Skip to main content

Engineered Animal Models Designed for Investigating Ethanol Metabolism, Toxicity and Cancer

  • Conference paper
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1032))

Abstract

Excessive consumption of alcohol is a leading cause of lifestyle-induced morbidity and mortality worldwide. Although long-term alcohol abuse has been shown to be detrimental to the liver, brain and many other organs, our understanding of the exact molecular mechanisms by which this occurs is still limited. In tissues, ethanol is metabolized to acetaldehyde (mainly by alcohol dehydrogenase and cytochrome p450 2E1) and subsequently to acetic acid by aldehyde dehydrogenases. Intracellular generation of free radicals and depletion of the antioxidant glutathione (GSH) are believed to be key steps involved in the cellular pathogenic events caused by ethanol. With continued excessive alcohol consumption, further tissue damage can result from the production of cellular protein and DNA adducts caused by accumulating ethanol-derived aldehydes. Much of our understanding about the pathophysiological consequences of ethanol metabolism comes from genetically-engineered mouse models of ethanol-induced tissue injury. In this review, we provide an update on the current understanding of important mouse models in which ethanol-metabolizing and GSH-synthesizing enzymes have been manipulated to investigate alcohol-induced disease.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Vasiliou V et al (2015) Biological basis of alcohol-induced cancer. Adv Exp Med Biol 815:815

    Google Scholar 

  2. Gutjahr E, Gmel G, Rehm J (2001) Relation between average alcohol consumption and disease: an overview. Eur Addict Res 7(3):117–127

    Article  CAS  PubMed  Google Scholar 

  3. Thun MJ et al (1997) Alcohol consumption and mortality among middle-aged and elderly U.S. adults. N Engl J Med 337(24):1705–1714

    Article  CAS  PubMed  Google Scholar 

  4. Maisto SA et al (2016) Is the construct of relapse heuristic, and does it advance alcohol use disorder clinical practice. J Stud Alcohol Drugs 77(6):849–858

    Article  PubMed  PubMed Central  Google Scholar 

  5. World Health Organization (2014) Global status report on alcohol and health. World Health Organization, Geneva, pp 45–57

    Google Scholar 

  6. Swift R, Davidson D (1998) Alcohol hangover: mechanisms and mediators. Alcohol Health Res World 22(1):54–60

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Rehm J et al (2017) The relationship between different dimensions of alcohol use and the burden of disease-an update. Addiction 112(6):968–1001

    Article  PubMed  PubMed Central  Google Scholar 

  8. Seitz HK, Maurer B (2007) The relationship between alcohol metabolism, estrogen levels, and breast cancer risk. Alcohol Res Health 30(1):42–43

    PubMed  Google Scholar 

  9. Neuman MG et al (2017) Alcohol, microbiome, life style influence alcohol and non-alcoholic organ damage. Exp Mol Pathol 102(1):162–180

    Article  CAS  PubMed  Google Scholar 

  10. Humans, IWG o.t.E.o.C.R.t (2012) Personal habits and indoor combustions. Volume 100 E. A review of human carcinogens. IARC Monogr Eval Carcinog Risks Hum 100(Pt E):373–472

    Google Scholar 

  11. Hashibe M et al (2009) Interaction between tobacco and alcohol use and the risk of head and neck cancer: pooled analysis in the international head and neck Cancer epidemiology consortium. Cancer Epidemiol Biomark Prev 18(2):541–550

    Article  CAS  Google Scholar 

  12. Baan R et al (2007) Carcinogenicity of alcoholic beverages. Lancet Oncol 8(4):292–293

    Article  PubMed  Google Scholar 

  13. Nelson DE et al (2013) Alcohol-attributable cancer deaths and years of potential life lost in the United States. Am J Public Health 103(4):641–648

    Article  PubMed  PubMed Central  Google Scholar 

  14. Poschl G, Seitz HK (2004) Alcohol and cancer. Alcohol Alcohol 39(3):155–165

    Article  CAS  PubMed  Google Scholar 

  15. Zakhari S (2006) Overview: how is alcohol metabolized by the body. Alcohol Res Health 29(4):245–254

    PubMed  PubMed Central  Google Scholar 

  16. Molotkov A et al (2002) Distinct retinoid metabolic functions for alcohol dehydrogenase genes Adh1 and Adh4 in protection against vitamin A toxicity or deficiency revealed in double null mutant mice. J Biol Chem 277(16):13804–13811

    Article  CAS  PubMed  Google Scholar 

  17. Heit C et al (2015) Transgenic mouse models for alcohol metabolism, toxicity, and cancer. Adv Exp Med Biol 815:375–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Deltour L, Foglio MH, Duester G (1999) Metabolic deficiencies in alcohol dehydrogenase Adh1, Adh3, and Adh4 null mutant mice. Overlapping roles of Adh1 and Adh4 in ethanol clearance and metabolism of retinol to retinoic acid. J Biol Chem 274(24):16796–16801

    Article  CAS  PubMed  Google Scholar 

  19. Ho YS et al (2004) Mice lacking catalase develop normally but show differential sensitivity to oxidant tissue injury. J Biol Chem 279(31):32804–32812

    Article  CAS  PubMed  Google Scholar 

  20. Zimatkin SM et al (2006) Enzymatic mechanisms of ethanol oxidation in the brain. Alcohol Clin Exp Res 30(9):1500–1505

    Article  CAS  PubMed  Google Scholar 

  21. Vasiliou V et al (2006) CYP2E1 and catalase influence ethanol sensitivity in the central nervous system. Pharmacogenet Genomics 16(1):51–58

    Article  CAS  PubMed  Google Scholar 

  22. Lu H et al (2009) High prevalence of coronary heart disease in type 2 diabetic patients with non-alcoholic fatty liver disease the relation between non-alcoholic fatty liver disease and the risk of coronary heart disease in Koreans abnormal aortic elasticity in patients with liver steatosis association between non-alcoholic fatty liver disease and cardiovascular disease: a first message should pass. Arch Med Res 40(7):571–575

    Article  CAS  PubMed  Google Scholar 

  23. Quintanilla ME et al (2012) Reward and relapse: complete gene-induced dissociation in an animal model of alcohol dependence. Alcohol Clin Exp Res 36(3):517–522

    Article  CAS  PubMed  Google Scholar 

  24. Rindler PM et al (2016) Catalase-dependent H2O2 consumption by cardiac mitochondria and redox-mediated loss in insulin signaling. Am J Physiol Heart Circ Physiol 311(5):H1091–H1096

    Article  PubMed  PubMed Central  Google Scholar 

  25. Rindler PM et al (2013) High dietary fat selectively increases catalase expression within cardiac mitochondria. J Biol Chem 288(3):1979–1990

    Article  CAS  PubMed  Google Scholar 

  26. Lee SS et al (1996) Role of CYP2E1 in the hepatotoxicity of acetaminophen. J Biol Chem 271(20):12063–12067

    Article  CAS  PubMed  Google Scholar 

  27. Valentine JL et al (1996) Reduction of benzene metabolism and toxicity in mice that lack CYP2E1 expression. Toxicol Appl Pharmacol 141(1):205–213

    Article  CAS  PubMed  Google Scholar 

  28. Wong FW, Chan WY, Lee SS (1998) Resistance to carbon tetrachloride-induced hepatotoxicity in mice which lack CYP2E1 expression. Toxicol Appl Pharmacol 153(1):109–118

    Article  CAS  PubMed  Google Scholar 

  29. Wang X et al (2013) Cytochrome P450 2E1 potentiates ethanol induction of hypoxia and HIF-1alpha in vivo. Free Radic Biol Med 63:175–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lands WE (1998) A review of alcohol clearance in humans. Alcohol 15(2):147–160

    Article  CAS  PubMed  Google Scholar 

  31. Lieber CS (1994) Mechanisms of ethanol-drug-nutrition interactions. J Toxicol Clin Toxicol 32(6):631–681

    Article  CAS  PubMed  Google Scholar 

  32. Tanaka E, Terada M, Misawa S (2000) Cytochrome P450 2E1: its clinical and toxicological role. J Clin Pharm Ther 25(3):165–175

    Article  CAS  PubMed  Google Scholar 

  33. Lind PA et al (2012) Association between in vivo alcohol metabolism and genetic variation in pathways that metabolize the carbon skeleton of ethanol and NADH reoxidation in the alcohol challenge twin study. Alcohol Clin Exp Res 36(12):2074–2085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Abdelmegeed MA et al (2013) CYP2E1 potentiates binge alcohol-induced gut leakiness, steatohepatitis, and apoptosis. Free Radic Biol Med 65:1238–1245

    Article  CAS  PubMed  Google Scholar 

  35. Lu Y, Cederbaum AI (2015) Autophagy protects against CYP2E1/chronic ethanol-induced hepatotoxicity. Biomol Ther 5(4):2659–2674

    CAS  Google Scholar 

  36. Lu Y et al (2008) Cytochrome P450 2E1 contributes to ethanol-induced fatty liver in mice. Hepatology 47(5):1483–1494

    Article  CAS  PubMed  Google Scholar 

  37. Isse T et al (2002) Diminished alcohol preference in transgenic mice lacking aldehyde dehydrogenase activity. Pharmacogenetics 12(8):621–626

    Article  CAS  PubMed  Google Scholar 

  38. Yu HS et al (2009) Characteristics of aldehyde dehydrogenase 2 (Aldh2) knockout mice. Toxicol Mech Methods 19(9):535–540

    Article  CAS  PubMed  Google Scholar 

  39. Isse T et al (2005) Aldehyde dehydrogenase 2 activity affects symptoms produced by an intraperitoneal acetaldehyde injection, but not acetaldehyde lethality. J Toxicol Sci 30(4):315–328

    Article  CAS  PubMed  Google Scholar 

  40. Kiyoshi A et al (2009) Ethanol metabolism in ALDH2 knockout mice--blood acetate levels. Leg Med (Tokyo) 11(Suppl 1):S413–S415

    Article  Google Scholar 

  41. Jamal M et al (2016) Ethanol and acetaldehyde after intraperitoneal administration to Aldh2-knockout mice-reflection in blood and brain levels. Neurochem Res 41(5):1029–1034

    Article  CAS  PubMed  Google Scholar 

  42. Matsumoto A et al (2014) Ethanol reduces lifespan, body weight, and serum alanine aminotransferase level of aldehyde dehydrogenase 2 knockout mouse. Alcohol Clin Exp Res 38(7):1883–1893

    Article  CAS  PubMed  Google Scholar 

  43. Oyama T et al (2007) Susceptibility to inhalation toxicity of acetaldehyde in Aldh2 knockout mice. Front Biosci 12:1927–1934

    Article  CAS  PubMed  Google Scholar 

  44. Weng Z et al (2013) Subchronic exposure to ethyl tertiary butyl ether resulting in genetic damage in Aldh2 knockout mice. Toxicology 311(3):107–114

    Article  CAS  PubMed  Google Scholar 

  45. Fan F et al (2014) Impact of chronic low to moderate alcohol consumption on blood lipid and heart energy profile in acetaldehyde dehydrogenase 2-deficient mice. Acta Pharmacol Sin 35(8):1015–1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shen C et al (2017) Aldehyde dehydrogenase 2 deficiency negates chronic low-to-moderate alcohol consumption-induced cardioprotecion possibly via ROS-dependent apoptosis and RIP1/RIP3/MLKL-mediated necroptosis. Biochim Biophys Acta 1863(8):1912–1918. https://doi.org/10.1016/j.bbadis.2016.11.016. Epub 2016 Nov

    Article  CAS  Google Scholar 

  47. Kwon HJ et al (2014) Aldehyde dehydrogenase 2 deficiency ameliorates alcoholic fatty liver but worsens liver inflammation and fibrosis in mice. Hepatology 60(1):146–157

    Article  CAS  PubMed  Google Scholar 

  48. Chaudhry KK et al (2015) ALDH2 deficiency promotes ethanol-induced gut barrier dysfunction and fatty liver in mice. Alcohol Clin Exp Res 39(8):1465–1475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Matsumoto A et al (2016) Heme oxygenase 1 protects ethanol-administered liver tissue in Aldh2 knockout mice. Alcohol 52:49–54

    Article  CAS  PubMed  Google Scholar 

  50. Tsuchiya T et al (2013) Disruption of aldehyde dehydrogenase 2 gene results in altered cortical bone structure and increased cortical bone mineral density in the femoral diaphysis of mice. Bone 53(2):358–368

    Article  CAS  PubMed  Google Scholar 

  51. Shimizu Y et al (2011) Reduced bone formation in alcohol-induced osteopenia is associated with elevated p21 expression in bone marrow cells in aldehyde dehydrogenase 2-disrupted mice. Bone 48(5):1075–1086

    Article  CAS  PubMed  Google Scholar 

  52. Liao J et al (2012) Aldehyde dehydrogenase-2 deficiency aggravates cardiac dysfunction elicited by endoplasmic reticulum stress induction. Mol Med 18:785–793

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Ma H et al (2010) Aldehyde dehydrogenase 2 knockout accentuates ethanol-induced cardiac depression: role of protein phosphatases. J Mol Cell Cardiol 49(2):322–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Xia G et al (2016) Aldehyde dehydrogenase 2 deficiency blunts compensatory cardiac hypertrophy through modulating Akt phosphorylation early after transverse aorta constriction in mice. Biochim Biophys Acta 1862(9):1587–1593

    Article  CAS  PubMed  Google Scholar 

  55. Wang C et al (2016) Mitochondrial aldehyde dehydrogenase 2 deficiency aggravates energy metabolism disturbance and diastolic dysfunction in diabetic mice. J Mol Med (Berl) 94(11):1229–1240

    Article  CAS  Google Scholar 

  56. Yukawa Y et al (2014) Impairment of aldehyde dehydrogenase 2 increases accumulation of acetaldehyde-derived DNA damage in the esophagus after ethanol ingestion. Am J Cancer Res 4(3):279–284

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Amanuma Y et al (2015) Protective role of ALDH2 against acetaldehyde-derived DNA damage in oesophageal squamous epithelium. Sci Rep 5:14142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Nagayoshi H et al (2009) Increased formation of gastric N(2)-ethylidene-2′-deoxyguanosine DNA adducts in aldehyde dehydrogenase-2 knockout mice treated with ethanol. Mutat Res 673(1):74–77

    Article  CAS  PubMed  Google Scholar 

  59. Matsumoto A et al (2008) Effects of 5-week ethanol feeding on the liver of aldehyde dehydrogenase 2 knockout mice. Pharmacogenet Genomics 18(10):847–852

    Article  CAS  PubMed  Google Scholar 

  60. Kim YD et al (2007) Ethanol-induced oxidative DNA damage and CYP2E1 expression in liver tissue of Aldh2 knockout mice. J Occup Health 49(5):363–369

    Article  CAS  PubMed  Google Scholar 

  61. Matsuda T et al (2007) Increased formation of hepatic N2-ethylidene-2′-deoxyguanosine DNA adducts in aldehyde dehydrogenase 2-knockout mice treated with ethanol. Carcinogenesis 28(11):2363–2366

    Article  CAS  PubMed  Google Scholar 

  62. Jin S et al (2015) ALDH2(E487K) mutation increases protein turnover and promotes murine hepatocarcinogenesis. Proc Natl Acad Sci U S A 112(29):9088–9093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Singh S et al (2015) ALDH1B1 is crucial for colon tumorigenesis by modulating Wnt/beta-catenin, notch and PI3K/Akt signaling pathways. PLoS One 10(5):e0121648

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Stagos D et al (2010) Aldehyde dehydrogenase 1B1: molecular cloning and characterization of a novel mitochondrial acetaldehyde-metabolizing enzyme. Drug Metab Dispos 38(10):1679–1687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Husemoen LL et al (2008) The association of ADH and ALDH gene variants with alcohol drinking habits and cardiovascular disease risk factors. Alcohol Clin Exp Res 32(11):1984–1991

    CAS  PubMed  Google Scholar 

  66. Linneberg A et al (2010) Genetic determinants of both ethanol and acetaldehyde metabolism influence alcohol hypersensitivity and drinking behaviour among Scandinavians. Clin Exp Allergy 40(1):123–130

    Article  CAS  PubMed  Google Scholar 

  67. Zhou FC et al (2011) Alteration of gene expression by alcohol exposure at early neurulation. BMC Genomics 12:124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Anastasiou V et al (2016) Aldehyde dehydrogenase activity is necessary for beta cell development and functionality in mice. Diabetologia 59(1):139–150

    Article  CAS  PubMed  Google Scholar 

  69. Ioannou M et al (2013) ALDH1B1 is a potential stem/progenitor marker for multiple pancreas progenitor pools. Dev Biol 374(1):153–163

    Article  CAS  PubMed  Google Scholar 

  70. Singh S et al (2015) ALDH1B1 links alcohol consumption and diabetes. Biochem Biophys Res Commun 463(4):768–773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Singh S et al (2016) Aldehyde dehydrogenase 1B1 as a modulator of pancreatic adenocarcinoma. Pancreas 45(1):117–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Chen Y et al (2011) Aldehyde dehydrogenase 1B1 (ALDH1B1) is a potential biomarker for human colon cancer. Biochem Biophys Res Commun 405(2):173–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Hinoi T et al (2007) Mouse model of colonic adenoma-carcinoma progression based on somatic Apc inactivation. Cancer Res 67(20):9721–9730

    Article  CAS  PubMed  Google Scholar 

  74. Fan X et al (2003) Targeted disruption of Aldh1a1 (Raldh1) provides evidence for a complex mechanism of retinoic acid synthesis in the developing retina. Mol Cell Biol 23(13):4637–4648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ziouzenkova O et al (2007) Retinaldehyde represses adipogenesis and diet-induced obesity. Nat Med 13(6):695–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lassen N et al (2007) Multiple and additive functions of ALDH3A1 and ALDH1A1: cataract phenotype and ocular oxidative damage in Aldh3a1(−/−)/Aldh1a1(−/−) knock-out mice. J Biol Chem 282(35):25668–25676

    Article  CAS  PubMed  Google Scholar 

  77. Forsberg EC et al (2005) Differential expression of novel potential regulators in hematopoietic stem cells. PLoS Genet 1(3):e28

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Smith C et al (2015) The effects of alcohol and aldehyde dehydrogenases on disorders of hematopoiesis. Adv Exp Med Biol 815:349–359

    Article  CAS  PubMed  Google Scholar 

  79. Levi BP et al (2009) Aldehyde dehydrogenase 1a1 is dispensable for stem cell function in the mouse hematopoietic and nervous systems. Blood 113(8):1670–1680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Anderson DW et al (2011) Functional significance of aldehyde dehydrogenase ALDH1A1 to the nigrostriatal dopamine system. Brain Res 1408:81–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Eriksson CJ (2001) The role of acetaldehyde in the actions of alcohol (update 2000). Alcohol Clin Exp Res 25(5 Suppl ISBRA):15S–32S

    Article  CAS  PubMed  Google Scholar 

  82. Ehlers CL et al (2004) Association of ALDH1 promoter polymorphisms with alcohol-related phenotypes in Southwest California Indians. Alcohol Clin Exp Res 28(10):1481–1486

    Article  CAS  PubMed  Google Scholar 

  83. Lind PA, Eriksson CJ, Wilhelmsen KC (2008) The role of aldehyde dehydrogenase-1 (ALDH1A1) polymorphisms in harmful alcohol consumption in a Finnish population. Hum Genomics 3(1):24–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Tomita H et al (2016) Aldehyde dehydrogenase 1A1 in stem cells and cancer. Oncotarget 7(10):11018–11032

    Article  PubMed  PubMed Central  Google Scholar 

  85. Vasiliou V, Puga A, Nebert DW (1992) Negative regulation of the murine cytosolic aldehyde dehydrogenase-3 (Aldh-3c) gene by functional CYP1A1 and CYP1A2 proteins. Biochem Biophys Res Commun 187(1):413–419

    Article  CAS  PubMed  Google Scholar 

  86. Shiao T et al (1999) Four amino acid changes are associated with the Aldh3a1 locus polymorphism in mice which may be responsible for corneal sensitivity to ultraviolet light. Pharmacogenetics 9(2):145–153

    CAS  PubMed  Google Scholar 

  87. Voulgaridou GP et al (2016) Aldehyde dehydrogenase 3A1 promotes multi-modality resistance and alters gene expression profile in human breast adenocarcinoma MCF-7 cells. Int J Biochem Cell Biol 77(Pt A):120–128

    Article  CAS  PubMed  Google Scholar 

  88. Calderaro J et al (2014) ALDH3A1 is overexpressed in a subset of hepatocellular carcinoma characterised by activation of the Wnt/ss-catenin pathway. Virchows Arch 464(1):53–60

    Article  CAS  PubMed  Google Scholar 

  89. Yan J et al (2014) Aldehyde dehydrogenase 3A1 associates with prostate tumorigenesis. Br J Cancer 110(10):2593–2603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Vasiliou V et al (1999) Eukaryotic aldehyde dehydrogenase (ALDH) genes: human polymorphisms, and recommended nomenclature based on divergent evolution and chromosomal mapping. Pharmacogenetics 9(4):421–434

    CAS  PubMed  Google Scholar 

  91. Singh S et al (2013) Aldehyde dehydrogenases in cellular responses to oxidative/electrophilic stress. Free Radic Biol Med 56:89–101

    Article  CAS  PubMed  Google Scholar 

  92. Chen CH, Cruz LA, Mochly-Rosen D (2015) Pharmacological recruitment of aldehyde dehydrogenase 3A1 (ALDH3A1) to assist ALDH2 in acetaldehyde and ethanol metabolism in vivo. Proc Natl Acad Sci U S A 112(10):3074–3079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Nees DW et al (2002) Structurally normal corneas in aldehyde dehydrogenase 3a1-deficient mice. Mol Cell Biol 22(3):849–855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Vasiliou V et al (2013) Aldehyde dehydrogenases: from eye crystallins to metabolic disease and cancer stem cells. Chem Biol Interact 202(1–3):2–10

    Article  CAS  PubMed  Google Scholar 

  95. Estey T et al (2007) ALDH3A1: a corneal crystallin with diverse functions. Exp Eye Res 84(1):3–12

    Article  CAS  PubMed  Google Scholar 

  96. Jackson BC et al (2015) Dead enzymes in the aldehyde dehydrogenase gene family: role in drug metabolism and toxicology. Expert Opin Drug Metab Toxicol 11(12):1839–1847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Husain K et al (2001) Chronic ethanol and nicotine interaction on rat tissue antioxidant defense system. Alcohol 25(2):89–97

    Article  CAS  PubMed  Google Scholar 

  98. Dey A, Cederbaum AI (2006) Alcohol and oxidative liver injury. Hepatology 43(2 Suppl 1):S63–S74

    Article  CAS  PubMed  Google Scholar 

  99. Wu D, Cederbaum AI (2003) Alcohol, oxidative stress, and free radical damage. Alcohol Res Health 27(4):277–284

    PubMed  PubMed Central  Google Scholar 

  100. Dalton TP et al (2004) Genetically altered mice to evaluate glutathione homeostasis in health and disease. Free Radic Biol Med 37(10):1511–1526

    Article  CAS  PubMed  Google Scholar 

  101. Chen Y et al (2013) Glutathione defense mechanism in liver injury: insights from animal models. Food Chem Toxicol 60:38–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Shi ZZ et al (2000) Glutathione synthesis is essential for mouse development but not for cell growth in culture. Proc Natl Acad Sci U S A 97(10):5101–5106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Chen W et al (2007) Enzymatic reduction of oxysterols impairs LXR signaling in cultured cells and the livers of mice. Cell Metab 5(1):73–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Chen Y et al (2010) Oral N-acetylcysteine rescues lethality of hepatocyte-specific Gclc-knockout mice, providing a model for hepatic cirrhosis. J Hepatol 53(6):1085–1094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Yang Y et al (2002) Initial characterization of the glutamate-cysteine ligase modifier subunit Gclm(−/−) knockout mouse. Novel model system for a severely compromised oxidative stress response. J Biol Chem 277(51):49446–49452

    Article  CAS  PubMed  Google Scholar 

  106. Chen Y et al (2012) Glutathione-deficient mice are susceptible to TCDD-induced hepatocellular toxicity but resistant to steatosis. Chem Res Toxicol 25(1):94–100

    Article  CAS  PubMed  Google Scholar 

  107. McConnachie LA et al (2007) Glutamate cysteine ligase modifier subunit deficiency and gender as determinants of acetaminophen-induced hepatotoxicity in mice. Toxicol Sci 99(2):628–636

    Article  CAS  PubMed  Google Scholar 

  108. Chen Y et al (2016) Chronic glutathione depletion confers protection against alcohol-induced steatosis: implication for redox activation of AMP-activated protein kinase pathway. Sci Rep 6:29743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kensler TW, Wakabayashi N, Biswal S (2007) Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol 47:89–116

    Article  CAS  PubMed  Google Scholar 

  110. Lamle J et al (2008) Nuclear factor-eythroid 2-related factor 2 prevents alcohol-induced fulminant liver injury. Gastroenterology 134(4):1159–1168

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Institutes of Health Grants.

AA022057 (VV), AA017754 (VV), EY017963 (VV), EY11490 (VV), AA025093 (YC), and AA023699 (SMM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasilis Vasiliou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Marshall, S. et al. (2018). Engineered Animal Models Designed for Investigating Ethanol Metabolism, Toxicity and Cancer. In: Vasiliou, V., Zakhari, S., Mishra, L., Seitz, H. (eds) Alcohol and Cancer. Advances in Experimental Medicine and Biology, vol 1032. Springer, Cham. https://doi.org/10.1007/978-3-319-98788-0_14

Download citation

Publish with us

Policies and ethics