Skip to main content

Developmental Morphogens & Recovery from Alcoholic Liver Disease

  • Conference paper
  • First Online:
Alcohol and Cancer

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1032))

Abstract

Alcohol-induced steatohepatitis (ASH) increases the risk for both clinically-severe acute alcoholic hepatitis and eventual cirrhosis. The mechanisms that control ASH pathogenesis and progression are unclear but processes that regulate liver cell plasticity seem to be critically involved. In injured adult livers, morphogenic signaling pathways that modulate cell fate decisions during fetal development and in adult liver progenitors become reactivated. Overly-exuberant activation of such morphogenic signaling causes dysregulated liver repair and increases short- and long-term mortality by promoting acute liver failure, as well as progressive fibrosis. Hence, these pathways may be novel therapeutic targets to optimize liver cell reprogramming and prevent defective regenerative responses that cause acute liver failure and cirrhosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Masarone M, Rosato V, Dallio M, Abenavoli L, Federico A, Loguercio C, Persico M (2016) Epidemiology and natural history of alcoholic liver disease. Rev Recent Clin Trials 11:167–174

    Article  Google Scholar 

  2. Singh S, Murad MH, Chandar AK, Bongiorno CM, Singal AK, Atkinson SR, Thursz MR et al (2015) Comparative effectiveness of pharmacological interventions for severe alcoholic hepatitis: a systematic review and network meta-analysis. Gastroenterology 149:958–970 e912

    Article  CAS  Google Scholar 

  3. Jung Y, Witek RP, Syn WK, Choi SS, Omenetti A, Premont R, Guy CD et al (2010) Signals from dying hepatocytes trigger growth of liver progenitors. Gut 59:655–665

    Article  CAS  Google Scholar 

  4. Higashi T, Friedman SL, Hoshida Y (2017) Hepatic stellate cells as key target in liver fibrosis. Adv Drug Deliv Rev 121:27–42

    Article  CAS  Google Scholar 

  5. Sicklick JK, Li YX, Choi SS, Qi Y, Chen W, Bustamante M, Huang J et al (2005) Role for hedgehog signaling in hepatic stellate cell activation and viability. Lab Investig 85:1368–1380

    Article  CAS  Google Scholar 

  6. Kramann R, Schneider RK, DiRocco DP, Machado F, Fleig S, Bondzie PA, Henderson JM et al (2015) Perivascular Gli1+ progenitors are key contributors to injury-induced organ fibrosis. Cell Stem Cell 16:51–66

    Article  CAS  Google Scholar 

  7. Kordes C, Sawitza I, Gotze S, Schumacher E, Haussinger D (2015) Beyond fibrosis: stellate cells as liver stem cells. Z Gastroenterol 53:1425–1431

    Article  CAS  Google Scholar 

  8. Pires-daSilva A, Sommer RJ (2003) The evolution of signalling pathways in animal development. Nat Rev Genet 4:39–49

    Article  CAS  Google Scholar 

  9. Guerrero I, Chiang C (2007) A conserved mechanism of Hedgehog gradient formation by lipid modifications. Trends Cell Biol 17:1–5

    Article  CAS  Google Scholar 

  10. Therond PP (2012) Release and transportation of Hedgehog molecules. Curr Opin Cell Biol 24:173–180

    Article  CAS  Google Scholar 

  11. Steinhauer J, Treisman JE (2009) Lipid-modified morphogens: functions of fats. Curr Opin Genet Dev 19:308–314

    Article  CAS  Google Scholar 

  12. Seijo-Barandiaran I, Guerrero I, Bischoff M (2015) In Vivo imaging of Hedgehog transport in Drosophila Epithelia. Methods Mol Biol 1322:9–18

    Article  Google Scholar 

  13. Powers S, Mu D (2008) Genetic similarities between organogenesis and tumorigenesis of the lung. Cell Cycle 7:200–204

    Article  CAS  Google Scholar 

  14. Chari NS, McDonnell TJ (2007) The sonic hedgehog signaling network in development and neoplasia. Adv Anat Pathol 14:344–352

    Article  CAS  Google Scholar 

  15. Choi SS, Omenetti A, Witek RP, Moylan CA, Syn WK, Jung Y, Yang L et al (2009) Hedgehog pathway activation and epithelial-to-mesenchymal transitions during myofibroblastic transformation of rat hepatic cells in culture and cirrhosis. Am J Physiol Gastrointest Liver Physiol 297:G1093–G1106

    Article  CAS  Google Scholar 

  16. Yang L, Wang Y, Mao H, Fleig S, Omenetti A, Brown KD, Sicklick JK et al (2008) Sonic hedgehog is an autocrine viability factor for myofibroblastic hepatic stellate cells. J Hepatol 48:98–106

    Article  CAS  Google Scholar 

  17. Philips GM, Chan IS, Swiderska M, Schroder VT, Guy C, Karaca GF, Moylan C et al (2011) Hedgehog signaling antagonist promotes regression of both liver fibrosis and hepatocellular carcinoma in a murine model of primary liver cancer. PLoS One 6:e23943

    Article  CAS  Google Scholar 

  18. Pratap A, Singh S, Mundra V, Yang N, Panakanti R, Eason JD, Mahato RI (2012) Attenuation of early liver fibrosis by pharmacological inhibition of smoothened receptor signaling. J Drug Target 20:770–782

    Article  CAS  Google Scholar 

  19. Michelotti GA, Xie G, Swiderska M, Choi SS, Karaca G, Kruger L, Premont R et al (2013) Smoothened is a master regulator of adult liver repair. J Clin Invest 123:2380–2394

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Hirsova P, Ibrahim SH, Bronk SF, Yagita H, Gores GJ (2013) Vismodegib suppresses TRAIL-mediated liver injury in a mouse model of nonalcoholic steatohepatitis. PLoS One 8:e70599

    Article  CAS  Google Scholar 

  21. Ochoa B, Syn WK, Delgado I, Karaca GF, Jung Y, Wang J, Zubiaga AM et al (2010) Hedgehog signaling is critical for normal liver regeneration after partial hepatectomy in mice. Hepatology 51:1712–1723

    Article  CAS  Google Scholar 

  22. Swiderska-Syn M, Syn WK, Xie G, Kruger L, Machado MV, Karaca G, Michelotti GA et al (2014) Myofibroblastic cells function as progenitors to regenerate murine livers after partial hepatectomy. Gut 63:1333–1344

    Article  CAS  Google Scholar 

  23. Swiderska-Syn M, Xie G, Michelotti GA, Jewell ML, Premont RT, Syn WK, Diehl AM (2016) Hedgehog regulates yes-associated protein 1 in regenerating mouse liver. Hepatology 64:232–244

    Article  CAS  Google Scholar 

  24. Yimlamai D, Christodoulou C, Galli GG, Yanger K, Pepe-Mooney B, Gurung B, Shrestha K et al (2014) Hippo pathway activity influences liver cell fate. Cell 157:1324–1338

    Article  CAS  Google Scholar 

  25. Su T, Bondar T, Zhou X, Zhang C, He H, Medzhitov R (2015) Two-signal requirement for growth-promoting function of Yap in hepatocytes. Elife 4

    Google Scholar 

  26. Fitamant J, Kottakis F, Benhamouche S, Tian HS, Chuvin N, Parachoniak CA, Nagle JM et al (2015) YAP inhibition restores Hepatocyte differentiation in advanced HCC, Leading to tumor regression. Cell Rep

    Google Scholar 

  27. Lee DH, Park JO, Kim TS, Kim SK, Kim TH, Kim MC, Park GS et al (2016) LATS-YAP/TAZ controls lineage specification by regulating TGFbeta signaling and Hnf4alpha expression during liver development. Nat Commun 7:11961

    Article  CAS  Google Scholar 

  28. Yi J, Lu L, Yanger K, Wang W, Sohn BH, Stanger BZ, Zhang M et al (2016) Large tumor suppressor homologs 1 and 2 regulate mouse liver progenitor cell proliferation and maturation through antagonism of the coactivators YAP and TAZ. Hepatology 64:1757–1772

    Article  CAS  Google Scholar 

  29. Jung Y, Brown KD, Witek RP, Omenetti A, Yang L, Vandongen M, Milton RJ et al (2008) Accumulation of hedgehog-responsive progenitors parallels alcoholic liver disease severity in mice and humans. Gastroenterology 134:1532–1543

    Article  CAS  Google Scholar 

  30. Syn WK, Jung Y, Omenetti A, Abdelmalek M, Guy CD, Yang L, Wang J et al (2009) Hedgehog-mediated epithelial-to-mesenchymal transition and fibrogenic repair in nonalcoholic fatty liver disease. Gastroenterology 137:1478–1488 e1478

    Article  CAS  Google Scholar 

  31. Sancho-Bru P, Altamirano J, Rodrigo-Torres D, Coll M, Millan C, Jose Lozano J, Miquel R et al (2012) Liver progenitor cell markers correlate with liver damage and predict short-term mortality in patients with alcoholic hepatitis. Hepatology 55:1931–1941

    Article  CAS  Google Scholar 

  32. Affo S, Dominguez M, Lozano JJ, Sancho-Bru P, Rodrigo-Torres D, Morales-Ibanez O, Moreno M et al (2013) Transcriptome analysis identifies TNF superfamily receptors as potential therapeutic targets in alcoholic hepatitis. Gut 62:452–460

    Article  CAS  Google Scholar 

  33. Karaca G, Swiderska-Syn M, Xie G, Syn WK, Kruger L, Machado MV, Garman K et al (2014) TWEAK/Fn14 signaling is required for liver regeneration after partial hepatectomy in mice. PLoS One 9:e83987

    Article  Google Scholar 

  34. Dubuquoy L, Louvet A, Lassailly G, Truant S, Boleslawski E, Artru F, Maggiotto F et al (2015) Progenitor cell expansion and impaired hepatocyte regeneration in explanted livers from alcoholic hepatitis. Gut 64:1949–1960

    Article  CAS  Google Scholar 

  35. Kharkar PS (2017) Cancer Stem Cell (CSC) inhibitors: a review of recent patents (2012–2015). Expert Opin Ther Pat 27:753–761

    Article  CAS  Google Scholar 

  36. Shukla G, Khera HK, Srivastava AK, Khare P, Patidar R, Saxena R (2017) Therapeutic potential, challenges and future perspective of Cancer stem cells in translational oncology: a critical review. Curr Stem Cell Res Ther 12:207–224

    Article  CAS  Google Scholar 

  37. Cheng E, Armstrong CL, Galisteo R, Winkles JA (2013) TWEAK/Fn14 Axis-targeted therapeutics: moving basic science discoveries to the clinic. Front Immunol 4:473

    PubMed  PubMed Central  Google Scholar 

  38. McDonald OG, Wu H, Timp W, Doi A, Feinberg AP (2011) Genome-scale epigenetic reprogramming during epithelial-to-mesenchymal transition. Nat Struct Mol Biol 18:867–874

    Article  CAS  Google Scholar 

  39. Kidder BL, Hu G, Yu ZX, Liu C, Zhao K (2013) Extended self-renewal and accelerated reprogramming in the absence of Kdm5b. Mol Cell Biol 33:4793–4810

    Article  CAS  Google Scholar 

  40. Sahu M, Mallick B (2016) An integrative approach predicted co-expression sub-networks regulating properties of stem cells and differentiation. Comput Biol Chem 64:250–262

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Mae Diehl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Diehl, A.M. (2018). Developmental Morphogens & Recovery from Alcoholic Liver Disease. In: Vasiliou, V., Zakhari, S., Mishra, L., Seitz, H. (eds) Alcohol and Cancer. Advances in Experimental Medicine and Biology, vol 1032. Springer, Cham. https://doi.org/10.1007/978-3-319-98788-0_11

Download citation

Publish with us

Policies and ethics