• Günter KampfEmail author


Propan-2-ol has bactericidal activity at 70%. It is effective against C. albicans at 50% in 5 min. Some food-associated fungi require at least 10 min exposure time with 70% propan-2-ol. A tuberculocidal activity has been described for 60% propan-2-ol in 5 min. High MIC values indicating resistance to propan-2-ol have so far not been reported but an increased tolerance to E. faecium is possible. An epidemiological cut-off value to determine acquired resistance has not been proposed yet. No specific resistance mechanisms are currently known for propan-2-ol, and no cross-tolerance to antibiotics has been reported. Low-level propan-2-ol exposure (1–6%) can increase biofilm formation in S. aureus, and 2.5% propan-2-ol can increase surface attachment in L. monocytogenes. Biofilm development of C. albicans can be inhibited by 2% propan-2-ol. The susceptibility to propan-2-ol can be significantly decrease by exposure of E. coli to sublethal concentrations. Propan-2-ol between 40 and 95% can significantly increase biofilm formation in S. aureus. The effect of propan-2-ol at use concentrations on biofilm fixation is unknown. Biofilm removal by 70% propan-2-ol is very low with 0% in P. aeruginosa and S. aureus.


  1. 1.
    Adams D, Quayum M, Worthington T, Lambert P, Elliott T (2005) Evaluation of a 2% chlorhexidine gluconate in 70% isopropyl alcohol skin disinfectant. J Hosp Infect 61(4):287–290CrossRefPubMedGoogle Scholar
  2. 2.
    Boyce JM (2018) Alcohols as surface disinfectants in healthcare settings. Infect Control Hosp Epidemiol 39(3):323–328. Scholar
  3. 3.
    Bundgaard-Nielsen K, Nielsen PV (1996) Fungicidal effect of 15 disinfectants against 25 fungal contaminants commonly found in bread and cheese manufacturing. J Food Prot 59(3):268–275CrossRefPubMedGoogle Scholar
  4. 4.
    Chaieb K, Zmantar T, Souiden Y, Mahdouani K, Bakhrouf A (2011) XTT assay for evaluating the effect of alcohols, hydrogen peroxide and benzalkonium chloride on biofilm formation of Staphylococcus epidermidis. Microb Pathog 50(1):1–5. Scholar
  5. 5.
    Chand S, Saha K, Singh PK, Sri S, Malik N (2016) Determination of minimum inhibitory concentration (MIC) of routinely used disinfectants against microflora isolated from clean rooms. Int J Curr Microbiol Appl Sci 5(1):334–341CrossRefGoogle Scholar
  6. 6.
    Chauhan NM, Shinde RB, Karuppayil SM (2013) Effect of alcohols on filamentation, growth, viability and biofilm development in Candida albicans. Brazilian J Microbiol [Publication of the Brazilian Society for Microbiology] 44(4):1315–1320. Scholar
  7. 7.
    Chiang SR, Jung F, Tang HJ, Chen CH, Chen CC, Chou HY, Chuang YC (2017) Desiccation and ethanol resistances of multidrug resistant Acinetobacter baumannii embedded in biofilm: the favorable antiseptic efficacy of combination chlorhexidine gluconate and ethanol. J Microbiol Immunol infection = Wei mian yu gan ran za zhi.
  8. 8.
    Costa DM, Lopes LKO, Hu H, Tipple AFV, Vickery K (2017) Alcohol fixation of bacteria to surgical instruments increases cleaning difficulty and may contribute to sterilization inefficacy. Am J Infect Control 45(8):e81–e86. Scholar
  9. 9.
    Department of Health and Human Services; Food and Drug Administration (1994) Tentative final monograph for health care antiseptic products; proposed rule. Fed Reg 59(116):31401–31452Google Scholar
  10. 10.
    Department of Health and Human Services; Food and Drug Administration (2015) Safety and effectiveness of healthcare antiseptics. Topical antimicrobial drug products for over-the-counter human use; proposed amendment of the tentative final monograph; reopening of administrative record; proposed rule. Fed Reg 80(84):25166–25205Google Scholar
  11. 11.
    Eaton T (2009) Cleanroom airborne particulate limits and 70% isopropyl alcohol: a lingering problem for pharmaceutical manufacturing? PDA J Pharm Sci Technol 63(6):559–567PubMedGoogle Scholar
  12. 12.
    EN 1500:2013 (2013) Chemical disinfectants and antiseptics. Hygienic hand disinfection. Test method and requirement (phase 2, step 2). In: CEN—Comité Européen de Normalisation, BrusselsGoogle Scholar
  13. 13.
    Epstein F (1896) Zur Frage der Alkoholdesinfektion. Z Hyg 24:1–21Google Scholar
  14. 14.
    European Chemicals Agency (ECHA) Propan-2-ol. Substance information. Accessed 27 Sept 2017
  15. 15.
    Frobisher M (1953) A study of the effect of alcohols on tubercle bacilli and other bacteria in sputum. Am Rev Tuberc 68:419–424PubMedGoogle Scholar
  16. 16.
    Gershenfeld L (1938) The sterility of alcohol. Am J Med Sci 195(3):358–360CrossRefGoogle Scholar
  17. 17.
    Gravesen A, Lekkas C, Knochel S (2005) Surface attachment of Listeria monocytogenes is induced by sublethal concentrations of alcohol at low temperatures. Appl Environ Microbiol 71(9):5601–5603. Scholar
  18. 18.
    Gutierrez-Martin CB, Yubero S, Martinez S, Frandoloso R, Rodriguez-Ferri EF (2011) Evaluation of efficacy of several disinfectants against Campylobacter jejuni strains by a suspension test. Res Vet Sci 91(3):e44–47. Scholar
  19. 19.
    Harrington C, Walker H (1903) The germicidal action of alcohol. Boston Med Surg J 148(21):548–552CrossRefGoogle Scholar
  20. 20.
    Horinouchi T, Sakai A, Kotani H, Tanabe K, Furusawa C (2017) Improvement of isopropanol tolerance of Escherichia coli using adaptive laboratory evolution and omics technologies. J Biotechnol 255:47–56. Scholar
  21. 21.
    Jabbar U, Leischner J, Kasper D, Gerber R, Sambol SP, Parada JP, Johnson S, Gerding DN (2010) Effectiveness of alcohol-based hand rubs for removal of Clostridium difficile spores from hands. Infect Control Hosp Epidemiol 31(6):565–570. Scholar
  22. 22.
    Juncker JC (2015) COMMISSION IMPLEMENTING REGULATION (EU) 2015/407 of 11 March 2015 approving propan-2-ol as an active substance for use in biocidal products for product-types 1, 2 and 4. Off J Eur Union 58(L 67):15–17Google Scholar
  23. 23.
    Kampf G (2017) Iso-propanol. In: Kampf G (ed) Kompendium Händehygiene. mhp-Verlag, Wiesbaden, pp 362–375Google Scholar
  24. 24.
    Kampf G, Höfer M, Wendt C (1999) Efficacy of hand disinfectants against vancomycin-resistant enterococci in vitro. J Hosp Infect 42(2):143–150CrossRefPubMedGoogle Scholar
  25. 25.
    Kampf G, Hollingsworth A (2003) Validity of the four European test strains of prEN 12054 for the determination of comprehensive bactericidal activity of an alcohol-based hand rub. J Hosp Infect 55(3):226–231CrossRefPubMedGoogle Scholar
  26. 26.
    Kampf G, Jarosch R, Rüden H (1998) Limited effectiveness of chlorhexidine based hand disinfectants against methicillin-resistant Staphylococcus aureus (MRSA). J Hosp Infect 38(4):297–303CrossRefPubMedGoogle Scholar
  27. 27.
    Kampf G, Meyer B, Goroncy-Bermes P (2003) Comparison of two test methods for the determination of sufficient antimicrobial efficacy of three different alcohol-based hand rubs for hygienic hand disinfection. J Hosp Infect 55(3):220–225CrossRefPubMedGoogle Scholar
  28. 28.
    Kampf G, Ostermeyer C (2002) Intra-laboratory reproducibility of the hand hygiene reference procedures of EN 1499 (hygienic hand wash) and EN 1500 (hygienic hand disinfection). J Hosp Infect 52(3):219–224CrossRefPubMedGoogle Scholar
  29. 29.
    Kampf G, Ostermeyer C (2003) Inter-laboratory reproducibility of the EN 1500 reference hand disinfection. J Hosp Infect 53(4):304–306CrossRefPubMedGoogle Scholar
  30. 30.
    Kampf G, Ostermeyer C (2009) A 1-minute hand wash does not impair the efficacy of a propanol-based hand rub in two consecutive surgical hand disinfection procedures. Eur J Clin Microbiol Infect Dis 28(11):1357–1362CrossRefPubMedGoogle Scholar
  31. 31.
    Kampf G, Ostermeyer C, Heeg P (2005) Surgical hand disinfection with a propanol-based hand rub: equivalence of shorter application times. J Hosp Infect 59(4):304–310CrossRefPubMedGoogle Scholar
  32. 32.
    Kampf G, Ostermeyer C, Kohlmann T (2008) Bacterial population kinetics on hands during 2 consecutive surgical hand disinfection procedures. Am J Infect Control 36(5):369–374CrossRefPubMedGoogle Scholar
  33. 33.
    Kiesow A, Sarembe S, Pizzey RL, Axe AS, Bradshaw DJ (2016) Material compatibility and antimicrobial activity of consumer products commonly used to clean dentures. J Prosthet Dent 115 (2):189–198.e188.
  34. 34.
    Knobloch JK, Horstkotte MA, Rohde H, Kaulfers PM, Mack D (2002) Alcoholic ingredients in skin disinfectants increase biofilm expression of staphylococcus epidermidis. J Antimicrob Chemother 49(4):683–687CrossRefPubMedGoogle Scholar
  35. 35.
    Konrat K, Schwebke I, Laue M, Dittmann C, Levin K, Andrich R, Arvand M, Schaudinn C (2016) The bead assay for biofilms: a quick, easy and robust method for testing disinfectants. PLoS ONE 11(6):e0157663. Scholar
  36. 36.
    Kratz F, Grass S, Umanskaya N, Scheibe C, Muller-Renno C, Davoudi N, Hannig M, Ziegler C (2015) Cleaning of biomaterial surfaces: protein removal by different solvents. Colloids Surf, B 128:28–35. Scholar
  37. 37.
    Lens C, Malet G, Cupferman S (2016) Antimicrobial activity of butyl acetate, ethyl acetate and Isopropyl alcohol on undesirable microorganisms in cosmetic products. Int J Cosmet Sci 38(5):476–480. Scholar
  38. 38.
    Luther MK, Bilida S, Mermel LA, LaPlante KL (2015) Ethanol and Isopropyl alcohol exposure increases biofilm formation in staphylococcus aureus and staphylococcus epidermidis. Infect Dis Ther 4(2):219–226. Scholar
  39. 39.
    Messager S, Goddard PA, Dettmar PW, Maillard JY (2001) Determination of the antibacterial efficacy of several antiseptics tested on skin by an ‘ex-vivo’ test. J Med Microbiol 50(3):284–292. Scholar
  40. 40.
    Mohammad BT, Wright PC, Bustard MT (2006) Bioconversion of isopropanol by a solvent tolerant Sphingobacterium mizutae strain. J Ind Microbiol Biotechnol 33(12):975–983.
  41. 41.
    National Center for Biotechnology Information Isopropanol. PubChem Compound Database; CID = 3776. Accessed 27 Sept 2017
  42. 42.
    Neufeld F, Schiemann O (1939) Über die Wirkung des Alkohols bei der Händedesinfektion. Z Hyg 121:312–333Google Scholar
  43. 43.
    Pidot SJ, Gao W, Buultjens AH, Monk IR, Guerillot R, Carter GP et al. (2018) Increasing tolerance of hospital Enterococcus faecium to handwash alcohols. Sci Transl Med. 10(452) eaar6115.
  44. 44.
    Rabenau HF, Steinmann J, Rapp I, Schwebke I, Eggers M (2014) Evaluation of a virucidal quantitative carrier test for surface disinfectants. PLoS ONE 9(1):e86128.
  45. 45.
    Reinicke EA (1894) Bakteriologische Untersuchungen über die Desinfektion der Hände. Zentralbl Gynäkol 47:1189–1199Google Scholar
  46. 46.
    Rizzotti L, Rossi F, Torriani S (2016) Biocide and antibiotic resistance of Enterococcus faecalis and Enterococcus faecium isolated from the swine meat chain. Food Microbiol 60:160–164.
  47. 47.
    Rodriguez Ferri EF, Martinez S, Frandoloso R, Yubero S, Gutierrez Martin CB (2010) Comparative efficacy of several disinfectants in suspension and carrier tests against Haemophilus parasuis serovars 1 and 5. Res Vet Sci 88(3):385–389.
  48. 48.
    Rotter ML, Kampf G, Suchomel M, Kundi M (2007) Long-term effect of a 1.5 minute surgical hand rub with a propanol-based product on the resident hand flora. J Hosp Infect 66(1):84–85Google Scholar
  49. 49.
    Rotter ML, Kampf G, Suchomel M, Kundi M (2007) Population kinetics of the skin flora on gloved hands following surgical hand disinfection with 3 propanol-based hand rubs: a prospective, randomized, double-blind trial. Infect Control Hosp Epidemiol 28(3):346–350Google Scholar
  50. 50.
    Salo S, Wirtanen G (2005) Disinfectant efficacy on foodborne spoilage yeast strains. Food Bioprod Process 83(4):288–296Google Scholar
  51. 51.
    Singh S, Acharya S, Bhat M, Rao SK, Pentapati KC (2010) Mobile phone hygiene: potential risks posed by use in the clinics of an Indian dental school. J Dent Educ 74(10):1153–1158Google Scholar
  52. 52.
    Taha M, Kalab M, Yi QL, Landry C, Greco-Stewart V, Brassinga AK, Sifri CD, Ramirez-Arcos S (2014) Biofilm-forming skin microflora bacteria are resistant to the bactericidal action of disinfectants used during blood donation. Transfusion 54(11):2974–2982.
  53. 53.
    Tote K, Horemans T, Vanden Berghe D, Maes L, Cos P (2010) Inhibitory effect of biocides on the viable masses and matrices of Staphylococcus aureus and Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 76(10):3135–3142.
  54. 54.
    United States Environmental Protection Agency (1995) Reregistration eligibility decision (RED) aliphatic alcohols.
  55. 55.
    van Klingeren B, Pullen W (1987) Comparative testing of disinfectants against Mycobacterium tuberculosis and Mycobacterium terrae in a quantitative suspension test. J Hosp Infect 10(3):292–298.
  56. 56.
    Wewalka G, Rotter M, Koller W, Stanek G (1977) Wirkungsvergleich von 14 Verfahren zur hygienischen Händedesinfektion. Zentralblatt für Bakteriologie und Hygiene, I Abt Orig B 165:242–249Google Scholar
  57. 57.
    WHO (2009) WHO guidelines on hand hygiene in health care. First Global Patient Safety Challenge Clean Care is Safer Care. WHO, GenevaGoogle Scholar
  58. 58.
    WHO (2015) WHO model list of essential medicines. WHO.
  59. 59.
    WHO (2016) Global guidelines for the prevention of surgical site infections. WHO, GenevaGoogle Scholar
  60. 60.
    WHO (2017) WHO model list of essential medicines for children. WHO. Accessed 30 Aug 30 2017Google Scholar
  61. 61.
    Wirtanen G, Salo S, Helander IM, Mattila-Sandholm T (2001) Microbiological methods for testing disinfectant efficiency on Pseudomonas biofilm. Colloids Surf, B 20(1):37–50Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Institute of Hygiene and Environmental MedicineUniversity of GreifswaldGreifswaldGermany

Personalised recommendations