholar 

  • Winogradsky S (1887) Ueber Schwefelbacterien. Botanische Zeitung 45:489–610

    Google Scholar 

  • Wischer D, Kumaresan D, Johnston A et al (2015) Bacterial metabolism of methylated amines and identification of novel methylotrophs in Movile Cave. ISME J 9:195–206

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I thank Dr. Şerban Sârbu and Cristian Lascu for wonderful explanations and discussion on the underground ecosystems and to Vlad Voiculescu, Mihai Baciu and Dr. Virgil Drăguşin for assisting me in my research of Movile Cave. I am most grateful to my collaborators, Prof. Colin Murrell (UK), Dr. Deepak Kumaresan (UK) and Dr. Alena Nováková (CZ) for valuable scientific discussions and great time spent together during sampling trips and throughout our collaborations.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hillebrand-Voiculescu, A. (2018). Researches in Sulphide-Based Ecosystems. In: Moldovan, O., Kováč, Ľ., Halse, S. (eds) Cave Ecology. Ecological Studies, vol 235. Springer, Cham. https://doi.org/10.1007/978-3-319-98852-8_16

Download citation

Publish with us

Policies and ethics