Skip to main content

Learning Interpretable Entity Representation in Linked Data

  • Conference paper
  • First Online:
Database and Expert Systems Applications (DEXA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11029))

Included in the following conference series:

Abstract

Linked Data has become a valuable source of factual records. However, because of its simple representations of records (i.e., a set of triples), learning representations of entities is required for various applications such as information retrieval and data mining. Entity representations can be roughly classified into two categories; (1) interpretable representations, and (2) latent representations. Interpretability of learned representations is important for understanding relationship between two entities, like why they are similar. Therefore, this paper focuses on the former category. Existing methods are based on heuristics which determine relevant fields (i.e., predicates and related entities) to constitute entity representations. Since the heuristics require laboursome human decisions, this paper aims at removing the labours by applying a graph proximity measurement. To this end, this paper proposes RWRDoc, an RWR (random walk with restart)-based representation learning method which learns representations of entities by weighted combinations of minimal representations of whole reachable entities w.r.t. RWR. Comprehensive experiments on diverse applications (such as ad-hoc entity search, recommender system using Linked Data, and entity summarization) indicate that RWRDoc learns proper interpretable entity representations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://dbpedia.org/resource/Toyotomi_Hideyoshi.

  2. 2.

    http://dbpedia.org/resource/Japanese_invasions_of_Korea_(1592-98).

  3. 3.

    http://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html.

  4. 4.

    http://downloads.dbpedia.org/2015-10/.

  5. 5.

    https://github.com/iai-group/DBpedia-Entity.

  6. 6.

    https://grouplens.org/datasets/hetrec-2011/.

  7. 7.

    http://sisinflab.poliba.it/semanticweb/lod/recsys/datasets/.

  8. 8.

    http://dbpedia.org/resource/Nagoya.

References

  1. Resource Description Framework (RDF): Concepts and Abstract Syntax. https://www.w3.org/TR/rdf11-concepts/

  2. Alfarhood, S., Labille, K., Gauch, S.: PLDSD: propagated linked data semantic distance. In: WETICE 2017, pp. 278–283 (2017)

    Google Scholar 

  3. Bizer, C., Heath, T., Berners-Lee, T.: Linked data - the story so far. Int. J. Semant. Web Inf. Syst. 5(3), 1–22 (2009)

    Article  Google Scholar 

  4. Cheng, G., Tran, T., Qu, Y.: RELIN: relatedness and informativeness-based centrality for entity summarization. In: Aroyo, L., et al. (eds.) ISWC 2011. LNCS, vol. 7031, pp. 114–129. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25073-6_8

    Chapter  Google Scholar 

  5. Shijia, E., Xiang, Y.: Entity search based on the representation learning model with different embedding strategies. IEEE Access 5, 15174–15183 (2017)

    Article  Google Scholar 

  6. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: SIGKDD 2016, pp. 855–864 (2016)

    Google Scholar 

  7. Gunaratna, K., Thirunarayan, K., Sheth, A.P.: FACES: diversity-aware entity summarization using incremental hierarchical conceptual clustering. In: AAAI 2015, pp. 116–122 (2015)

    Google Scholar 

  8. Hasibi, F., et al.: DBpedia-entity v2: a test collection for entity search. In: SIGIR 2017, pp. 1265–1268 (2017)

    Google Scholar 

  9. Järvelin, K., Kekäläinen, J.: Cumulated gain-based evaluation of IR techniques. ACM Trans. Inf. Syst. 20(4), 422–446 (2002)

    Article  Google Scholar 

  10. Komamizu, T., Okumura, S., Amagasa, T., Kitagawa, H.: FORK: feedback-aware ObjectRank-based keyword search over linked data. In: Sung, W.K., et al. (eds.) AIRS 2017. LNCS, vol. 10648, pp. 58–70. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70145-5_5

    Chapter  Google Scholar 

  11. Kotov, A.: Knowledge graph entity representation and retrieval. In: Tutorial Chapter, RuSSIR 2016 (2016)

    Google Scholar 

  12. Li, J., Dani, H., Hu, X., Tang, J., Chang, Y., Liu, H.: Attributed network embedding for learning in a dynamic environment. In: CIKM 2017, pp. 387–396 (2017)

    Google Scholar 

  13. Nguyen, P., Tomeo, P., Noia, T.D., Sciascio, E.D.: An evaluation of SimRank and personalized PageRank to build a recommender system for the web of Data. In: WWW 2015, pp. 1477–1482 (2015)

    Google Scholar 

  14. Nikolaev, F., Kotov, A., Zhiltsov, N.: Parameterized fielded term dependence models for ad-hoc entity retrieval from knowledge graph. In: SIGIR 2016, pp. 435–444 (2016)

    Google Scholar 

  15. Noia, T.D., Ostuni, V.C., Tomeo, P., Sciascio, E.D.: SPrank: semantic path-based ranking for top-N recommendations using linked open data. ACM TIST 8(1), 9:1–9:34 (2016)

    Google Scholar 

  16. Passant, A.: Measuring semantic distance on linking data and using it for resources recommendations. In: AAAI Spring Symposium 2010 (2010)

    Google Scholar 

  17. Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: online learning of social representations. In: SIGKDD 2014, pp. 701–710 (2014)

    Google Scholar 

  18. Pound, J., Mika, P., Zaragoza, H.: Ad-hoc object retrieval in the web of data. In: WWW 2010, pp. 771–780 (2010)

    Google Scholar 

  19. Raviv, H., Kurland, O., Carmel, D.: Document retrieval using entity-based language models. In: SIGIR 2016, pp. 65–74 (2016)

    Google Scholar 

  20. Ristoski, P., Paulheim, H.: RDF2Vec: RDF graph embeddings for data mining. In: Groth, P., et al. (eds.) ISWC 2016. LNCS, vol. 9981, pp. 498–514. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46523-4_30

    Chapter  Google Scholar 

  21. Robertson, S.E., Zaragoza, H.: The probabilistic relevance framework: BM25 and beyond. Found. Trends Inf. Retrieval 3(4), 333–389 (2009)

    Article  Google Scholar 

  22. Sartori, E., Velegrakis, Y., Guerra, F.: Entity-based keyword search in web documents. Trans. Comput. Collect. Intell. 21, 21–49 (2016)

    Google Scholar 

  23. Thalhammer, A., Lasierra, N., Rettinger, A.: LinkSUM: using link analysis to summarize entity data. In: Bozzon, A., Cudre-Maroux, P., Pautasso, C. (eds.) ICWE 2016. LNCS, vol. 9671, pp. 244–261. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-38791-8_14

    Chapter  Google Scholar 

  24. Tong, H., Faloutsos, C., Pan, J.: Random walk with restart: fast solutions and applications. Knowl. Inf. Syst. 14(3), 327–346 (2008)

    Article  Google Scholar 

  25. Yang, C., Liu, Z., Zhao, D., Sun, M., Chang, E.Y.: Network representation learning with rich text information. In: IJCAI 2015, pp. 2111–2117 (2015)

    Google Scholar 

  26. Yoon, M., Jung, J., Kang, U.: TPA: two phase approximation for random walk with restart. CoRR abs/1708.02574 (2017). http://arxiv.org/abs/1708.02574

Download references

Acknowledgments

This work was partly supported by JSPS KAKENHI Grant Number JP18K18056.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahiro Komamizu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Komamizu, T. (2018). Learning Interpretable Entity Representation in Linked Data. In: Hartmann, S., Ma, H., Hameurlain, A., Pernul, G., Wagner, R. (eds) Database and Expert Systems Applications. DEXA 2018. Lecture Notes in Computer Science(), vol 11029. Springer, Cham. https://doi.org/10.1007/978-3-319-98809-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98809-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98808-5

  • Online ISBN: 978-3-319-98809-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics