Advertisement

Triclosan

  • Günter KampfEmail author
Chapter

Abstract

Triclosan at 1% is mostly bactericidal (3 min) and yeasticidal (1 min). A mycobactericidal activity is unknown. Epidemiological cut-off values to determine acquired resistance have been proposed for E. faecium (32 mg/l), C. albicans and E. faecalis (16 mg/l), Salmonella spp. (8 mg/l), E. coli and K. pneumoniae (2 mg/l), Enterobacter spp. (1 mg/l) and S. aureus (0.5 mg/l). Elevated MIC values suggestive of triclosan resistance have been reported among numerous species including P. aeruginosa (≤2,500 mg/l), E. coli (≤1,000 mg/l), S. marcescens (≤232 mg/l) and Enterococcus spp. (≤128 mg/l). Specific resistance mechanisms are occasionally known, e.g. efflux pumps, membrane changes or bacterial use of triclosan as the sole carbon source. Cross-tolerance to chlorhexidine, benzalkonium chloride, hexachlorophene and selected antibiotics can occur in numerous species. Low-level exposure leads to no MIC change in 34 species, a weak MIC change in 25 species and a strong MIC change in 27 species (13 of them being stable) resulting in MIC values as high as 8,000 mg/l (E. coli) or 3,000 mg/l (Salmonella spp.). Horizontal gene transfer can be induced in E. coli. Bacterial biofilm formation is rather inhibited than enhanced by triclosan. Triclosan does not remove biofilm.

References

  1. 1.
    Abuzaid A, Hamouda A, Amyes SG (2012) Klebsiella pneumoniae susceptibility to biocides and its association with cepA, qacDeltaE and qacE efflux pump genes and antibiotic resistance. J Hosp Infect 81(2):87–91.  https://doi.org/10.1016/j.jhin.2012.03.003CrossRefPubMedGoogle Scholar
  2. 2.
    Andrade E, Weidlich P, Angst PD, Gomes SC, Oppermann RV (2015) Efficacy of a triclosan formula in controlling early subgingival biofilm formation: a randomized trial. Braz Oral Res 29.  https://doi.org/10.1590/1807-3107bor-2015.vol29.0065
  3. 3.
    Arioli S, Elli M, Ricci G, Mora D (2013) Assessment of the susceptibility of lactic acid bacteria to biocides. Int J Food Microbiol 163(1):1–5.  https://doi.org/10.1016/j.ijfoodmicro.2013.02.002CrossRefPubMedGoogle Scholar
  4. 4.
    Assadian O, Wehse K, Hubner NO, Koburger T, Bagel S, Jethon F, Kramer A (2011) Minimum inhibitory (MIC) and minimum microbicidal concentration (MMC) of polihexanide and triclosan against antibiotic sensitive and resistant Staphylococcus aureus and Escherichia coli strains. GMS Krankenhaushygiene interdisziplinar 6(1):Doc06.  https://doi.org/10.3205/dgkh000163
  5. 5.
    Barroso JM (2014) COMMISSION IMPLEMENTING DECISION of 24 April 2014 on the non-approval of certain biocidal active substances pursuant to Regulation (EU) No 528/2012 of the European Parliament and of the Council. Off J Eur Union 57(L 124):27–29Google Scholar
  6. 6.
    Barry MA, Craven DE, Goularte TA, Lichtenberg DA (1984) Serratia marcescens contamination of antiseptic soap containing triclosan: implications for nosocomial infections. Infect Control 5(9):427–430CrossRefPubMedGoogle Scholar
  7. 7.
    Bartzokas CA, Gibson MF, Graham R, Pinder DC (1983) A comparison of triclosan and chlorhexidine preparations with 60 per cent isopropyl alcohol for hygienic hand disinfection. J Hosp Infect 4:245–255CrossRefPubMedGoogle Scholar
  8. 8.
    Bayston R, Ashraf W, Smith T (2007) Triclosan resistance in methicillin-resistant Staphylococcus aureus expressed as small colony variants: a novel mode of evasion of susceptibility to antiseptics. J Antimicrob Chemother 59(5):848–853.  https://doi.org/10.1093/jac/dkm031CrossRefPubMedGoogle Scholar
  9. 9.
    Braoudaki M, Hilton AC (2004) Adaptive resistance to biocides in Salmonella enterica and Escherichia coli O157 and cross-resistance to antimicrobial agents. J Clin Microbiol 42(1):73–78CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Braoudaki M, Hilton AC (2004) Low level of cross-resistance between triclosan and antibiotics in Escherichia coli K-12 and E. coli O55 compared to E. coli O157. FEMS Microbiol Lett 235(2):305–309.  https://doi.org/10.1016/j.femsle.2004.04.049CrossRefPubMedGoogle Scholar
  11. 11.
    Braoudaki M, Hilton AC (2005) Mechanisms of resistance in Salmonella enterica adapted to erythromycin, benzalkonium chloride and triclosan. Int J Antimicrob Agents 25(1):31–37.  https://doi.org/10.1016/j.ijantimicag.2004.07.016CrossRefPubMedGoogle Scholar
  12. 12.
    Buergers R, Rosentritt M, Schneider-Brachert W, Behr M, Handel G, Hahnel S (2008) Efficacy of denture disinfection methods in controlling Candida albicans colonization in vitro. Acta Odontol Scand 66(3):174–180.  https://doi.org/10.1080/00016350802165614CrossRefPubMedGoogle Scholar
  13. 13.
    Caballero Gómez N, Abriouel H, Grande MJ, Pérez Pulido R, Gálvez A (2012) Effect of enterocin AS-48 in combination with biocides on planktonic and sessile Listeria monocytogenes. Food Microbiol 30(1):51–58.  https://doi.org/10.1016/j.fm.2011.12.013CrossRefGoogle Scholar
  14. 14.
    Casado Munoz Mdel C, Benomar N, Ennahar S, Horvatovich P, Lavilla Lerma L, Knapp CW, Galvez A, Abriouel H (2016) Comparative proteomic analysis of a potentially probiotic Lactobacillus pentosus MP-10 for the identification of key proteins involved in antibiotic resistance and biocide tolerance. Int J Food Microbiol 222:8–15.  https://doi.org/10.1016/j.ijfoodmicro.2016.01.012CrossRefPubMedGoogle Scholar
  15. 15.
    Casado Munoz Mdel C, Benomar N, Lavilla Lerma L, Knapp CW, Galvez A, Abriouel H (2016) Biocide tolerance, phenotypic and molecular response of lactic acid bacteria isolated from naturally-fermented Alorena table to different physico-chemical stresses. Food Microbiol 60:1–12.  https://doi.org/10.1016/j.fm.2016.06.013CrossRefPubMedGoogle Scholar
  16. 16.
    Champlin FR, Ellison ML, Bullard JW, Conrad RS (2005) Effect of outer membrane permeabilisation on intrinsic resistance to low triclosan levels in Pseudomonas aeruginosa. Int J Antimicrob Agents 26(2):159–164.  https://doi.org/10.1016/j.ijantimicag.2005.04.020CrossRefPubMedGoogle Scholar
  17. 17.
    Christensen EG, Gram L, Kastbjerg VG (2011) Sublethal triclosan exposure decreases susceptibility to gentamicin and other aminoglycosides in Listeria monocytogenes. Antimicrob Agents Chemother 55(9):4064–4071.  https://doi.org/10.1128/aac.00460-11CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Chuanchuen R, Beinlich K, Hoang TT, Becher A, Karkhoff-Schweizer RR, Schweizer HP (2001) Cross-resistance between triclosan and antibiotics in Pseudomonas aeruginosa is mediated by multi-drug efflux pumps: exposure of a susceptible mutant strain to triclosan selects nfxB mutants overexpressing MexCD-OprJ. Antimicrob Agents Chemother 45:428–432CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Chuanchuen R, Karkhoff-Schweizer RR, Schweizer HP (2003) High-level triclosan resistance in Pseudomonas aeruginosa is solely a result of efflux. Am J Infect Control 31(2):124–127CrossRefPubMedGoogle Scholar
  20. 20.
    Ciusa ML, Furi L, Knight D, Decorosi F, Fondi M, Raggi C, Coelho JR, Aragones L, Moce L, Visa P, Freitas AT, Baldassarri L, Fani R, Viti C, Orefici G, Martinez JL, Morrissey I, Oggioni MR (2012) A novel resistance mechanism to triclosan that suggests horizontal gene transfer and demonstrates a potential selective pressure for reduced biocide susceptibility in clinical strains of Staphylococcus aureus. Int J Antimicrob Agents 40(3):210–220.  https://doi.org/10.1016/j.ijantimicag.2012.04.021CrossRefPubMedGoogle Scholar
  21. 21.
    Coenye T, Peeters E, Nelis HJ (2007) Biofilm formation by Propionibacterium acnes is associated with increased resistance to antimicrobial agents and increased production of putative virulence factors. Res Microbiol 158(4):386–392.  https://doi.org/10.1016/j.resmic.2007.02.001CrossRefPubMedGoogle Scholar
  22. 22.
    Cole EC, Addison RM, Rubino JR, Leese KE, Dulaney PD, Newell MS, Wilkins J, Gaber DJ, Wineinger T, Criger DA (2003) Investigation of antibiotic and antibacterial agent cross-resistance in target bacteria from homes of antibacterial product users and nonusers. J Appl Microbiol 95(4):664–676CrossRefPubMedGoogle Scholar
  23. 23.
    Condell O, Iversen C, Cooney S, Power KA, Walsh C, Burgess C, Fanning S (2012) Efficacy of biocides used in the modern food industry to control salmonella enterica, and links between biocide tolerance and resistance to clinically relevant antimicrobial compounds. Appl Environ Microbiol 78(9):3087–3097.  https://doi.org/10.1128/aem.07534-11CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Condell O, Sheridan A, Power KA, Bonilla-Santiago R, Sergeant K, Renaut J, Burgess C, Fanning S, Nally JE (2012) Comparative proteomic analysis of Salmonella tolerance to the biocide active agent triclosan. J Proteomics 75(14):4505–4519.  https://doi.org/10.1016/j.jprot.2012.04.044CrossRefPubMedGoogle Scholar
  25. 25.
    Copitch JL, Whitehead RN, Webber MA (2010) Prevalence of decreased susceptibility to triclosan in Salmonella enterica isolates from animals and humans and association with multiple drug resistance. Int J Antimicrob Agents 36(3):247–251.  https://doi.org/10.1016/j.ijantimicag.2010.04.012CrossRefPubMedGoogle Scholar
  26. 26.
    Corbin A, Pitts B, Parker A, Stewart PS (2011) Antimicrobial penetration and efficacy in an in vitro oral biofilm model. Antimicrob Agents Chemother 55(7):3338–3344.  https://doi.org/10.1128/aac.00206-11CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Correa JE, De Paulis A, Predari S, Sordelli DO, Jeric PE (2008) First report of qacG, qacH and qacJ genes in Staphylococcus haemolyticus human clinical isolates. J Antimicrob Chemother 62(5):956–960.  https://doi.org/10.1093/jac/dkn327CrossRefPubMedGoogle Scholar
  28. 28.
    Cottell A, Denyer SP, Hanlon GW, Ochs D, Maillard JY (2009) Triclosan-tolerant bacteria: changes in susceptibility to antibiotics. J Hosp Infect 72(1):71–76.  https://doi.org/10.1016/j.jhin.2009.01.014CrossRefPubMedGoogle Scholar
  29. 29.
    Couto N, Belas A, Couto I, Perreten V, Pomba C (2014) Genetic relatedness, antimicrobial and biocide susceptibility comparative analysis of methicillin-resistant and -susceptible Staphylococcus pseudintermedius from Portugal. Microb Drug Res (Larchmont, NY) 20(4):364–371.  https://doi.org/10.1089/mdr.2013.0043
  30. 30.
    Couto N, Belas A, Tilley P, Couto I, Gama LT, Kadlec K, Schwarz S, Pomba C (2013) Biocide and antimicrobial susceptibility of methicillin-resistant staphylococcal isolates from horses. Vet Microbiol 166(1–2):299–303.  https://doi.org/10.1016/j.vetmic.2013.05.011CrossRefPubMedGoogle Scholar
  31. 31.
    Cowley NL, Forbes S, Amezquita A, McClure P, Humphreys GJ, McBain AJ (2015) Effects of formulation on microbicide potency and mitigation of the development of bacterial insusceptibility. Appl Environ Microbiol 81(20):7330–7338.  https://doi.org/10.1128/aem.01985-15CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Curiao T, Marchi E, Viti C, Oggioni MR, Baquero F, Martinez JL, Coque TM (2015) Polymorphic variation in susceptibility and metabolism of triclosan-resistant mutants of Escherichia coli and Klebsiella pneumoniae clinical strains obtained after exposure to biocides and antibiotics. Antimicrob Agents Chemother 59(6):3413–3423.  https://doi.org/10.1128/aac.00187-15CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    D’Arezzo S, Lanini S, Puro V, Ippolito G, Visca P (2012) High-level tolerance to triclosan may play a role in Pseudomonas aeruginosa antibiotic resistance in immunocompromised hosts: evidence from outbreak investigation. BMC Res Notes 5:43.  https://doi.org/10.1186/1756-0500-5-43CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Dann AB, Hontela A (2011) Triclosan: environmental exposure, toxicity and mechanisms of action. J Appl Toxicol: JAT 31(4):285–311.  https://doi.org/10.1002/jat.1660CrossRefPubMedGoogle Scholar
  35. 35.
    Darouiche RO, Mansouri MD, Gawande PV, Madhyastha S (2009) Antimicrobial and antibiofilm efficacy of triclosan and DispersinB combination. J Antimicrob Chemother 64(1):88–93.  https://doi.org/10.1093/jac/dkp158CrossRefPubMedGoogle Scholar
  36. 36.
    Department of Health and Human Services; Food and Drug Administration (1994) Tentative final monograph for health care antiseptic products; proposed rule. Fed Reg 59(116):31401–31452Google Scholar
  37. 37.
    Department of Health and Human Services; Food and Drug Administration (2015) Safety and effectiveness of healthcare antiseptics. Topical antimicrobial drug products for over-the-counter human use; proposed amendment of the tentative final monograph; reopening of administrative record; proposed rule. Fed Reg 80(84):25166–25205Google Scholar
  38. 38.
    Department of Health and Human Services; Food and Drug Administration (2016) Safety and effectiveness of consumer antiseptics; topical antimicrobial drug products for over-the-counter human use. Fed Reg 81(172):61106–61130Google Scholar
  39. 39.
    Elli M, Arioli S, Guglielmetti S, Mora D (2013) Biocide susceptibility in bifidobacteria of human origin. J Glob Antimicrob Res 1(2):97–101.  https://doi.org/10.1016/j.jgar.2013.03.007CrossRefGoogle Scholar
  40. 40.
    Ellison ML, Champlin FR (2007) Outer membrane permeability for nonpolar antimicrobial agents underlies extreme susceptibility of Pasteurella multocida to the hydrophobic biocide triclosan. Vet Microbiol 124(3–4):310–318.  https://doi.org/10.1016/j.vetmic.2007.04.038CrossRefPubMedGoogle Scholar
  41. 41.
    European Chemicals Agency (ECHA) Triclosan. Substance information. https://echa.europa.eu/substance-information/-/substanceinfo/100.020.167. Accessed 16 Nov 2017
  42. 42.
    Faoagali J, Fong J, George N, Mahoney P, O’Rourke V (1995) Comparison of the immediate, residual, and cumulative antibacterial effects of Novaderm, Novascrub, Betadine Surgical Scrub, Hibiclens, and liquid soap. Am J Infect Control 23(6):337–343CrossRefPubMedGoogle Scholar
  43. 43.
    Fernández-Fuentes MA, Ortega Morente E, Abriouel H, Pérez Pulido R, Gálvez A (2012) Isolation and identification of bacteria from organic foods: sensitivity to biocides and antibiotics. Food Control 26(1):73–78.  https://doi.org/10.1016/j.foodcont.2012.01.017CrossRefGoogle Scholar
  44. 44.
    Fernandez Marquez ML, Grande Burgos MJ, Lopez Aguayo MC, Perez Pulido R, Galvez A, Lucas R (2017) Characterization of biocide-tolerant bacteria isolated from cheese and dairy small-medium enterprises. Food Microbiol 62:77–81.  https://doi.org/10.1016/j.fm.2016.10.008CrossRefPubMedGoogle Scholar
  45. 45.
    Fernando DM, Chong P, Singh M, Spicer V, Unger M, Loewen PC, Westmacott G, Kumar A (2017) Multi-omics approach to study global changes in a triclosan-resistant mutant strain of Acinetobacter baumannii ATCC 17978. Int J Antimicrob Agents 49(1):74–80.  https://doi.org/10.1016/j.ijantimicag.2016.10.014CrossRefPubMedGoogle Scholar
  46. 46.
    Forbes S, Dobson CB, Humphreys GJ, McBain AJ (2014) Transient and sustained bacterial adaptation following repeated sublethal exposure to microbicides and a novel human antimicrobial peptide. Antimicrob Agents Chemother 58(10):5809–5817.  https://doi.org/10.1128/aac.03364-14CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Forbes S, Knight CG, Cowley NL, Amezquita A, McClure P, Humphreys G, McBain AJ (2016) Variable effects of exposure to formulated microbicides on antibiotic susceptibility in Firmicutes and Proteobacteria. Appl Environ Microbiol 82(12):3591–3598.  https://doi.org/10.1128/aem.00701-16CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Freundlich JS, Wang F, Vilcheze C, Gulten G, Langley R, Schiehser GA, Jacobus DP, Jacobs WR Jr, Sacchettini JC (2009) Triclosan derivatives: towards potent inhibitors of drug-sensitive and drug-resistant Mycobacterium tuberculosis. ChemMedChem 4(2):241–248.  https://doi.org/10.1002/cmdc.200800261CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Gadea R, Fernández Fuentes MA, Pérez Pulido R, Gálvez A, Ortega E (2016) Adaptive tolerance to phenolic biocides in bacteria from organic foods: Effects on antimicrobial susceptibility and tolerance to physical stresses. Food Res Int 85(Supplement C):131–143.  https://doi.org/10.1016/j.foodres.2016.04.033
  50. 50.
    Gadea R, Glibota N, Pérez Pulido R, Gálvez A, Ortega E (2017) Effects of exposure to biocides on susceptibility to essential oils and chemical preservatives in bacteria from organic foods. Food Control 80(Supplement C):176–182.  https://doi.org/10.1016/j.foodcont.2017.05.002
  51. 51.
    Gantzhorn MR, Pedersen K, Olsen JE, Thomsen LE (2014) Biocide and antibiotic susceptibility of Salmonella isolates obtained before and after cleaning at six Danish pig slaughterhouses. Int J Food Microbiol 181:53–59.  https://doi.org/10.1016/j.ijfoodmicro.2014.04.021CrossRefPubMedGoogle Scholar
  52. 52.
    Garrido AM, Burgos MJ, Marquez ML, Aguayo MC, Pulido RP, del Arbol JT, Galvez A, Lopez RL (2015) Biocide tolerance in Salmonella from meats in Southern Spain. Braz J Microbiol: [Publication of the Brazilian Society for Microbiology] 46(4):1177–1181.  https://doi.org/10.1590/s1517-838246420140396CrossRefGoogle Scholar
  53. 53.
    Gasperi J, Geara D, Lorgeoux C, Bressy A, Zedek S, Rocher V, El Samrani A, Chebbo G, Moilleron R (2014) First assessment of triclosan, triclocarban and paraben mass loads at a very large regional scale: case of Paris conurbation (France). Sci Total Environ 493:854–861.  https://doi.org/10.1016/j.scitotenv.2014.06.079CrossRefPubMedGoogle Scholar
  54. 54.
    Giuliano CA, Rybak MJ (2015) Efficacy of triclosan as an antimicrobial hand soap and its potential impact on antimicrobial resistance: a focused review. Pharmacotherapy 35(3):328–336.  https://doi.org/10.1002/phar.1553CrossRefPubMedGoogle Scholar
  55. 55.
    Gomez-Alonso A, Garcia-Criado FJ, Parreno-Manchado FC, Garcia-Sanchez JE, Garcia-Sanchez E, Parreno-Manchado A, Zambrano-Cuadrado Y (2007) Study of the efficacy of Coated VICRYL Plus Antibacterial suture (coated Polyglactin 910 suture with Triclosan) in two animal models of general surgery. J Infect 54(1):82–88.  https://doi.org/10.1016/j.jinf.2006.01.008CrossRefPubMedGoogle Scholar
  56. 56.
    Gomez A, Andreu N, Ferrer-Navarro M, Yero D, Gibert I (2016) Triclosan-induced genes Rv1686c-Rv1687c and Rv3161c are not involved in triclosan resistance in Mycobacterium tuberculosis. Sci R 6:26221.  https://doi.org/10.1038/srep26221CrossRefGoogle Scholar
  57. 57.
    Gosau M, Hahnel S, Schwarz F, Gerlach T, Reichert TE, Burgers R (2010) Effect of six different peri-implantitis disinfection methods on in vivo human oral biofilm. Clin Oral Implant Res 21(8):866–872.  https://doi.org/10.1111/j.1600-0501.2009.01908.xCrossRefGoogle Scholar
  58. 58.
    Gradel KO, Randall L, Sayers AR, Davies RH (2005) Possible associations between Salmonella persistence in poultry houses and resistance to commonly used disinfectants and a putative role of mar. Vet Microbiol 107(1–2):127-138. S0378-1135(05)00036-2 [pii].  https://doi.org/10.1016/j.vetmic.2005.01.013 [doi]
  59. 59.
    Grande Burgos MJ, Fernandez Marquez ML, Perez Pulido R, Galvez A, Lucas Lopez R (2016) Virulence factors and antimicrobial resistance in Escherichia coli strains isolated from hen egg shells. Int J Food Microbiol 238:89–95.  https://doi.org/10.1016/j.ijfoodmicro.2016.08.037CrossRefPubMedGoogle Scholar
  60. 60.
    Grande Burgos MJ, Lucas López R, López Aguayo M, Pérez Pulido R, Gálvez A (2013) Inhibition of planktonic and sessile Salmonella enterica cells by combinations of enterocin AS-48, polymyxin B and biocides. Food Control 30(1):214–221.  https://doi.org/10.1016/j.foodcont.2012.07.011CrossRefGoogle Scholar
  61. 61.
    Guo J, Iwata H (2017) Risk assessment of triclosan in the global environment using a probabilistic approach. Ecotoxicol Environ Saf 143:111–119.  https://doi.org/10.1016/j.ecoenv.2017.05.020CrossRefPubMedGoogle Scholar
  62. 62.
    Halden RU (2014) On the need and speed of regulating triclosan and triclocarban in the United States. Environ Sci Technol 48(7):3603–3611.  https://doi.org/10.1021/es500495pCrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Halden RU, Lindeman AE, Aiello AE, Andrews D, Arnold WA, Fair P, Fuoco RE, Geer LA, Johnson PI, Lohmann R, McNeill K, Sacks VP, Schettler T, Weber R, Zoeller RT, Blum A (2017) The florence statement on Triclosan and Triclocarban. Environ Health Perspect 125(6):064501.  https://doi.org/10.1289/ehp1788CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Hartmann EM, Hickey R, Hsu T, Betancourt Roman CM, Chen J, Schwager R, Kline J, Brown GZ, Halden RU, Huttenhower C, Green JL (2016) Antimicrobial chemicals are associated with elevated antibiotic resistance genes in the indoor dust microbiome. Environ Sci Technol 50(18):9807–9815.  https://doi.org/10.1021/acs.est.6b00262CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Heath RJ, Li J, Roland GE, Rock CO (2000) Inhibition of the Staphylococcus aureus NADPH-dependent enoyl-acyl carrier protein reductase by triclosan and hexachlorophene. J Biol Chem 275(7):4654–4659CrossRefPubMedGoogle Scholar
  66. 66.
    Higgins J, Pinjon E, Oltean HN, White TC, Kelly SL, Martel CM, Sullivan DJ, Coleman DC, Moran GP (2012) Triclosan antagonizes fluconazole activity against Candida albicans. J Dent Res 91(1):65–70.  https://doi.org/10.1177/0022034511425046CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Huerta B, Rodriguez-Mozaz S, Nannou C, Nakis L, Ruhi A, Acuna V, Sabater S, Barcelo D (2016) Determination of a broad spectrum of pharmaceuticals and endocrine disruptors in biofilm from a waste water treatment plant-impacted river. Sci Total Environ 540:241–249.  https://doi.org/10.1016/j.scitotenv.2015.05.049CrossRefPubMedGoogle Scholar
  68. 68.
    Hughes C, Ferguson J (2017) Phenotypic chlorhexidine and triclosan susceptibility in clinical Staphylococcus aureus isolates in Australia. Pathology 49(6):633–637.  https://doi.org/10.1016/j.pathol.2017.05.008CrossRefPubMedGoogle Scholar
  69. 69.
    Juncker JC (2016) COMMISSION IMPLEMENTING REGULATION (EU) 2016/110 of 27 January 2016 not approving triclosan as an existing active substance for use in biocidal products for product- type 1. Off J Eur Union 59(L 21):86–87Google Scholar
  70. 70.
    Junker LM, Hay AG (2004) Effects of triclosan incorporation into ABS plastic on biofilm communities. J Antimicrob Chemother 53(6):989–996.  https://doi.org/10.1093/jac/dkh196CrossRefPubMedGoogle Scholar
  71. 71.
    Jutkina J, Marathe NP, Flach CF, Larsson DGJ (2017) Antibiotics and common antibacterial biocides stimulate horizontal transfer of resistance at low concentrations. Sci Total Environ 616–617:172–178.  https://doi.org/10.1016/j.scitotenv.2017.10.312CrossRefPubMedGoogle Scholar
  72. 72.
    Kahl BC (2014) Small colony variants (SCVs) of Staphylococcus aureus–a bacterial survival strategy. Infect, Genet Evol: J Mol Epidemiol Evol Genet Infect Dis 21:515–522.  https://doi.org/10.1016/j.meegid.2013.05.016CrossRefGoogle Scholar
  73. 73.
    Kalkanci A, Elli M, Adil Fouad A, Yesilyurt E, Jabban Khalil I (2015) Assessment of susceptibility of mould isolates towards biocides. Journal de mycologie medicale 25(4):280–286.  https://doi.org/10.1016/j.mycmed.2015.08.001CrossRefPubMedGoogle Scholar
  74. 74.
    Kapoor R, Yadav JS (2012) Expanding the mycobacterial diversity of metalworking fluids (MWFs): evidence showing MWF colonization by Mycobacterium abscessus. FEMS Microbiol Ecol 79(2):392–399.  https://doi.org/10.1111/j.1574-6941.2011.01227.xCrossRefPubMedGoogle Scholar
  75. 75.
    Karatzas KA, Webber MA, Jorgensen F, Woodward MJ, Piddock LJ, Humphrey TJ (2007) Prolonged treatment of Salmonella enterica serovar Typhimurium with commercial disinfectants selects for multiple antibiotic resistance, increased efflux and reduced invasiveness. J Antimicrob Chemother 60(5):947–955.  https://doi.org/10.1093/jac/dkm314CrossRefPubMedGoogle Scholar
  76. 76.
    Kim SA, Moon H, Lee K, Rhee MS (2015) Bactericidal effects of triclosan in soap both in vitro and in vivo. J Antimicrob Chemother 70(12):3345–3352.  https://doi.org/10.1093/jac/dkv275CrossRefPubMedGoogle Scholar
  77. 77.
    Koburger T, Hübner N-O, Braun M, Siebert J, Kramer A (2010) Standardized comparison of antiseptic efficacy of triclosan, PVP-iodine, octenidine dihydrochloride, polyhexanide and chlorhexidine digluconate. J Antimicrob Chemother 65(8):1712–1719CrossRefPubMedGoogle Scholar
  78. 78.
    Lambert RJ (2004) Comparative analysis of antibiotic and antimicrobial biocide susceptibility data in clinical isolates of methicillin-sensitive Staphylococcus aureus, methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa between 1989 and 2000. J Appl Microbiol 97(4):699–711.  https://doi.org/10.1111/j.1365-2672.2004.02345.xCrossRefPubMedGoogle Scholar
  79. 79.
    Lanini S, D’Arezzo S, Puro V, Martini L, Imperi F, Piselli P, Montanaro M, Paoletti S, Visca P, Ippolito G (2011) Molecular epidemiology of a Pseudomonas aeruginosa hospital outbreak driven by a contaminated disinfectant-soap dispenser. PLoS ONE 6(2):e17064.  https://doi.org/10.1371/journal.pone.0017064CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Lavilla Lerma L, Benomar N, Casado Munoz Mdel C, Galvez A, Abriouel H (2015) Correlation between antibiotic and biocide resistance in mesophilic and psychrotrophic Pseudomonas spp. isolated from slaughterhouse surfaces throughout meat chain production. Food Microbiol 51:33–44.  https://doi.org/10.1016/j.fm.2015.04.010CrossRefPubMedGoogle Scholar
  81. 81.
    Lavilla Lerma L, Benomar N, Valenzuela AS, Casado Munoz Mdel C, Galvez A, Abriouel H (2014) Role of EfrAB efflux pump in biocide tolerance and antibiotic resistance of Enterococcus faecalis and Enterococcus faecium isolated from traditional fermented foods and the effect of EDTA as EfrAB inhibitor. Food Microbiol 44:249–257.  https://doi.org/10.1016/j.fm.2014.06.009CrossRefPubMedGoogle Scholar
  82. 82.
    Lear JC, Maillard JY, Dettmar PW, Goddard PA, Russell AD (2006) Chloroxylenol- and triclosan-tolerant bacteria from industrial sources—susceptibility to antibiotics and other biocides. Int Biodeter Biodegr 57(1):51–56.  https://doi.org/10.1016/j.ibiod.2005.11.002CrossRefGoogle Scholar
  83. 83.
    Ledder RG, Gilbert P, Willis C, McBain AJ (2006) Effects of chronic triclosan exposure upon the antimicrobial susceptibility of 40 ex-situ environmental and human isolates. J Appl Microbiol 100(5):1132–1140.  https://doi.org/10.1111/j.1365-2672.2006.02811.xCrossRefPubMedGoogle Scholar
  84. 84.
    Lin F, Xu Y, Chang Y, Liu C, Jia X, Ling B (2017) Molecular characterization of reduced susceptibility to biocides in clinical isolates of acinetobacter baumannii. Front Microbiol 8:1836.  https://doi.org/10.3389/fmicb.2017.01836
  85. 85.
    Macias JH, Alvarez MF, Arreguin V, Munoz JM, Macias AE, Alvarez JA (2016) Chlorhexidine avoids skin bacteria recolonization more than triclosan. Am J Infect Control 44(12):1530–1534.  https://doi.org/10.1016/j.ajic.2016.04.235CrossRefPubMedGoogle Scholar
  86. 86.
    Marchetti MG, Kampf G, Finzi G, Salvatorelli G (2003) Evaluation of the bactericidal effect of five products for surgical hand disinfection according to prEN 12054 and prEN 12791. J Hosp Infect 54(1):63–67CrossRefPubMedGoogle Scholar
  87. 87.
    Massengo-Tiasse RP, Cronan JE (2009) Diversity in enoyl-acyl carrier protein reductases. Cell Mol Life Sci: CMLS 66(9):1507–1517.  https://doi.org/10.1007/s00018-009-8704-7CrossRefPubMedGoogle Scholar
  88. 88.
    Matalon S, Kozlovsky A, Kfir A, Levartovsky S, Mazor Y, Slutzky H (2013) The effect of commonly used sutures on inflammation inducing pathogens - an in vitro study. J Craniomaxillofac Surg: Off Publ Eur Assoc Craniomaxillofac Surg 41(7):593–597.  https://doi.org/10.1016/j.jcms.2012.11.033CrossRefGoogle Scholar
  89. 89.
    Mavri A, Mozina SS (2012) Involvement of efflux mechanisms in biocide resistance of Campylobacter jejuni and Campylobacter coli. J Med Microbiol 61(Pt 6):800–808.  https://doi.org/10.1099/jmm.0.041467-0CrossRefPubMedGoogle Scholar
  90. 90.
    Mavri A, Smole Mozina S (2013) Development of antimicrobial resistance in Campylobacter jejuni and Campylobacter coli adapted to biocides. Int J Food Microbiol 160(3):304–312.  https://doi.org/10.1016/j.ijfoodmicro.2012.11.006CrossRefPubMedGoogle Scholar
  91. 91.
    McBain AJ, Ledder RG, Sreenivasan P, Gilbert P (2004) Selection for high-level resistance by chronic triclosan exposure is not universal. J Antimicrob Chemother 53(5):772–777.  https://doi.org/10.1093/jac/dkh168CrossRefPubMedGoogle Scholar
  92. 92.
    McMurry LM, McDermott PF, Levy SB (1999) Genetic evidence that InhA of Mycobacterium smegmatis is a target for triclosan. Antimicrob Agents Chemother 43(3):711–713PubMedPubMedCentralGoogle Scholar
  93. 93.
    McMurry LM, Oethinger M, Levy SB (1998) Overexpression of marA, soxS, or acrAB produces resistance to triclosan in laboratory and clinical strains of Escherichia coli. FEMS Microbiol Lett 166:305–309CrossRefPubMedGoogle Scholar
  94. 94.
    McMurry LM, Oethinger M, Levy SB (1998) Triclosan targets lipid synthesis. Nature 394:531–532CrossRefPubMedGoogle Scholar
  95. 95.
    McNamara PJ, Levy SB (2016) Triclosan: an Instructive Tale. Antimicrob Agents Chemother 60(12):7015–7016.  https://doi.org/10.1128/aac.02105-16CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    McNaughton M, Mazinke N, Thomas E (1995) Newborn conjunctivitis associated with triclosan 0.5% antiseptic intrinsically contaminated with Serratia marcescens. The Canadian journal of infection control: the official journal of the Community & Hospital Infection Control Association-Canada = Revue canadienne de prevention des infections/Association pour la prevention des infections a l’ho 10(1):7–8Google Scholar
  97. 97.
    Meade MJ, Waddell RL, Callahan TM (2001) Soil bacteria Pseudomonas putida and Alcaligenes xylosoxidans subsp. denitrificans inactivate triclosan in liquid and solid substrates. Fed Eur Microbiol Soc, Microbiol Lett 204:45–48CrossRefGoogle Scholar
  98. 98.
    Messager S, Goddard PA, Dettmar PW, Maillard JY (2001) Determination of the antibacterial efficacy of several antiseptics tested on skin by an ‘ex-vivo’ test. J Med Microbiol 50(3):284–292.  https://doi.org/10.1099/0022-1317-50-3-284CrossRefPubMedGoogle Scholar
  99. 99.
    Middleton JH, Salierno JD (2013) Antibiotic resistance in triclosan tolerant fecal coliforms isolated from surface waters near wastewater treatment plant outflows (Morris County, NJ, USA). Ecotoxicol Environ Saf 88:79–88.  https://doi.org/10.1016/j.ecoenv.2012.10.025CrossRefPubMedGoogle Scholar
  100. 100.
    Morrissey I, Oggioni MR, Knight D, Curiao T, Coque T, Kalkanci A, Martinez JL (2014) Evaluation of epidemiological cut-off values indicates that biocide resistant subpopulations are uncommon in natural isolates of clinically-relevant microorganisms. PLoS ONE 9(1):e86669.  https://doi.org/10.1371/journal.pone.0086669CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Muller G, Kramer A (2008) Biocompatibility index of antiseptic agents by parallel assessment of antimicrobial activity and cellular cytotoxicity. J Antimicrob Chemother 61(6):1281–1287.  https://doi.org/10.1093/jac/dkn125CrossRefPubMedGoogle Scholar
  102. 102.
    National Center for Biotechnology Information Triclosan. PubChem Compound Database; CID=5564. https://pubchem.ncbi.nlm.nih.gov/compound/5564. Accessed 16 Nov 2017
  103. 103.
    Oggioni MR, Coelho JR, Furi L, Knight DR, Viti C, Orefici G, Martinez JL, Freitas AT, Coque TM, Morrissey I (2015) Significant differences characterise the correlation coefficients between biocide and antibiotic susceptibility profiles in Staphylococcus aureus. Curr Pharm Des 21(16):2054–2057CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Periame M, Pages JM, Davin-Regli A (2015) Enterobacter gergoviae membrane modifications are involved in the adaptive response to preservatives used in cosmetic industry. J Appl Microbiol 118(1):49–61.  https://doi.org/10.1111/jam.12676CrossRefPubMedGoogle Scholar
  105. 105.
    Pi B, Yu D, Hua X, Ruan Z, Yu Y (2017) Genomic and transcriptome analysis of triclosan response of a multidrug-resistant Acinetobacter baumannii strain, MDR-ZJ06. Arch Microbiol 199(2):223–230.  https://doi.org/10.1007/s00203-016-1295-4CrossRefPubMedGoogle Scholar
  106. 106.
    Pycke BF, Crabbe A, Verstraete W, Leys N (2010) Characterization of triclosan-resistant mutants reveals multiple antimicrobial resistance mechanisms in Rhodospirillum rubrum S1H. Appl Environ Microbiol 76(10):3116–3123.  https://doi.org/10.1128/aem.02757-09CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Rahav G, Pitlik S, Amitai Z, Lavy A, Blech M, Keller N, Smollan G, Lewis M, Zlotkin A (2006) An outbreak of Mycobacterium jacuzzii infection following insertion of breast implants. Clin Infect Dis: Off Publ Infect Dis Soc Am 43(7):823–830.  https://doi.org/10.1086/507535CrossRefGoogle Scholar
  108. 108.
    Rawat R, Whitty A, Tonge PJ (2003) The isoniazid-NAD adduct is a slow, tight-binding inhibitor of InhA, the Mycobacterium tuberculosis enoyl reductase: adduct affinity and drug resistance. Proc Natl Acad Sci USA 100(24):13881–13886.  https://doi.org/10.1073/pnas.2235848100CrossRefPubMedGoogle Scholar
  109. 109.
    Reginato CF, Bandeira LA, Zanette RA, Santurio JM, Alves SH, Danesi CC (2017) Antifungal activity of synthetic antiseptics and natural compounds against Candida dubliniensis before and after in vitro fluconazole exposure. Rev Soc Bras Med Trop 50(1):75–79.  https://doi.org/10.1590/0037-8682-0461-2016CrossRefPubMedGoogle Scholar
  110. 110.
    Renko M, Paalanne N, Tapiainen T, Hinkkainen M, Pokka T, Kinnula S, Sinikumpu JJ, Uhari M, Serlo W (2017) Triclosan-containing sutures versus ordinary sutures for reducing surgical site infections in children: a double-blind, randomised controlled trial. Lancet Infect Dis 17(1):50–57.  https://doi.org/10.1016/s1473-3099(16)30373-5CrossRefPubMedGoogle Scholar
  111. 111.
    Rensch U, Klein G, Schwarz S, Kaspar H, de Jong A, Kehrenberg C (2013) Comparative analysis of the susceptibility to triclosan and three other biocides of avian Salmonella enterica isolates collected 1979 through 1994 and 2004 through 2010. J Food Prot 76(4):653–656.  https://doi.org/10.4315/0362-028x.jfp-12-420CrossRefPubMedGoogle Scholar
  112. 112.
    Rensch U, Nishino K, Klein G, Kehrenberg C (2014) Salmonella enterica serovar Typhimurium multidrug efflux pumps EmrAB and AcrEF support the major efflux system AcrAB in decreased susceptibility to triclosan. Int J Antimicrob Agents 44(2):179–180.  https://doi.org/10.1016/j.ijantimicag.2014.04.015CrossRefPubMedGoogle Scholar
  113. 113.
    Ricart M, Guasch H, Alberch M, Barcelo D, Bonnineau C, Geiszinger A, Farre M, Ferrer J, Ricciardi F, Romani AM, Morin S, Proia L, Sala L, Sureda D, Sabater S (2010) Triclosan persistence through wastewater treatment plants and its potential toxic effects on river biofilms. Aquat Toxicol (Amsterdam, Netherlands) 100(4):346–353.  https://doi.org/10.1016/j.aquatox.2010.08.010
  114. 114.
    Rizzotti L, Rossi F, Torriani S (2016) Biocide and antibiotic resistance of Enterococcus faecalis and Enterococcus faecium isolated from the swine meat chain. Food Microbiol 60:160–164.  https://doi.org/10.1016/j.fm.2016.07.009CrossRefPubMedGoogle Scholar
  115. 115.
    Roberts JL, Khan S, Emanuel C, Powell LC, Pritchard MF, Onsoyen E, Myrvold R, Thomas DW, Hill KE (2013) An in vitro study of alginate oligomer therapies on oral biofilms. J Dent 41(10):892–899.  https://doi.org/10.1016/j.jdent.2013.07.011CrossRefPubMedGoogle Scholar
  116. 116.
    Rochon-Edouard S, Pons JL, Veber B, Larkin M, Vassal S, Lemeland JF (2004) Comparative in vitro and in vivo study of nine alcohol-based handrubs. Am J Infect Control 32(4):200–204.  https://doi.org/10.1016/j.ajic.2003.08.003CrossRefPubMedGoogle Scholar
  117. 117.
    Rose H, Baldwin A, Dowson CG, Mahenthiralingam E (2009) Biocide susceptibility of the Burkholderia cepacia complex. J Antimicrob Chemother 63(3):502–510.  https://doi.org/10.1093/jac/dkn540CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Scheflan M, Wixtrom RN (2016) Over troubled water: an outbreak of infection due to a new species of Mycobacterium following implant-based breast surgery. Plast Reconstr Surg 137(1):97–105.  https://doi.org/10.1097/prs.0000000000001854CrossRefPubMedGoogle Scholar
  119. 119.
    Schweizer HP (2001) Triclosan: a widely used biocide and its links to antibiotics. Fed Eur Microbiol Soc, Microbiol Lett 202:1–7CrossRefGoogle Scholar
  120. 120.
    Scientific Committee On Consumer Safety S (2010) Opinion on triclosan. Antimicrobial Resistance. https://ec.europa.eu/health/scientific_committees/consumer_safety/docs/sccs_o_023.pdf. Accessed 28 Nov 2017
  121. 121.
    Sethi KS, Karde PA, Joshi CP (2016) Comparative evaluation of sutures coated with triclosan and chlorhexidine for oral biofilm inhibition potential and antimicrobial activity against periodontal pathogens: an in vitro study. Indian J Dent Res: Off Publ Indian Soc Dent Res 27(5):535–539.  https://doi.org/10.4103/0970-9290.195644CrossRefGoogle Scholar
  122. 122.
    Sheridan A, Lenahan M, Condell O, Bonilla-Santiago R, Sergeant K, Renaut J, Duffy G, Fanning S, Nally JE, Burgess CM (2013) Proteomic and phenotypic analysis of triclosan tolerant verocytotoxigenic Escherichia coli O157:H19. J Proteomics 80:78–90.  https://doi.org/10.1016/j.jprot.2012.12.025CrossRefPubMedGoogle Scholar
  123. 123.
    Sheridan A, Lenahan M, Duffy G, Fanning S, Burgess C (2012) The potential for biocide tolerance in Escherichia coli and its impact on the response to food processing stresses. Food Control 26(1):98–106CrossRefGoogle Scholar
  124. 124.
    Silva Paes Leme AF, Ferreira AS, Alves FA, de Azevedo BM, de Bretas LP, Farias RE, Oliveira MG, Raposo NR (2015) An effective and biocompatible antibiofilm coating for central venous catheter. Can J Microbiol 61(5):357–365.  https://doi.org/10.1139/cjm-2014-0783CrossRefPubMedGoogle Scholar
  125. 125.
    Singh NJ, Shin D, Lee HM, Kim HT, Chang HJ, Cho JM, Kim KS, Ro S (2011) Structural basis of triclosan resistance. J Struct Biol 174(1):173–179.  https://doi.org/10.1016/j.jsb.2010.11.008CrossRefPubMedGoogle Scholar
  126. 126.
    Skovgaard S, Nielsen LN, Larsen MH, Skov RL, Ingmer H, Westh H (2013) Staphylococcus epidermidis isolated in 1965 are more susceptible to triclosan than current isolates. PLoS ONE 8(4):e62197.  https://doi.org/10.1371/journal.pone.0062197CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Smith K, Hunter IS (2008) Efficacy of common hospital biocides with biofilms of multi-drug resistant clinical isolates. J Med Microbiol 57(Pt 8):966–973.  https://doi.org/10.1099/jmm.0.47668-0CrossRefPubMedGoogle Scholar
  128. 128.
    Srinivasan VB, Singh BB, Priyadarshi N, Chauhan NK, Rajamohan G (2014) Role of novel multidrug efflux pump involved in drug resistance in Klebsiella pneumoniae. PLoS ONE 9(5):e96288.  https://doi.org/10.1371/journal.pone.0096288CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Suller MTE, Russell AD (1999) Antibiotic and biocide resistance in methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococcus. J Hosp Infect 43:281–291CrossRefPubMedGoogle Scholar
  130. 130.
    Suller MTE, Russell AD (2000) Triclosan and antibiotic resistance in Staphylococcus aureus. J Antimicrob Chemother 46:11–18CrossRefPubMedGoogle Scholar
  131. 131.
    Sullivan A, Wretlind B, Nord CE (2003) Will triclosan in toothpaste select for resistant oral streptococci? Clin Microbiol Infect 9(4):306–309CrossRefPubMedGoogle Scholar
  132. 132.
    Tambe SM, Sampath L, Modak SM (2001) In vitro evaluation of the risk of developing bacterial resistance to antiseptics and antibiotics used in medical devices. J Antimicrob Chemother 47(5):589–598CrossRefPubMedGoogle Scholar
  133. 133.
    Tamura I, Yasuda Y, Kagota KI, Yoneda S, Nakada N, Kumar V, Kameda Y, Kimura K, Tatarazako N, Yamamoto H (2017) Contribution of pharmaceuticals and personal care products (PPCPs) to whole toxicity of water samples collected in effluent-dominated urban streams. Ecotoxicol Environ Saf 144:338–350.  https://doi.org/10.1016/j.ecoenv.2017.06.032CrossRefPubMedGoogle Scholar
  134. 134.
    Thorrold CA, Letsoalo ME, Duse AG, Marais E (2007) Efflux pump activity in fluoroquinolone and tetracycline resistant Salmonella and E. coli implicated in reduced susceptibility to household antimicrobial cleaning agents. Int J Food Microbiol 113(3):315–320.  https://doi.org/10.1016/j.ijfoodmicro.2006.08.008CrossRefPubMedGoogle Scholar
  135. 135.
    Tkachenko O, Shepard J, Aris VM, Joy A, Bello A, Londono I, Marku J, Soteropoulos P, Peteroy-Kelly MA (2007) A triclosan-ciprofloxacin cross-resistant mutant strain of Staphylococcus aureus displays an alteration in the expression of several cell membrane structural and functional genes. Res Microbiol 158(8–9):651–658.  https://doi.org/10.1016/j.resmic.2007.09.003CrossRefPubMedGoogle Scholar
  136. 136.
    United States Environmental Protection Agency (2008) Reregistration Eligibility Decision for Triclosan. https://archive.epa.gov/pesticides/reregistration/web/pdf/2340red.pdf
  137. 137.
    Valentine BK, Dew W, Yu A, Weese JS (2012) In vitro evaluation of topical biocide and antimicrobial susceptibility of Staphylococcus pseudintermedius from dogs. Vet Dermatol 23(6):e493–e495.  https://doi.org/10.1111/j.1365-3164.2012.01095.xCrossRefGoogle Scholar
  138. 138.
    Wand ME, Baker KS, Benthall G, McGregor H, McCowen JW, Deheer-Graham A, Sutton JM (2015) Characterization of pre-antibiotic era Klebsiella pneumoniae isolates with respect to antibiotic/disinfectant susceptibility and virulence in Galleria mellonella. Antimicrob Agents Chemother 59(7):3966–3972.  https://doi.org/10.1128/aac.05009-14CrossRefPubMedPubMedCentralGoogle Scholar
  139. 139.
    Webber MA, Buckner MMC, Redgrave LS, Ifill G, Mitchenall LA, Webb C, Iddles R, Maxwell A, Piddock LJV (2017) Quinolone-resistant gyrase mutants demonstrate decreased susceptibility to triclosan. J Antimicrob Chemother 72(10):2755–2763.  https://doi.org/10.1093/jac/dkx201CrossRefPubMedGoogle Scholar
  140. 140.
    Weber DJ, Rutala WA (2013) Self-disinfecting surfaces: review of current methodologies and future prospects. Am J Infect Control 41(5 Suppl):S31–S35.  https://doi.org/10.1016/j.ajic.2012.12.005CrossRefPubMedGoogle Scholar
  141. 141.
    Wesgate R, Grasha P, Maillard JY (2016) Use of a predictive protocol to measure the antimicrobial resistance risks associated with biocidal product usage. Am J Infect Control 44(4):458–464.  https://doi.org/10.1016/j.ajic.2015.11.009CrossRefPubMedGoogle Scholar
  142. 142.
    WHO (2009) WHO guidelines on hand hygiene in health care. First Global Patient Safety Challenge Clean Care is Safer Care, WHO, GenevaGoogle Scholar
  143. 143.
    Wisplinghoff H, Schmitt R, Wohrmann A, Stefanik D, Seifert H (2007) Resistance to disinfectants in epidemiologically defined clinical isolates of Acinetobacter baumannii. J Hosp Infect 66(2):174–181.  https://doi.org/10.1016/j.jhin.2007.02.016CrossRefPubMedGoogle Scholar
  144. 144.
    Witney AA, Gould KA, Pope CF, Bolt F, Stoker NG, Cubbon MD, Bradley CR, Fraise A, Breathnach AS, Butcher PD, Planche TD, Hinds J (2014) Genome sequencing and characterization of an extensively drug-resistant sequence type 111 serotype O12 hospital outbreak strain of Pseudomonas aeruginosa. Clin Microbiol Infect 20(10):O609–O618.  https://doi.org/10.1111/1469-0691.12528CrossRefPubMedGoogle Scholar
  145. 145.
    Yigit N, Aktas E, Ayyildiz A (2008) Antifungal activity of toothpastes against oral Candida isolates. Journal de mycologie medicale 18(3):141–146.  https://doi.org/10.1016/j.mycmed.2008.06.003CrossRefGoogle Scholar
  146. 146.
    Yu BJ, Kim JA, Ju HM, Choi SK, Hwang SJ, Park S, Kim E, Pan JG (2012) Genome-wide enrichment screening reveals multiple targets and resistance genes for triclosan in Escherichia coli. J Microbiol (Seoul, Korea) 50(5):785–791.  https://doi.org/10.1007/s12275-012-2439-0
  147. 147.
    Zastrow K-D, Kramer A, Bauch B (2001) Konzept zur Dekontamination von MRSA-Patienten. Hyg + Med 26(9):344–348Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Institute of Hygiene and Environmental MedicineUniversity of GreifswaldGreifswaldGermany

Personalised recommendations