Skip to main content

Suppressed Fat Mobilization Due to PNPLA3 rs738409 -Associated Liver Damage in Heavy Drinkers: The Liver Damage Feedback Hypothesis

  • Conference paper
  • First Online:
Alcohol and Cancer

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1032))

Abstract

PNPLA3 variant rs738409 has been identified as important progression factor in patients with ALD and NAFLD, the most common liver diseases worldwide. These findings point towards similarities between metabolism of alcohol and fat with regard to the PNPLA3 gene. However, despite many efforts, neither the mechanisms of PNPLA3-related liver damage nor the physiological role of PNPLA3 are fully understood. Based on a large monocentric cohort of Caucasian heavy drinkers we could recently provide evidence that PNPLA3 GG primarily correlated with signs of liver damage (steatohepatitis, ballooning) but less with steatosis. Moreover, upon alcohol withdrawal, PNPLA3 GG carriers showed a delayed inflammation-associated resolution of liver stiffness. In line with the histological findings, hepatic fat content as quantified by CAP (controlled attenuation parameter) did not depend on PNPLA3 status and decreased equally in all genotypes by ca. 30 dB/m during alcohol withdrawal. Preliminary additional analysis from this large cohort indicates that PNPLA3 GG carriers (8.2%) drink significantly less high percentage beverages (23% vs 55%, p < 0.001) but show no metabolic phenotype such as increased weight, BMI or diabetes. On the molecular level, key molecules, important for lipolysis and flow of free fatty acids to the liver were drastically reduced in G carriers. These included the liver-synthesized serum ApoA1, the LD-associated protein perilipin5 and the recently identified hepato-protective transcriptional cofactor transducin beta-like-related 1 (TBLR1). Based on these findings, we here introduce the liver damage feedback hypothesis. Accordingly, PNPLA3-mediated liver damage (e.g. by enhanced metabolic activity) suppresses the mobilization of fat towards the liver at various levels (reduced serum lipid flux to the liver and fat mobilization from peripheric adipose tissues, suppressed hepatocyte fat release and avoidance of high percentage alcohol beverages). Finally, the liver damage feedback hypothesis identifies a novel and central role of liver damage on systemic fat homeostasis, which has not been appreciated so far.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gao B, Bataller R (2011) Alcoholic liver disease: pathogenesis and new therapeutic targets. Gastroenterology 141:1572–1585

    Article  CAS  Google Scholar 

  2. Seitz HK, Mueller S (2009) Alcoholic liver disease. In: Dancygier H (ed) Clinical hepatology: principles and practice of hepatobiliary diseases. Springer, Heidelberg/Dordrecht/Londong/New York, pp 1111–1152

    Google Scholar 

  3. O’Shea RS, Dasarathy S, McCullough AJ, Practice Guideline Committee of the American Association for the Study of Liver D, Practice Parameters Committee of the American College of G (2010) Alcoholic liver disease. Hepatology 51:307–328

    Article  Google Scholar 

  4. Monto A, Patel K, Bostrom A, Pianko S, Pockros P, McHutchison JG, Wright TL (2004) Risks of a range of alcohol intake on hepatitis C-related fibrosis. Hepatology 39:826–834

    Article  Google Scholar 

  5. Mueller S, Millonig G, Seitz HK (2009) Alcoholic liver disease and hepatitis C: a frequently underestimated combination. World J Gastroenterol 15:3462–3471

    Article  CAS  Google Scholar 

  6. Rehm J, Samokhvalov AV, Shield KD (2013) Global burden of alcoholic liver diseases. J Hepatol 59:160–168

    Article  Google Scholar 

  7. Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, Abraham J et al (2012) Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the global burden of disease study 2010. Lancet 380:2095–2128

    Article  Google Scholar 

  8. Reed T, Page WF, Viken RJ, Christian JC (1996) Genetic predisposition to organ-specific endpoints of alcoholism. Alcohol Clin Exp Res 20:1528–1533

    Article  CAS  Google Scholar 

  9. Hrubec Z, Omenn GS (1981) Evidence of genetic predisposition to alcoholic cirrhosis and psychosis: twin concordances for alcoholism and its biological end points by zygosity among male veterans. Alcohol Clin Exp Res 5:207–215

    Article  CAS  Google Scholar 

  10. Sato N, Lindros KO, Baraona E, Ikejima K, Mezey E, Jarvelainen HA, Ramchandani VA (2001) Sex difference in alcohol-related organ injury. Alcohol Clin Exp Res 25:40S–45S

    Article  CAS  Google Scholar 

  11. Stinson FS, Grant BF, Dufour MC (2001) The critical dimension of ethnicity in liver cirrhosis mortality statistics. Alcohol Clin Exp Res 25:1181–1187

    Article  CAS  Google Scholar 

  12. Stickel F, Hampe J (2012) Genetic determinants of alcoholic liver disease. Gut 61:150–159

    Article  CAS  Google Scholar 

  13. Syvanen AC (2001) Accessing genetic variation: genotyping single nucleotide polymorphisms. Nat Rev Genet 2:930–942

    Article  CAS  Google Scholar 

  14. Sachidanandam R, Weissman D, Schmidt SC, Kakol JM, Stein LD, Marth G, Sherry S et al (2001) A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 409:928–933

    Article  CAS  Google Scholar 

  15. Bataller R, North KE, Brenner DA (2003) Genetic polymorphisms and the progression of liver fibrosis: a critical appraisal. Hepatology 37:493–503

    Article  CAS  Google Scholar 

  16. Manolio TA (2010) Genomewide association studies and assessment of the risk of disease. N Engl J Med 363:166–176

    Article  CAS  Google Scholar 

  17. Yuan X, Waterworth D, Perry JR, Lim N, Song K, Chambers JC, Zhang W et al (2008) Population-based genome-wide association studies reveal six loci influencing plasma levels of liver enzymes. Am J Hum Genet 83:520–528

    Article  CAS  Google Scholar 

  18. Romeo S, Kozlitina J, Xing C, Pertsemlidis A, Cox D, Pennacchio LA, Boerwinkle E et al (2008) Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat Genet 40:1461–1465

    Article  CAS  Google Scholar 

  19. Romeo S, Sentinelli F, Cambuli VM, Incani M, Congiu T, Matta V, Pilia S et al (2010) The 148M allele of the PNPLA3 gene is associated with indices of liver damage early in life. J Hepatol 53:335–338

    Article  CAS  Google Scholar 

  20. Anstee QM, Day CP (2013) The genetics of NAFLD. Nat Rev Gastroenterol Hepatol 10:645–655

    Article  CAS  Google Scholar 

  21. Sookoian S, Castano GO, Burgueno AL, Gianotti TF, Rosselli MS, Pirola CJ (2009) A nonsynonymous gene variant in the adiponutrin gene is associated with nonalcoholic fatty liver disease severity. J Lipid Res 50:2111–2116

    Article  CAS  Google Scholar 

  22. Singal AG, Manjunath H, Yopp AC, Beg MS, Marrero JA, Gopal P, Waljee AK (2014) The effect of PNPLA3 on fibrosis progression and development of hepatocellular carcinoma: a meta-analysis. Am J Gastroenterol 109:325–334

    Article  CAS  Google Scholar 

  23. Tian C, Stokowski RP, Kershenobich D, Ballinger DG, Hinds DA (2010) Variant in PNPLA3 is associated with alcoholic liver disease. Nat Genet 42:21–23

    Article  CAS  Google Scholar 

  24. Stickel F, Buch S, Lau K, Schwabedissen HMZ, Berg T, Ridinger M, Rietschel M et al (2011) Genetic variation in the PNPLA3 gene is associated with alcoholic liver injury in Caucasians. Hepatology 53:86–95

    Article  CAS  Google Scholar 

  25. Trepo E, Franchimont D, Moreno C (2011) Association of PNPLA3 (rs738409 C>G) with liver damage in liver diseases: one step closer to personalized medicine? Pers Med 8:595–597

    Article  CAS  Google Scholar 

  26. Rausch V, Peccerella T, Lackner C, Yagmur E, Seitz HK, Longerich T, Mueller S (2016) Primary liver injury and delayed resolution of liver stiffness after alcohol detoxification in heavy drinkers with the PNPLA3 variant I148M. World J Hepatol 8:1547–1556

    Article  Google Scholar 

  27. Seth D, Daly AK, Haber PS, Day CP (2010) Patatin-like phospholipase domain containing 3: a case in point linking genetic susceptibility for alcoholic and nonalcoholic liver disease. Hepatology 51:1463–1465

    Article  Google Scholar 

  28. Stickel F, Hampe J, Trepo E, Datz C, Romeo S (2015) PNPLA3 genetic variation in alcoholic steatosis and liver disease progression. Hepatobiliary Surg Nutr 4:152–160

    PubMed  PubMed Central  Google Scholar 

  29. Trepo E, Gustot T, Degre D, Lemmers A, Verset L, Demetter P, Ouziel R et al (2011) Common polymorphism in the PNPLA3/adiponutrin gene confers higher risk of cirrhosis and liver damage in alcoholic liver disease. J Hepatol 55:906–912

    Article  CAS  Google Scholar 

  30. Falleti E, Fabris C, Cmet S, Cussigh A, Bitetto D, Fontanini E, Fornasiere E et al (2011) PNPLA3 rs738409C/G polymorphism in cirrhosis: relationship with the aetiology of liver disease and hepatocellular carcinoma occurrence. Liver Int 31:1137–1143

    Article  CAS  Google Scholar 

  31. Rosendahl J, Tonjes A, Schleinitz D, Kovacs P, Wiegand J, Ruffert C, Jesinghaus M et al (2012) A common variant of PNPLA3 (p.I148M) is not associated with alcoholic chronic pancreatitis. PLoS One 7:e29433

    Article  CAS  Google Scholar 

  32. Dutta AK (2013) Genetic factors affecting susceptibility to alcoholic liver disease in an Indian population. Ann Hepatol 12:901–907

    CAS  PubMed  Google Scholar 

  33. Way MJ, McQuillin A, Gurling H, Morgan M (2013) The PNPLA3 I148m mutation significantly increases the risk of developing alcoholrelated cirrhosis in alcohol dependent individuals. J Hepatol 58:S563–S564

    Article  Google Scholar 

  34. Chamorro AJ, Torres JL, Miron-Canelo JA, Gonzalez-Sarmiento R, Laso FJ, Marcos M (2014) Systematic review with meta-analysis: the I148M variant of patatin-like phospholipase domain-containing 3 gene (PNPLA3) is significantly associated with alcoholic liver cirrhosis. Aliment Pharmacol Ther 40:571–581

    Article  CAS  Google Scholar 

  35. Stickel F, Buch S, Lau K, Meyer zu Schwabedissen H, Berg T, Ridinger M, Rietschel M et al (2011) Genetic variation in the PNPLA3 gene is associated with alcoholic liver injury in caucasians. Hepatology 53:86–95

    Article  CAS  Google Scholar 

  36. Nguyen-Khac E, Houchi H, Dreher M, Herpe Y, Naassila M (2011) Is PNPLA3 polymorphism involved in severe acute alcoholic hepatitis. Hepatology 54

    Google Scholar 

  37. Takeuchi Y, Ikeda F, Moritou Y, Hagihara H, Yasunaka T, Kuwaki K, Miyake Y et al (2013) The impact of patatin-like phospholipase domain-containing protein 3 polymorphism on hepatocellular carcinoma prognosis. J Gastroenterol 48:405–412

    Article  CAS  Google Scholar 

  38. Nischalke HD, Berger C, Luda C, Berg T, Muller T, Grunhage F, Lammert F et al (2011) The PNPLA3 rs738409 148M/M genotype is a risk factor for liver cancer in alcoholic cirrhosis but shows no or weak association in hepatitis C cirrhosis. PLoS One 6:e27087

    Article  CAS  Google Scholar 

  39. Hamza S, Petit JM, Masson D, Jooste V, Binquet C, Sgro C, Guiu B et al (2012) PNPLA 3 RS738409 GG homozygote status is associated with increased risk of hepatocellular carcinoma in cirrhotic patients. J Hepatol 56:S281–S282

    Article  Google Scholar 

  40. Trepo E, Guyot E, Ganne-Carrie N, Degre D, Gustot T, Franchimont D, Sutton A et al (2012) PNPLA3 (rs738409 C>G) is a common risk variant associated with hepatocellular carcinoma in alcoholic cirrhosis. Hepatology 55:1307–1308

    Article  CAS  Google Scholar 

  41. Guyot E, Sutton A, Rufat P, Laguillier C, Mansouri A, Moreau R, Ganne-Carrie N et al (2013) PNPLA3 rs738409, hepatocellular carcinoma occurrence and risk model prediction in patients with cirrhosis. J Hepatol 58:312–318

    Article  CAS  Google Scholar 

  42. Salameh H, Raff E, Erwin A, Seth D, Nischalke HD, Falleti E, Burza MA et al (2015) PNPLA3 gene polymorphism is associated with predisposition to and severity of alcoholic liver disease. Am J Gastroenterol 110:846–856

    Article  CAS  Google Scholar 

  43. Trepo E, Nahon P, Bontempi G, Valenti L, Falleti E, Nischalke HD, Hamza S et al (2014) Association between the PNPLA3 (rs738409 C>G) variant and hepatocellular carcinoma: evidence from a meta-analysis of individual participant data. Hepatology 59:2170–2177

    Article  CAS  Google Scholar 

  44. Nischalke HD, Lutz P, Kramer B, Sohne J, Muller T, Rosendahl J, Fischer J et al (2014) A common polymorphism in the NCAN gene is associated with hepatocellular carcinoma in alcoholic liver disease. J Hepatol 61:1073–1079

    Article  CAS  Google Scholar 

  45. Friedrich K, Wannhoff A, Kattner S, Brune M, Hov JR, Weiss KH, Antoni C et al (2014) PNPLA3 in end-stage liver disease: alcohol consumption, hepatocellular carcinoma development, and transplantation-free survival. J Gastroenterol Hepatol 29:1477–1484

    Article  CAS  Google Scholar 

  46. Falleti E, Cussigh A, Cmet S, Fabris C, Toniutto P (2016) PNPLA3 rs738409 and TM6SF2 rs58542926 variants increase the risk of hepatocellular carcinoma in alcoholic cirrhosis. Dig Liver Dis 48:69–75

    Article  CAS  Google Scholar 

  47. Wilson PA, Gardner SD, Lambie NM, Commans SA, Crowther DJ (2006) Characterization of the human patatin-like phospholipase family. J Lipid Res 47:1940–1949

    Article  CAS  Google Scholar 

  48. Zimmermann R, Strauss JG, Haemmerle G, Schoiswohl G, Birner-Gruenberger R, Riederer M, Lass A et al (2004) Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science 306:1383–1386

    Article  CAS  Google Scholar 

  49. Huang YC, Cohen JC, Hobbs HH (2011) Expression and characterization of a PNPLA3 protein isoform (I148M) associated with nonalcoholic fatty liver disease. J Biol Chem 286:37085–37093

    Article  CAS  Google Scholar 

  50. Huang Y, He S, Li JZ, Seo YK, Osborne TF, Cohen JC, Hobbs HH (2010) A feed-forward loop amplifies nutritional regulation of PNPLA3. Proc Natl Acad Sci U S A 107:7892–7897

    Article  CAS  Google Scholar 

  51. Lake AC, Sun Y, Li JL, Kim JE, Johnson JW, Li D, Revett T et al (2005) Expression, regulation, and triglyceride hydrolase activity of Adiponutrin family members. J Lipid Res 46:2477–2487

    Article  CAS  Google Scholar 

  52. He S, McPhaul C, Li JZ, Garuti R, Kinch L, Grishin NV, Cohen JC et al (2010) A sequence variation (I148M) in PNPLA3 associated with nonalcoholic fatty liver disease disrupts triglyceride hydrolysis. J Biol Chem 285:6706–6715

    Article  CAS  Google Scholar 

  53. Pirazzi C, Valenti L, Motta BM, Pingitore P, Hedfalk K, Mancina RM, Burza MA et al (2014) PNPLA3 has retinyl-palmitate lipase activity in human hepatic stellate cells. Hum Mol Genet 23:4077–4085

    Article  CAS  Google Scholar 

  54. Baulande S, Lasnier F, Lucas M, Pairault J (2001) Adiponutrin, a transmembrane protein corresponding to a novel dietary- and obesity-linked mRNA specifically expressed in the adipose lineage. J Biol Chem 276:33336–33344

    Article  CAS  Google Scholar 

  55. Chamoun Z, Vacca F, Parton RG, Gruenberg J (2013) PNPLA3/adiponutrin functions in lipid droplet formation. Biol Cell 105:219–233

    Article  CAS  Google Scholar 

  56. Moldes M, Beauregard G, Faraj M, Peretti N, Ducluzeau PH, Laville M, Rabasa-Lhoret R et al (2006) Adiponutrin gene is regulated by insulin and glucose in human adipose tissue. Eur J Endocrinol 155:461–468

    Article  CAS  Google Scholar 

  57. Johansson LE, Hoffstedt J, Parikh H, Carlsson E, Wabitsch M, Bondeson AG, Hedenbro J et al (2006) Variation in the adiponutrin gene influences its expression and associates with obesity. Diabetes 55:826–833

    Article  CAS  Google Scholar 

  58. Jenkins CM, Mancuso DJ, Yan W, Sims HF, Gibson B, Gross RW (2004) Identification, cloning, expression, and purification of three novel human calcium-independent phospholipase A2 family members possessing triacylglycerol lipase and acylglycerol transacylase activities. J Biol Chem 279:48968–48975

    Article  CAS  Google Scholar 

  59. Pingitore P, Pirazzi C, Mancina RM, Motta BM, Indiveri C, Pujia A, Montalcini T et al (2014) Recombinant PNPLA3 protein shows triglyceride hydrolase activity and its I148M mutation results in loss of function. Biochim Biophys Acta 1841:574–580

    Article  CAS  Google Scholar 

  60. Ruhanen H, Perttila JD, Holtta-Vuori MD, Zhou YD, Yki-Jarvinen HP, Ikonen EP, Kakela RD et al (2014) PNPLA3 mediates hepatocyte triacylglycerol remodelling. J Lipid Res 55(4):739–46. https://doi.org/10.1194/jlr.M046607. Epub 2014 Feb 7.

    Article  CAS  Google Scholar 

  61. Pirazzi C, Adiels M, Burza MA, Mancina RM, Levin M, Stahlman M, Taskinen MR et al (2012) Patatin-like phospholipase domain-containing 3 (PNPLA3) I148M (rs738409) affects hepatic VLDL secretion in humans and in vitro. J Hepatol 57:1276–1282

    Article  CAS  Google Scholar 

  62. Olofsson SO, Asp L, Boren J (1999) The assembly and secretion of apolipoprotein B-containing lipoproteins. Curr Opin Lipidol 10:341–346

    Article  CAS  Google Scholar 

  63. Sen D, Dagdelen S, Erbas T (2007) Hepatosteatosis with hypobetalipoproteinemia. J Natl Med Assoc 99:284–286

    PubMed  PubMed Central  Google Scholar 

  64. Perttila J, Huaman-Samanez C, Caron S, Tanhuanpaa K, Staels B, Yki-Jarvinen H, Olkkonen VM (2012) PNPLA3 is regulated by glucose in human hepatocytes, and its I148M mutant slows down triglyceride hydrolysis. Am J Physiol Endocrinol Metab 302:E1063–E1069

    Article  CAS  Google Scholar 

  65. Newcomer ME, Ong DE (2000) Plasma retinol binding protein: structure and function of the prototypic lipocalin. Biochim Biophys Acta 1482:57–64

    Article  CAS  Google Scholar 

  66. Basantani MK, Sitnick MT, Cai L, Brenner DS, Gardner NP, Li JZ, Schoiswohl G et al (2011) Pnpla3/Adiponutrin deficiency in mice does not contribute to fatty liver disease or metabolic syndrome. J Lipid Res 52:318–329

    Article  CAS  Google Scholar 

  67. Chen W, Chang B, Li L, Chan L (2010) Patatin-like phospholipase domain-containing 3/adiponutrin deficiency in mice is not associated with fatty liver disease. Hepatology 52:1134–1142

    Article  CAS  Google Scholar 

  68. Shimomura I, Bashmakov Y, Ikemoto S, Horton JD, Brown MS, Goldstein JL (1999) Insulin selectively increases SREBP-1c mRNA in the livers of rats with streptozotocin-induced diabetes. Proc Natl Acad Sci U S A 96:13656–13661

    Article  CAS  Google Scholar 

  69. Kumashiro N, Yoshimura T, Cantley JL, Majumdar SK, Guebre-Egziabher F, Kursawe R, Vatner DF et al (2013) Role of patatin-like phospholipase domain-containing 3 on lipid-induced hepatic steatosis and insulin resistance in rats. Hepatology 57:1763–1772

    Article  CAS  Google Scholar 

  70. Palmer CN, Maglio C, Pirazzi C, Burza MA, Adiels M, Burch L, Donnelly LA et al (2012) Paradoxical lower serum triglyceride levels and higher type 2 diabetes mellitus susceptibility in obese individuals with the PNPLA3 148M variant. PLoS One 7:e39362

    Article  CAS  Google Scholar 

  71. Smagris E, Basuray S, Li J, Huang Y, Lai KM, Gromada J, Cohen JC et al (2015) Pnpla3I148M knockin mice accumulate PNPLA3 on lipid droplets and develop hepatic steatosis. Hepatology 61:108–118

    Article  CAS  Google Scholar 

  72. Mancina RM, Matikainen N, Maglio C, Soderlund S, Lundbom N, Hakkarainen A, Rametta R et al (2015) Paradoxical dissociation between hepatic fat content and de novo lipogenesis due to PNPLA3 sequence variant. J Clin Endocrinol Metab 100:E821–E825

    Article  Google Scholar 

  73. Speliotes EK, Butler JL, Palmer CD, Voight BF, Consortium G, Consortium MI, Nash CRN et al (2010) PNPLA3 variants specifically confer increased risk for histologic nonalcoholic fatty liver disease but not metabolic disease. Hepatology 52:904–912

    Article  CAS  Google Scholar 

  74. Wang H, Sreenivasan U, Gong DW, O'Connell KA, Dabkowski ER, Hecker PA, Ionica N et al (2013) Cardiomyocyte-specific perilipin 5 overexpression leads to myocardial steatosis and modest cardiac dysfunction. J Lipid Res 54:953–965

    Article  CAS  Google Scholar 

  75. Pollak NM, Schweiger M, Jaeger D, Kolb D, Kumari M, Schreiber R, Kolleritsch S et al (2013) Cardiac-specific overexpression of perilipin 5 provokes severe cardiac steatosis via the formation of a lipolytic barrier. J Lipid Res 54:1092–1102

    Article  CAS  Google Scholar 

  76. Buch S, Stickel F, Trepo E, Way M, Herrmann A, Nischalke HD, Brosch M et al (2015) A genome-wide association study confirms PNPLA3 and identifies TM6SF2 and MBOAT7 as risk loci for alcohol-related cirrhosis. Nat Genet 47:1443–1448

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vanessa Rausch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rausch, V., Mueller, S. (2018). Suppressed Fat Mobilization Due to PNPLA3 rs738409 -Associated Liver Damage in Heavy Drinkers: The Liver Damage Feedback Hypothesis. In: Vasiliou, V., Zakhari, S., Mishra, L., Seitz, H. (eds) Alcohol and Cancer. Advances in Experimental Medicine and Biology, vol 1032. Springer, Cham. https://doi.org/10.1007/978-3-319-98788-0_12

Download citation

Publish with us

Policies and ethics