Skip to main content

Peracetic Acid

  • Chapter
  • First Online:
Antiseptic Stewardship

Abstract

Peracetic acid has bactericidal activity at 1.6% in 3–5 min, yeasticidal activity at 0.25% in 1 min, and mycobactericidal activity at 0.35% in 5 min. Some food-associated fungi or ascospores, however, are resistant. High MIC values indicating resistance to peracetic acid have so far not been reported but tolerant isolates of E. coli, L. monocytogenes and Salmonella spp. have been described after exposure to nalidixic acid or terpenes. An epidemiological cut-off value to determine acquired resistance has not been proposed yet. No specific resistance mechanisms are currently known for peracetic acid in medically relevant micro-organisms. No cross-tolerance to antibiotics has been reported but peracetic acid can transform different beta-lactam antibiotics in wastewater and help to reduce selection pressure. Low-level exposure does not change the susceptibility of S. enterica and L. monocytogenes but of E. coli. Virulence genes may be induced (S. aureus) or reduced (L. monocytogenes). S. Typhimurium survivors of low-level exposure may be viable but not culturable. Peracetic acid inhibits or even prevents biofilm formation. Biofilm fixation by peracetic acid is between 0 and 54% and depends on the formulation. Biofilm removal is mostly poor (0–63%) and also depends on the formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aarnisalo K, Lundén J, Korkeala H, Wirtanen G (2007) Susceptibility of Listeria monocytogenes strains to disinfectants and chlorinated alkaline cleaners at cold temperatures. LWT Food Sci Technol 40(6):1041–1048

    Article  CAS  Google Scholar 

  2. Akinbobola AB, Sherry L, McKay WG, Ramage G, Williams C (2017) Tolerance of Pseudomonas aeruginosa in in-vitro biofilms to high-level peracetic acid disinfection. J Hosp Infect 97(2):162–168. https://doi.org/10.1016/j.jhin.2017.06.024

    Article  PubMed  CAS  Google Scholar 

  3. Alfa MJ, DeGagne P, Olson N, Hizon R (1998) Comparison of liquid chemical sterilization with peracetic acid and ethylene oxide sterilization for long narrow lumens. Am J Infect Control 26(5):469–477. https://doi.org/10.1016/S0196-6553(98)70018-5

    Article  PubMed  CAS  Google Scholar 

  4. Alonso-Hernando A, Alonso-Calleja C, Capita R (2010) Effects of exposure to poultry chemical decontaminants on the membrane fluidity of Listeria monocytogenes and Salmonella enterica strains. Int J Food Microbiol 137(2–3):130–136. https://doi.org/10.1016/j.ijfoodmicro.2009.11.022

    Article  PubMed  CAS  Google Scholar 

  5. Anonymous (2010) Peracetic acid. In: Committee on Acute Exposure Guideline Levels (ed) Acute exposure guideline levels for selected airborne chemicals (vol 8). The National Academic Press, Washington, pp 327–367

    Google Scholar 

  6. Arias-Moliz MT, Ordinola-Zapata R, Baca P, Ruiz-Linares M, Garcia Garcia E, Hungaro Duarte MA, Monteiro Bramante C, Ferrer-Luque CM (2015) Antimicrobial activity of Chlorhexidine, Peracetic acid and Sodium hypochlorite/etidronate irrigant solutions against Enterococcus faecalis biofilms. Int Endod J 48(12):1188–1193. https://doi.org/10.1111/iej.12424

    Article  PubMed  CAS  Google Scholar 

  7. Bang HJ, Park SY, Kim SE, Rahaman MDF, Ha SD (2017) Synergistic effects of combined ultrasound and peroxyacetic acid treatments against Cronobacter sakazakii biofilms on fresh cucumber. LWT Food Sci Technol 84(Supplement C):91–98. https://doi.org/10.1016/j.lwt.2017.05.037

  8. Barton E, Borman A, Johnson E, Sherlock J, Giles A (2016) Pseudo-outbreak of Fusarium oxysporum associated with bronchoscopy. J Hosp Infect 94(2):197–198. https://doi.org/10.1016/j.jhin.2016.06.016

    Article  PubMed  CAS  Google Scholar 

  9. Belessi CE, Gounadaki AS, Psomas AN, Skandamis PN (2011) Efficiency of different sanitation methods on Listeria monocytogenes biofilms formed under various environmental conditions. Int J Food Microbiol 145(Suppl 1):S46–52. https://doi.org/10.1016/j.ijfoodmicro.2010.10.020

    Article  PubMed  Google Scholar 

  10. Biswal BK, Khairallah R, Bibi K, Mazza A, Gehr R, Masson L, Frigon D (2014) Impact of UV and peracetic acid disinfection on the prevalence of virulence and antimicrobial resistance genes in uropathogenic Escherichia coli in wastewater effluents. Appl Environ Microbiol 80(12):3656–3666. https://doi.org/10.1128/aem.00418-14

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bore E, Langsrud S (2005) Characterization of micro-organisms isolated from dairy industry after cleaning and fogging disinfection with alkyl amine and peracetic acid. J Appl Microbiol 98(1):96–105. https://doi.org/10.1111/j.1365-2672.2004.02436.x

    Article  PubMed  CAS  Google Scholar 

  12. Bradley CR, Babb JR, Ayliffe GA (1995) Evaluation of the steris system 1 peracetic acid endoscope processor. J Hosp Infect 29(2):143–151

    Article  CAS  PubMed  Google Scholar 

  13. Bridier A, Briandet R, Thomas V, Dubois-Brissonnet F (2011) Comparative biocidal activity of peracetic acid, benzalkonium chloride and ortho-phthalaldehyde on 77 bacterial strains. J Hosp Infect 78(3):208–213. https://doi.org/10.1016/j.jhin.2011.03.014

    Article  PubMed  CAS  Google Scholar 

  14. Bridier A, Dubois-Brissonnet F, Greub G, Thomas V, Briandet R (2011) Dynamics of the action of biocides in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 55(6):2648–2654. https://doi.org/10.1128/aac.01760-10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Bridier A, Sanchez-Vizuete Mdel P, Le Coq D, Aymerich S, Meylheuc T, Maillard JY, Thomas V, Dubois-Brissonnet F, Briandet R (2012) Biofilms of a Bacillus subtilis hospital isolate protect Staphylococcus aureus from biocide action. PLoS ONE 7(9):e44506. https://doi.org/10.1371/journal.pone.0044506

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Bundgaard-Nielsen K, Nielsen PV (1996) Fungicidal effect of 15 disinfectants against 25 fungal contaminants commonly found in bread and cheese manufacturing. J Food Prot 59(3):268–275

    Article  CAS  PubMed  Google Scholar 

  17. Burgess W, Margolis A, Gibbs S, Duarte RS, Jackson M (2017) Disinfectant susceptibility profiling of glutaraldehyde-resistant nontuberculous mycobacteria. Infect Control Hosp Epidemiol 38(7):784–791. https://doi.org/10.1017/ice.2017.75

    Article  PubMed  PubMed Central  Google Scholar 

  18. Cadnum JL, Jencson AL, O’Donnell MC, Flannery ER, Nerandzic MM, Donskey CJ (2017) An increase in healthcare-associated clostridium difficile infection associated with use of a defective peracetic acid-based surface disinfectant. Infect Control Hosp Epidemiol 38(3):300–305. https://doi.org/10.1017/ice.2016.275

    Article  PubMed  Google Scholar 

  19. Candeliere A, Campese E, Donatiello A, Pagano S, Iatarola M, Tolve F, Antonino L, Fasanella A (2016) Biocidal and sporicidal efficacy of pathoster ((R)) 0.35% and pathoster ((R)) 0.50% against bacterial agents in potential bioterrorism use. Health Security 14(4):250–257. https://doi.org/10.1089/hs.2016.0003

  20. Chang W, Small DA, Toghrol F, Bentley WE (2005) Microarray analysis of toxicogenomic effects of peracetic acid on Pseudomonas aeruginosa. Environ Sci Technol 39(15):5893–5899

    Article  CAS  PubMed  Google Scholar 

  21. Chang W, Toghrol F, Bentley WE (2006) Toxicogenomic response of Staphylococcus aureus to peracetic acid. Environ Sci Technol 40(16):5124–5131

    Article  CAS  PubMed  Google Scholar 

  22. Chenjiao W, Hongyan Z, Qing G, Xiaoqi Z, Liying G, Ying F (2016) In-use evaluation of peracetic acid for high-level disinfection of endoscopes. Gastroenterol Nursing: Off J Soc Gastroenterol Nurses Assoc 39(2):116–120. https://doi.org/10.1097/sga.0000000000000192

    Article  Google Scholar 

  23. Clapp PA, Davies MJ, French MS, Gilbert BC (1994) The bactericidal action of peroxides; an E.P.R. spin-trapping study. Free Radical Res 21(3):147–167

    Article  CAS  Google Scholar 

  24. Costa SA, Paula OF, Silva CR, Leao MV, Santos SS (2015) Stability of antimicrobial activity of peracetic acid solutions used in the final disinfection process. Brazilian Oral Res 29. https://doi.org/10.1590/1807-3107bor-2015.vol29.0038

  25. Cronmiller JR, Nelson DK, Jackson DK, Kim CH (1999) Efficacy of conventional endoscopic disinfection and sterilization methods against Helicobacter pylori contamination. Helicobacter 4(3):198–203

    Article  CAS  PubMed  Google Scholar 

  26. Cronmiller JR, Nelson DK, Salman G, Jackson DK, Dean RS, Hsu JJ, Kim CH (1999) Antimicrobial efficacy of endoscopic disinfection procedures: a controlled, multifactorial investigation. Gastrointest Endosc 50(2):152–158

    Article  CAS  PubMed  Google Scholar 

  27. Cruz CD, Fletcher GC (2012) Assessing manufacturers’ recommended concentrations of commercial sanitizers on inactivation of Listeria monocytogenes. Food Control 26(1):194–199. https://doi.org/10.1016/j.foodcont.2012.01.041

    Article  CAS  Google Scholar 

  28. Das JR, Bhakoo M, Jones MV, Gilbert P (1998) Changes in the biocide susceptibility of Staphylococcus epidermidis and Escherichia coli cells associated with rapid attachment to plastic surfaces. J Appl Microbiol 84(5):852–858

    Article  CAS  PubMed  Google Scholar 

  29. de Souza EL, Meira QG, de Medeiros Barbosa I, Athayde AJ, da Conceicao ML, de Siqueira Junior JP (2014) Biofilm formation by Staphylococcus aureus from food contact surfaces in a meat-based broth and sensitivity to sanitizers. Brazilian J Microbiol: [Publication of the Brazilian Society for Microbiology] 45(1):67–75

    Article  Google Scholar 

  30. Deshpande A, Mana TS, Cadnum JL, Jencson AC, Sitzlar B, Fertelli D, Hurless K, Kundrapu S, Sunkesula VC, Donskey CJ (2014) Evaluation of a sporicidal peracetic acid/hydrogen peroxide-based daily disinfectant cleaner. Infect Control Hosp Epidemiol 35(11):1414–1416. https://doi.org/10.1086/678416

    Article  PubMed  Google Scholar 

  31. Deva AK, Vickery K, Zou J, West RH, Selby W, Benn RA, Harris JP, Cossart YE (1998) Detection of persistent vegetative bacteria and amplified viral nucleic acid from in-use testing of gastrointestinal endoscopes. J Hosp Infect 39(2):149–157

    Article  CAS  PubMed  Google Scholar 

  32. Di Cesare A, Fontaneto D, Doppelbauer J, Corno G (2016) Fitness and recovery of bacterial communities and antibiotic resistance genes in urban wastewaters exposed to classical disinfection treatments. Environ Sci Technol 50(18):10153–10161. https://doi.org/10.1021/acs.est.6b02268

    Article  PubMed  CAS  Google Scholar 

  33. Dominciano LCC, Oliveira CAF, Lee SH, Corassin CH (2016) Individual and combined antimicrobial activity of oleuropein and chemical sanitizers. J Food Chem Nanotechnol 2(3):124–127

    Google Scholar 

  34. dos Anjos MM, Ruiz SP, Nakamura CV, de Abreu Filho BA (2013) Resistance of Alicyclobacillus acidoterrestris spores and biofilm to industrial sanitizers. J Food Prot 76(8):1408–1413. https://doi.org/10.4315/0362-028x.jfp-13-020

    Article  PubMed  Google Scholar 

  35. Dubois-Brissonnet F, Naitali M, Mafu AA, Briandet R (2011) Induction of fatty acid composition modifications and tolerance to biocides in Salmonella enterica serovar Typhimurium by plant-derived terpenes. Appl Environ Microbiol 77(3):906–910. https://doi.org/10.1128/aem.01480-10

    Article  PubMed  CAS  Google Scholar 

  36. Duc DL, Ribiollet A, Dode X, Ducel G, Marchetti B, Calop J (2001) Evaluation of the microbicidal efficacy of Steris System I for digestive endoscopes using GERMANDE and ASTM validation protocols. J Hosp Infect 48(2):135–141. https://doi.org/10.1053/jhin.2001.0900

    Article  PubMed  CAS  Google Scholar 

  37. El-Azizi M, Farag N, Khardori N (2016) Efficacy of selected biocides in the decontamination of common nosocomial bacterial pathogens in biofilm and planktonic forms. Comp Immunol Microbiol Infect Dis 47:60–71. https://doi.org/10.1016/j.cimid.2016.06.002

    Article  PubMed  Google Scholar 

  38. Espigares E, Bueno A, Espigares M, Galvez R (2006) Isolation of Salmonella serotypes in wastewater and effluent: effect of treatment and potential risk. Int J Hyg Environ Health 209(1):103–107. https://doi.org/10.1016/j.ijheh.2005.08.006

    Article  PubMed  CAS  Google Scholar 

  39. Espigares E, Bueno A, Fernandez-Crehuet M, Espigares M (2003) Efficacy of some neutralizers in suspension tests determining the activity of disinfectants. J Hosp Infect 55(2):137–140

    Article  CAS  PubMed  Google Scholar 

  40. Espigares E, Moreno Roldan E, Espigares M, Abreu R, Castro B, Dib AL, Arias A (2017) Phenotypic resistance to disinfectants and antibiotics in methicillin-resistant Staphylococcus aureus strains isolated from pigs. Zoonoses Public Health 64(4):272–280. https://doi.org/10.1111/zph.12308

    Article  PubMed  CAS  Google Scholar 

  41. European Chemicals Agency (ECHA) Peracetic acid. Substance information. https://echa.europa.eu/substance-information/-/substanceinfo/100.001.079. Accessed 25 Oct 2017

  42. European Chemicals Agency (ECHA) (2015) Opinion on the application for approval of the active substance: peracetic acid. Product-type: 2. ECHA/BPC/068/2015. https://echa.europa.eu/documents/10162/e10165ca10148f10165-10168c10158-10164baf-10168ced-10162ece65470ffa

  43. Exner M, Tuschewitzki GJ, Scharnagel J (1987) Influence of biofilms by chemical disinfectants and mechanical cleaning. Zentralbl Bakteriol Mikrobiol Hyg B 183(5–6):549–563

    PubMed  CAS  Google Scholar 

  44. Fagerlund A, Moretro T, Heir E, Briandet R, Langsrud S (2017) Cleaning and disinfection of biofilms composed of Listeria monocytogenes and background microbiota from meat processing surfaces. Appl Environ Microbiol. https://doi.org/10.1128/aem.01046-17

    Article  PubMed  PubMed Central  Google Scholar 

  45. Fatemi P, Frank JF (1999) Inactivation of Listeria monocytogenes/Pseudomonas biofilms by peracid sanitizers. J Food Prot 62(7):761–765

    Article  CAS  PubMed  Google Scholar 

  46. Finland (2015) Assessment report. Peracetic acid. Product-types 1–6

    Google Scholar 

  47. Foliente RL, Kovacs BJ, Aprecio RM, Bains HJ, Kettering JD, Chen YK (2001) Efficacy of high-level disinfectants for reprocessing GI endoscopes in simulated-use testing. Gastrointest Endosc 53(4):456–462. https://doi.org/10.1067/mge.2001.113380

    Article  PubMed  CAS  Google Scholar 

  48. Gilbert P, Das JR, Jones MV, Allison DG (2001) Assessment of resistance towards biocides following the attachment of micro-organisms to, and growth on, surfaces. J Appl Microbiol 91(2):248–254

    Article  CAS  PubMed  Google Scholar 

  49. Gkana EN, Giaouris ED, Doulgeraki AI, Kathariou S, Nychas GJE (2017) Biofilm formation by Salmonella Typhimurium and Staphylococcus aureus on stainless steel under either mono- or dual-species multi-strain conditions and resistance of sessile communities to sub-lethal chemical disinfection. Food Control 73 (Part B):838–846. https://doi.org/10.1016/j.foodcont.2016.09.038

  50. Gomes IB, Malheiro J, Mergulhao F, Maillard JY, Simoes M (2016) Comparison of the efficacy of natural-based and synthetic biocides to disinfect silicone and stainless steel surfaces. Pathog Dis 74(4):ftw014. https://doi.org/10.1093/femspd/ftw014

  51. Grasteau A, Guiraud T, Daniel P, Calvez S, Chesneau V, Le Hénaff M (2015) Evaluation of glutaraldehyde, chloramine-t, bronopol, incimaxx aquatic® and hydrogen peroxide as biocides against flavobacterium psychrophilum for sanitization of rainbow trout eyed eggs. J Aquac Res Develop 6(12):382

    Article  CAS  Google Scholar 

  52. Griffiths PA, Babb JR, Bradley CR, Fraise AP (1997) Glutaraldehyde-resistant Mycobacterium chelonae from endoscope washer disinfectors. J Appl Microbiol 82(4):519–526

    Article  CAS  PubMed  Google Scholar 

  53. Griffiths PA, Babb JR, Fraise AP (1999) Mycobactericidal activity of selected disinfectants using a quantitative suspension test. J Hosp Infect 41(2):111–121

    Article  CAS  PubMed  Google Scholar 

  54. Henoun Loukili N, Becker H, Harno J, Bientz M, Meunier O (2004) Effect of peracetic acid and aldehyde disinfectants on biofilm. J Hosp Infect 58(2):151–154

    Article  CAS  PubMed  Google Scholar 

  55. Hernández A, Martró E, Matas L, Ausina V (2003) In-vitro evaluation of Perasafe compared with 2% alkaline glutaraldehyde against Mycobacterium spp. J Hosp Infect 54(1):52–56

    Article  PubMed  Google Scholar 

  56. Hernández A, Martró E, Puzo C, Matas L, Burgués C, Vázquez N, Castella J, Ausina V (2003) In-use evaluation of Perasafe compared with Cidex in fibreoptic bronchoscope disinfection. J Hosp Infect 54(1):46–51

    Google Scholar 

  57. Herruzo R, Vizcaino MJ, Herruzo I (2010) Efficacy of a new peracetic acid-based disinfectant agent (‘Adaspor ready to use’). J Hosp Infect 74(2):192–193. https://doi.org/10.1016/j.jhin.2009.10.019

    Article  PubMed  CAS  Google Scholar 

  58. Holton J, Nye P, McDonald V (1994) Efficacy of selected disinfectants against mycobacteria and cryptosporidia. J Hosp Infect 27(2):105–115

    Article  CAS  PubMed  Google Scholar 

  59. Holton J, Shetty N, McDonald V (1995) Efficacy of ‘Nu-Cidex’ (0.35% peracetic acid) against mycobacteria and cryptosporidia. J Hosp Infect 31(3):235–237

    Article  CAS  PubMed  Google Scholar 

  60. Humphreys PN, Finan P, Rout S, Hewitt J, Thistlethwaite P, Barnes S, Pilling S (2013) A systematic evaluation of a peracetic-acid-based high performance disinfectant. J Infect Prevent 14(4):126–131. https://doi.org/10.1177/1757177413476125

    Article  Google Scholar 

  61. Jackson J, Leggett JE, Wilson DA, Gilbert DN (1996) Mycobacterium gordonae in fiberoptic bronchoscopes. Am J Infect Control 24(1):19–23

    Article  CAS  PubMed  Google Scholar 

  62. Jaglic Z, Červinková D, Vlková H, Michu E, Kunová G, Babák V (2012) Bacterial biofilms resist oxidising agents due to the presence of organic matter. Czech J Food Sci 30(2):178–187

    Article  CAS  Google Scholar 

  63. Jolivet-Gougeon A, Sauvager F, Arturo-Schaan M, Bonnaure-Mallet M, Cormier M (2003) Influence of peracetic acid on adhesion/invasion of Salmonella enterica serotype typhimurium LT2. Cell Biol Toxicol 19(2):83–93

    Article  CAS  PubMed  Google Scholar 

  64. Jolivet-Gougeon A, Sauvager F, Bonnaure-Mallet M, Colwell RR, Cormier M (2006) Virulence of viable but nonculturable S. Typhimurium LT2 after peracetic acid treatment. Int J Food Microbiol 112(2):147–152. https://doi.org/10.1016/j.ijfoodmicro.2006.06.019

    Article  PubMed  CAS  Google Scholar 

  65. Juncker JC (2016) COMMISSION IMPLEMENTING REGULATION (EU) 2016/672 of 29 April 2016 approving peracetic acid as an existing active substance for use in biocidal products for product-types 1, 2, 3, 4, 5 and 6. Off J Eur Union 59(L 116):3–7

    Google Scholar 

  66. Juncker JC (2016) COMMISSION IMPLEMENTING REGULATION (EU) 2016/2290 of 16 December 2016 approving peracetic acid as an existing active substance for use in biocidal products of product-types 11 and 12. Off J Eur Union 59(L 344):71–73

    Google Scholar 

  67. Kampf G (2017) Black box oxidizers. Infect Control Hosp Epidemiol 38(11):1387–1388. https://doi.org/10.1017/ice.2017.199

    Article  PubMed  Google Scholar 

  68. Kassaify ZG, El Hakim RG, Rayya EG, Shaib HA, Barbour EK (2007) Preliminary study on the efficacy and safety of eight individual and blended disinfectants against poultry and dairy indicator organisms. Veterinaria Italiana 43(4):821–830

    PubMed  Google Scholar 

  69. Kastbjerg VG, Gram L (2012) Industrial disinfectants do not select for resistance in Listeria monocytogenes following long term exposure. Int J Food Microbiol 160(1):11–15. https://doi.org/10.1016/j.ijfoodmicro.2012.09.009

    Article  PubMed  CAS  Google Scholar 

  70. Kastbjerg VG, Larsen MH, Gram L, Ingmer H (2010) Influence of sublethal concentrations of common disinfectants on expression of virulence genes in Listeria monocytogenes. Appl Environ Microbiol 76(1):303–309. https://doi.org/10.1128/aem.00925-09

    Article  PubMed  CAS  Google Scholar 

  71. Katara G, Hemvani N, Chitnis S, Chitnis V, Chitnis D (2016) Efficacy studies on peracetic acid against pathogenic microorganisms. J Patient Saf Infect Control 4(1):17–21. https://doi.org/10.4103/2214-207x.203545

    Article  Google Scholar 

  72. Kean R, Sherry L, Townsend E, McKloud E, Short B, Akinbobola A, Mackay WG, Williams C, Jones BL, Ramage G (2018) Surface disinfection challenges for Candida auris: an in-vitro study. J Hosp Infect 98(4):433–436. https://doi.org/10.1016/j.jhin.2017.11.015

    Article  PubMed  CAS  Google Scholar 

  73. Konrat K, Schwebke I, Laue M, Dittmann C, Levin K, Andrich R, Arvand M, Schaudinn C (2016) The bead assay for biofilms: a quick, easy and robust method for testing disinfectants. PLoS ONE 11(6):e0157663. https://doi.org/10.1371/journal.pone.0157663

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Korukluoglu M, Sahan Y, Yigit A (2006) The fungicidal efficacy of various commercial disinfectants used in the food industry. Ann Microbiol 56(4):325–330

    Article  CAS  Google Scholar 

  75. Köse H, Yapar N (2017) The comparison of various disinfectants’ efficacy on Staphylococcus aureus and Pseudomonas aeruginosa biofilm layers. Turkish J Med Sci 47(4):1287–1294

    Article  Google Scholar 

  76. Kostaki M, Chorianopoulos N, Braxou E, Nychas GJ, Giaouris E (2012) Differential biofilm formation and chemical disinfection resistance of sessile cells of Listeria monocytogenes strains under monospecies and dual-species (with Salmonella enterica) conditions. Appl Environ Microbiol 78(8):2586–2595. https://doi.org/10.1128/aem.07099-11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. La Scola B, Rolain J-M, Maurin M, Raoult D (2003) Can Whipple’s disease be transmitted by gastroscopes? Infect Control Hosp Epidemiol 24(3):191–194

    Article  PubMed  Google Scholar 

  78. Lagace L, Jacques M, Mafu AA, Roy D (2006) Biofilm formation and biocides sensitivity of Pseudomonas marginalis isolated from a maple sap collection system. J Food Prot 69(10):2411–2416

    Article  CAS  PubMed  Google Scholar 

  79. Lalueza P, Carmona D, Monzón M, Arruebo M, Santamaría J (2012) Strong bactericidal synergy between peracetic acid and silver-exchanged zeolites. Microporous Mesoporous Mater 156(Supplement C):171–175. https://doi.org/10.1016/j.micromeso.2012.02.035

  80. Langsrud S, Moretro T, Sundheim G (2003) Characterization of Serratia marcescens surviving in disinfecting footbaths. J Appl Microbiol 95(1):186–195

    Article  CAS  PubMed  Google Scholar 

  81. Lee SH, Cappato LP, Corassin CH, Cruz AG, Oliveira CA (2016) Effect of peracetic acid on biofilms formed by Staphylococcus aureus and Listeria monocytogenes isolated from dairy plants. J Dairy Sci 99(3):2384–2390. https://doi.org/10.3168/jds.2015-10007

    Article  PubMed  CAS  Google Scholar 

  82. Lorena NS, Pitombo MB, Cortes PB, Maya MC, Silva MG, Carvalho AC, Coelho FS, Miyazaki NH, Marques EA, Chebabo A, Freitas AD, Lupi O, Duarte RS (2010) Mycobacterium massiliense BRA100 strain recovered from postsurgical infections: resistance to high concentrations of glutaraldehyde and alternative solutions for high level disinfection. Acta cirurgica brasileira 25(5):455–459

    Article  PubMed  Google Scholar 

  83. Loukili NH, Granbastien B, Faure K, Guery B, Beaucaire G (2006) Effect of different stabilized preparations of peracetic acid on biofilm. J Hosp Infect 63(1):70–72. https://doi.org/10.1016/j.jhin.2005.11.015

    Article  PubMed  Google Scholar 

  84. Luprano ML, De Sanctis M, Del Moro G, Di Iaconi C, Lopez A, Levantesi C (2016) Antibiotic resistance genes fate and removal by a technological treatment solution for water reuse in agriculture. Sci Total Environ 571:809–818. https://doi.org/10.1016/j.scitotenv.2016.07.055

    Article  PubMed  CAS  Google Scholar 

  85. Lynam PA, Babb JR, Fraise AP (1995) Comparison of the mycobactericidal activity of 2% alkaline glutaraldehyde and ‘Nu-Cidex’ (0.35% peracetic acid). J Hosp Infect 30(3):237–240

    Article  CAS  PubMed  Google Scholar 

  86. Mariscal A, Lopez-Gigosos RM, Carnero-Varo M, Fernandez-Crehuet J (2009) Fluorescent assay based on resazurin for detection of activity of disinfectants against bacterial biofilm. Appl Microbiol Biotechnol 82(4):773–783. https://doi.org/10.1007/s00253-009-1879-x

    Article  PubMed  CAS  Google Scholar 

  87. Martín-Espada MC, D’ors A, Bartolomé MC, Pereira M, Sánchez-Fortún S (2014) Peracetic acid disinfectant efficacy against Pseudomonas aeruginosa biofilms on polystyrene surfaces and comparison between methods to measure it. LWT Food Sci Technol 56(1):58–61

    Google Scholar 

  88. Martin DJ, Denyer SP, McDonnell G, Maillard JY (2008) Resistance and cross-resistance to oxidising agents of bacterial isolates from endoscope washer disinfectors. J Hosp Infect 69(4):377–383. https://doi.org/10.1016/j.jhin.2008.04.010

    Article  PubMed  CAS  Google Scholar 

  89. Meade E, Garvey M (2018) Efficacy testing of novel chemical disinfectants on clinically relevant microbial pathogens. Am J Infect Control 46(1):44–49. https://doi.org/10.1016/j.ajic.2017.07.001

    Article  PubMed  CAS  Google Scholar 

  90. Melo RT, Mendonca EP, Monteiro GP, Siqueira MC, Pereira CB, Peres P, Fernandez H, Rossi DA (2017) Intrinsic and extrinsic aspects on Campylobacter jejuni biofilms. Front Microbiol 8:1332. https://doi.org/10.3389/fmicb.2017.01332

    Article  PubMed  PubMed Central  Google Scholar 

  91. Meylheuc T, Renault M, Bellon-Fontaine MN (2006) Adsorption of a biosurfactant on surfaces to enhance the disinfection of surfaces contaminated with Listeria monocytogenes. Int J Food Microbiol 109(1–2):71–78. https://doi.org/10.1016/j.ijfoodmicro.2006.01.013

    Article  PubMed  CAS  Google Scholar 

  92. Middleton AM, Chadwick MV, Gaya H (1997) Disinfection of bronchoscopes, contaminated in vitro with Mycobacterium tuberculosis, Mycobacterium avium-intracellulare and Mycobacterium chelonae in sputum, using stabilized, buffered peracetic acid solution (‘Nu-Cidex’). J Hosp Infect 37(2):137–143

    Article  CAS  PubMed  Google Scholar 

  93. Montebugnoli L, Chersoni S, Prati C, Dolci G (2004) A between-patient disinfection method to control water line contamination and biofilm inside dental units. J Hosp Infect 56(4):297–304. https://doi.org/10.1016/j.jhin.2004.01.015

    Article  PubMed  CAS  Google Scholar 

  94. Nakayama M, Hosoya K, Tomiyama D, Tsugukuni T, Matsuzawa T, Imanishi Y, Yaguchi T (2013) Method for rapid detection and identification of chaetomium and evaluation of resistance to peracetic acid. J Food Prot 76(6):999–1005. https://doi.org/10.4315/0362-028x.jfp-12-543

    Article  PubMed  CAS  Google Scholar 

  95. Neo SY, Lim PY, Phua LK, Khoo GH, Kim SJ, Lee SC, Yuk HG (2013) Efficacy of chlorine and peroxyacetic acid on reduction of natural microflora, Escherichia coli O157:H7, Listeria monocyotgenes and Salmonella spp. on mung bean sprouts. Food Microbiol 36(2):475–480. https://doi.org/10.1016/j.fm.2013.05.001

    Article  PubMed  CAS  Google Scholar 

  96. Neves MS, da Silva MG, Ventura GM, Cortes PB, Duarte RS, de Souza HS (2016) Effectiveness of current disinfection procedures against biofilm on contaminated GI endoscopes. Gastrointest Endosc 83(5):944–953. https://doi.org/10.1016/j.gie.2015.09.016

    Article  PubMed  Google Scholar 

  97. Ntsama-Essomba C, Bouttier S, Ramaldes M, Dubois-Brissonnet F, Fourniat J (1997) Resistance of Escherichia coli growing as biofilms to disinfectants. Vet Res 28(4):353–363

    PubMed  CAS  Google Scholar 

  98. Penna TC, Mazzola PG, Silva Martins AM (2001) The efficacy of chemical agents in cleaning and disinfection programs. BMC Infect Dis 1:16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Pineau L, Desbuquois C, Marchetti B, Luu Duc D (2008) Comparison of the fixative properties of five disinfectant solutions. J Hosp Infect 68(2):171–177. https://doi.org/10.1016/j.jhin.2007.10.021

    Article  PubMed  CAS  Google Scholar 

  100. Pires RH, da Silva Jde F, Gomes Martins CH, Fusco Almeida AM, Pienna Soares C, Soares Mendes-Giannini MJ (2013) Effectiveness of disinfectants used in hemodialysis against both Candida orthopsilosis and C. parapsilosis sensu stricto biofilms. Antimicrob Agents Chemother 57(5):2417–2421. https://doi.org/10.1128/aac.01308-12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Poimenidou SV, Chrysadakou M, Tzakoniati A, Bikouli VC, Nychas GJ, Skandamis PN (2016) Variability of Listeria monocytogenes strains in biofilm formation on stainless steel and polystyrene materials and resistance to peracetic acid and quaternary ammonium compounds. Int J Food Microbiol 237:164–171. https://doi.org/10.1016/j.ijfoodmicro.2016.08.029

    Article  PubMed  CAS  Google Scholar 

  102. Reis L, Zanetti AL, Castro Junior OV, Martinez EF (2012) Use of 0.25% and 0.025% peracetic acid as disinfectant agent for chemically activated acrylic resin: an in vitro study. Rev Gaúcha Odontol 60(3):315–320

    Google Scholar 

  103. Ruckerl I, Muhterem-Uyar M, Muri-Klinger S, Wagner KH, Wagner M, Stessl B (2014) L. monocytogenes in a cheese processing facility: Learning from contamination scenarios over three years of sampling. Int J Food Microbiol 189:98–105. https://doi.org/10.1016/j.ijfoodmicro.2014.08.001

    Article  PubMed  CAS  Google Scholar 

  104. Saa Ibusquiza P, Herrera JJ, Cabo ML (2011) Resistance to benzalkonium chloride, peracetic acid and nisin during formation of mature biofilms by Listeria monocytogenes. Food Microbiol 28(3):418–425. https://doi.org/10.1016/j.fm.2010.09.014

    Article  PubMed  CAS  Google Scholar 

  105. Sagripanti J-L, Eklund CA, Trost PA, Jinneman KC, Abeyta C, Kaysner CA, Hill WE (1997) Comparative sensitivity of 13 species of pathogenic bacteria to seven chemical germicides. Am J Infect Control 25(4):335–339

    Article  CAS  PubMed  Google Scholar 

  106. Sattar SA, Kibbee RJ, Tetro JA, Rook TA (2006) Experimental evaluation of an automated endoscope reprocessor with in situ generation of peracetic acid for disinfection of semicritical devices. Infect Control Hosp Epidemiol 27(11):1193–1199. https://doi.org/10.1086/508830

    Article  PubMed  Google Scholar 

  107. Shetty N, Srinivasan S, Holton J, Ridgway GL (1999) Evaluation of microbicidal activity of a new disinfectant: Sterilox 2500 against Clostridium difficile spores, Helicobacter pylori, vancomycin resistant Enterococcus species, Candida albicans and several Mycobacterium species. J Hosp Infect 41:101–105

    Article  CAS  PubMed  Google Scholar 

  108. Sisti M, Brandi G, De Santi M, Rinaldi L, Schiavano GF (2012) Disinfection efficacy of chlorine and peracetic acid alone or in combination against Aspergillus spp. and Candida albicans in drinking water. J Water Health 10(1):11–19. https://doi.org/10.2166/wh.2011.150

    Article  PubMed  CAS  Google Scholar 

  109. Sofokleous P, Ali S, Wilson P, Buanz A, Gaisford S, Mistry D, Fellows A, Day RM (2017) Sustained antimicrobial activity and reduced toxicity of oxidative biocides through biodegradable microparticles. Acta Biomater 64:301–312. https://doi.org/10.1016/j.actbio.2017.10.001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Sorin M, Segal-Maurer S, Mariano N, Urban C, Combest A, Rahal JJ (2001) Nosocomial transmission of imipenem-resistant Pseudomonas aeruginosa following bronchoscopy associated with improper connection to the Steris System 1 processor. Infect Control Hosp Epidemiol 22(7):409–413. https://doi.org/10.1086/501925

    Article  PubMed  CAS  Google Scholar 

  111. Stanley PM (1999) Efficacy of peroxygen compounds against glutaraldehyde-resistant mycobacteria. Am J Infect Control 27(4):339–343

    Article  CAS  PubMed  Google Scholar 

  112. Stigt JA, Wolfhagen MJ, Smulders P, Lammers V (2015) The Identification of Stenotrophomonas maltophilia contamination in ultrasound endoscopes and reproduction of decontamination failure by deliberate soiling tests. Respiration; Int Rev Thoracic Dis 89(6):565–571. https://doi.org/10.1159/000381725

    Article  Google Scholar 

  113. Stopforth JD, Samelis J, Sofos JN, Kendall PA, Smith GC (2003) Influence of extended acid stressing in fresh beef decontamination runoff fluids on sanitizer resistance of acid-adapted Escherichia coli O157:H7 in biofilms. J Food Prot 66(12):2258–2266

    Article  PubMed  Google Scholar 

  114. Surdeau N, Laurent-Maquin D, Bouthors S, Gelle MP (2006) Sensitivity of bacterial biofilms and planktonic cells to a new antimicrobial agent, Oxsil 320N. J Hosp Infect 62(4):487–493. https://doi.org/10.1016/j.jhin.2005.09.003

    Article  PubMed  CAS  Google Scholar 

  115. Tote K, Horemans T, Vanden Berghe D, Maes L, Cos P (2010) Inhibitory effect of biocides on the viable masses and matrices of Staphylococcus aureus and Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 76(10):3135–3142. https://doi.org/10.1128/aem.02095-09

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Trachoo N, Frank JF (2002) Effectiveness of chemical sanitizers against Campylobacter jejuni-containing biofilms. J Food Prot 65(7):1117–1121

    Article  CAS  PubMed  Google Scholar 

  117. Turolla A, Sabatino R, Fontaneto D, Eckert EM, Colinas N, Corno G, Citterio B, Biavasco F, Antonelli M, Mauro A, Mangiaterra G, Di Cesare A (2017) Defence strategies and antibiotic resistance gene abundance in enterococci under stress by exposure to low doses of peracetic acid. Chemosphere 185:480–488. https://doi.org/10.1016/j.chemosphere.2017.07.032

    Article  PubMed  CAS  Google Scholar 

  118. United States Environmental Protection Agency (1993) EPA R.E.D. Facts. Peroxy Compounds. https://www3.epa.gov/pesticides/chem_search/reg_actions/reregistration/red_G-67_1-Dec-93.pdf

  119. van der Veen S, Abee T (2010) HrcA and DnaK are important for static and continuous-flow biofilm formation and disinfectant resistance in Listeria monocytogenes. Microbiology (Reading, England) 156(Pt 12):3782–3790. https://doi.org/10.1099/mic.0.043000-0

  120. van der Veen S, Abee T (2011) Mixed species biofilms of Listeria monocytogenes and Lactobacillus plantarum show enhanced resistance to benzalkonium chloride and peracetic acid. Int J Food Microbiol 144(3):421–431. https://doi.org/10.1016/j.ijfoodmicro.2010.10.029

    Article  PubMed  CAS  Google Scholar 

  121. van Klingeren B, Pullen W (1993) Glutaraldehyde resistant mycobacteria from endoscope washers. J Hosp Infect 25(2):147–149

    Article  PubMed  Google Scholar 

  122. Vázquez-Sánchez D, Cabo ML, Ibusquiza PS, Rodríguez-Herrera JJ (2014) Biofilm-forming ability and resistance to industrial disinfectants of Staphylococcus aureus isolated from fishery products. Food Control 39(Supplement C):8–16. https://doi.org/10.1016/j.foodcont.2013.09.029

  123. Verner–Jeffreys DW, Joiner CL, Bagwell NJ, Reese RA, Husby A, Dixon PF (2009) Development of bactericidal and virucidal testing standards for aquaculture disinfectants. Aquaculture 286(3):190–197. https://doi.org/10.1016/j.aquaculture.2008.10.001

  124. Vesley D, Melson J, Stanley P (1999) Microbial bioburden in endoscope reprocessing and an in-use evaluation of the high-level disinfection capabilities of Cidex PA. Gastroenterol Nursing: Off J Soc Gastroenterol Nurses Assoc 22(2):63–68

    Article  CAS  Google Scholar 

  125. Vieira CD, Farias Lde M, Diniz CG, Alvarez-Leite ME, Camargo ER, Carvalho MA (2005) New methods in the evaluation of chemical disinfectants used in health care services. Am J Infect Control 33(3):162–169. https://doi.org/10.1016/j.ajic.2004.10.007

    Article  PubMed  Google Scholar 

  126. Vizcaino-Alcaide MJ, Herruzo-Cabrera R, Fernandez-Acenero MJ (2003) Comparison of the disinfectant efficacy of Perasafe and 2% glutaraldehyde in in vitro tests. J Hosp Infect 53:124–128

    Article  CAS  PubMed  Google Scholar 

  127. Walsh SE, Maillard JY, Russell AD (1999) Ortho-phthalaldehyde: a possible alternative to glutaraldehyde for high level disinfection. J Appl Microbiol 86(6):1039–1046

    Article  CAS  PubMed  Google Scholar 

  128. Wang GQ, Zhang CW, Liu HC, Chen ZB (2005) Comparison of susceptibilities of M. tuberculosis H37Ra and M. chelonei subsp. abscessus to disinfectants. Biomed Environ Sci: BES 18(2):124–127

    Google Scholar 

  129. Wessels S, Ingmer H (2013) Modes of action of three disinfectant active substances: a review. Regul Toxicol Pharmacol: RTP 67(3):456–467. https://doi.org/10.1016/j.yrtph.2013.09.006

    Article  PubMed  CAS  Google Scholar 

  130. Witney AA, Gould KA, Pope CF, Bolt F, Stoker NG, Cubbon MD, Bradley CR, Fraise A, Breathnach AS, Butcher PD, Planche TD, Hinds J (2014) Genome sequencing and characterization of an extensively drug-resistant sequence type 111 serotype O12 hospital outbreak strain of Pseudomonas aeruginosa. Clin Microbiol Infect 20(10):O609–618. https://doi.org/10.1111/1469-0691.12528

    Article  PubMed  CAS  Google Scholar 

  131. Wuthiekanun V, Wongsuwan G, Pangmee S, Teerawattanasook N, Day NP, Peacock SJ (2011) Perasafe, Virkon and bleach are bactericidal for Burkholderia pseudomallei, a select agent and the cause of melioidosis. J Hosp Infect 77(2):183–184. https://doi.org/10.1016/j.jhin.2010.06.026

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Zanotto C, Bissa M, Illiano E, Mezzanotte V, Marazzi F, Turolla A, Antonelli M, De Giuli Morghen C, Radaelli A (2016) Identification of antibiotic-resistant Escherichia coli isolated from a municipal wastewater treatment plant. Chemosphere 164:627–633. https://doi.org/10.1016/j.chemosphere.2016.08.040

    Article  PubMed  CAS  Google Scholar 

  133. Zhang K, Zhou X, Du P, Zhang T, Cai M, Sun P, Huang CH (2017) Oxidation of beta-lactam antibiotics by peracetic acid: reaction kinetics, product and pathway evaluation. Water Res 123:153–161. https://doi.org/10.1016/j.watres.2017.06.057

    Article  PubMed  CAS  Google Scholar 

  134. Zook CD, Busta FF, Brady LJ (2001) Sublethal sanitizer stress and adaptive response of Escherichia coli O157:H7. J Food Prot 64(6):767–769

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Günter Kampf .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kampf, G. (2018). Peracetic Acid. In: Antiseptic Stewardship. Springer, Cham. https://doi.org/10.1007/978-3-319-98785-9_5

Download citation

Publish with us

Policies and ethics