Skip to main content

Ethanol

  • Chapter
  • First Online:
Antiseptic Stewardship

Abstract

Ethanol has comprehensive bactericidal and yeasticidal activity at 78–85% within 30 s, whereas some food-associated fungi require at least 10 min. Ethanol has also mycobactericidal activity at ≥70% within 30 s to 5 min depending on the species and ethanol concentration. High MIC values indicating resistance to ethanol have so far not been reported. An epidemiological cut-off value to determine acquired resistance has not been proposed yet. No specific resistance mechanisms are currently known for ethanol, and no cross-tolerance to antibiotics has been reported. Low-level ethanol exposure (1–6%) can increase biofilm formation in S. aureus and S. epidermidis, and 2.5% ethanol can increase surface attachment in L. monocytogenes. Ethanol at 5–8% can reduce the susceptibility to lethal ethanol concentrations in L. monocytogenes, Pseudomonas spp. and S. cerevisiae. In B. subtilis, ethanol at 4% can cause a 5-fold increase of mobile genetic element transfer (resistance genes). Ethanol can increase biofilm formation in S. aureus and S. epidermidis. It can also reduce biofilm formation in MRSA, T. asahii and mixed biofilms. Biofilm removal by ethanol is often <50% (B. cenocepacia, P. aeruginosa, S. liquefaciens, S. putrefaciens, S. aureus or triple species biofilms).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aarnisalo K, Lundén J, Korkeala H, Wirtanen G (2007) Susceptibility of Listeria monocytogenes strains to disinfectants and chlorinated alkaline cleaners at cold temperatures. LWT Food Sci Technol 40(6):1041–1048

    Article  CAS  Google Scholar 

  2. Akamatsu T, Tabata K, Hironga M, Kawakami H, Uyeda M (1996) Transmission of Helicobacter pylori infection via flexible fiberoptic endoscopy. Am J Infect Control 24(5):396–401

    Article  CAS  PubMed  Google Scholar 

  3. Ankarloo J, Wikman S, Nicholls IA (2010) Escherichia coli mar and acrAB mutants display no tolerance to simple alcohols. Int J Mol Sci 11(4):1403–1412. https://doi.org/10.3390/ijms11041403

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Antoce A, Takahashi K, Namolosanu I (1996) Characterization of ethanol tolerance of yeasts using a calorimetric technique. Vitis 35(2):105–106

    CAS  Google Scholar 

  5. Aparecida Guimaraes M, Rocchetto Coelho L, Rodrigues Souza R, Ferreira-Carvalho BT, Marie Sa Figueiredo A (2012) Impact of biocides on biofilm formation by methicillin-resistant Staphylococcus aureus (ST239-SCCmecIII) isolates. Microbiol Immunol 56(3):203–207. https://doi.org/10.1111/j.1348-0421.2011.00423.x

    Article  PubMed  CAS  Google Scholar 

  6. Arroyo-Lopez FN, Salvado Z, Tronchoni J, Guillamon JM, Barrio E, Querol A (2010) Susceptibility and resistance to ethanol in Saccharomyces strains isolated from wild and fermentative environments. Yeast (Chichester, England) 27(12):1005–1015. https://doi.org/10.1002/yea.1809

  7. Babb JR, Bradley CR, Deverill CE, Ayliffe GA, Melikian V (1981) Recent advances in the cleaning and disinfection of fibrescopes. J Hosp Infect 2(4):329–340

    Article  CAS  PubMed  Google Scholar 

  8. Bae YM, Baek SY, Lee SY (2012) Resistance of pathogenic bacteria on the surface of stainless steel depending on attachment form and efficacy of chemical sanitizers. Int J Food Microbiol 153(3):465–473. https://doi.org/10.1016/j.ijfoodmicro.2011.12.017

    Article  PubMed  CAS  Google Scholar 

  9. Bandara A, Fraser S, Chambers PJ, Stanley GA (2009) Trehalose promotes the survival of Saccharomyces cerevisiae during lethal ethanol stress, but does not influence growth under sublethal ethanol stress. FEMS Yeast Res 9(8):1208–1216. https://doi.org/10.1111/j.1567-1364.2009.00569.x

    Article  PubMed  CAS  Google Scholar 

  10. Beekes M, Lemmer K, Thomzig A, Joncic M, Tintelnot K, Mielke M (2010) Fast, broad-range disinfection of bacteria, fungi, viruses and prions. J Gener Virol 91(Pt 2):580–589. https://doi.org/10.1099/vir.0.016337-0

    Article  CAS  Google Scholar 

  11. Best M, Kennedy ME, Coates F (1990) Efficacy of a variety of disinfectants against Listeria spp. Appl Environ Microbiol 56(2):377–380

    PubMed  PubMed Central  CAS  Google Scholar 

  12. Best M, Sattar SA, Springthorpe VS, Kennedy ME (1988) Comparative mycobactericidal efficacy of chemical disinfectants in suspension and carrier tests. Appl Environ Microbiol 54:2856–2858

    PubMed  PubMed Central  CAS  Google Scholar 

  13. Best M, Sattar SA, Springthorpe VS, Kennedy ME (1990) Efficacies of selected disinfectants against Mycobacterium tuberculosis. J Clin Microbiol 28(10):2234–2239

    PubMed  PubMed Central  CAS  Google Scholar 

  14. Best M, Springthorpe VS, Sattar SA (1994) Feasibility of a combined carrier test for disinfectants: studies with a mixture of five types of microorganisms. Am J Infect Control 22(3):152–162

    Article  CAS  PubMed  Google Scholar 

  15. Bhatia M, Mishra B, Thakur A, Dogra V, Loomba PS (2017) Evaluation of Susceptibility of glycopeptide-resistant and glycopeptide-sensitive enterococci to commonly used biocides in a super-speciality hospital: a pilot study. J Nat Sci Biol Med 8(2):199–202. https://doi.org/10.4103/0976-9668.210010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Bradley CR, Fraise AP (1996) Heat and chemical resistance of enterococci. J Hosp Infect 34:191–196

    Article  CAS  PubMed  Google Scholar 

  17. Buckley T, Dudley SM, Donowitz LG (1994) Defining unnecessary disinfection procedures for single-dose and multiple-dose vials. Am J Critical Care: An Official Publication, Am Assoc Critical-Care Nurses 3(6):448–451

    CAS  Google Scholar 

  18. Bundgaard-Nielsen K, Nielsen PV (1996) Fungicidal effect of 15 disinfectants against 25 fungal contaminants commonly found in bread and cheese manufacturing. J Food Prot 59(3):268–275

    Article  CAS  PubMed  Google Scholar 

  19. Campos GB, Souza SG, Lob OT, Da Silva DC, Sousa DS, Oliveira PS, Santos VM, Amorim AT, Farias SV, Cruz MP, Yatsuda R, Marques LM (2012) Isolation, molecular characteristics and disinfection of methicillin-resistant Staphylococcus aureus from ICU units in Brazil. New Microbiol 35(2):183–190

    PubMed  CAS  Google Scholar 

  20. Cavagnolo RZ (1985) Inactivation of herpesvirus on CPR manikins utilizing a currently recommended disinfecting procedure. Infection Control: IC 6(11):456–458

    Article  CAS  PubMed  Google Scholar 

  21. Chaieb K, Zmantar T, Souiden Y, Mahdouani K, Bakhrouf A (2011) XTT assay for evaluating the effect of alcohols, hydrogen peroxide and benzalkonium chloride on biofilm formation of Staphylococcus epidermidis. Microb Pathog 50(1):1–5. https://doi.org/10.1016/j.micpath.2010.11.004

    Article  PubMed  CAS  Google Scholar 

  22. Chand S, Saha K, Singh PK, Sri S, Malik N (2016) Determination of minimum inhibitory concentration (MIC) of routinely used disinfectants against microflora Isolated from clean rooms. Int J Curr Microbiol Appl Sci 5(1):334–341

    Article  CAS  Google Scholar 

  23. Chiang SR, Jung F, Tang HJ, Chen CH, Chen CC, Chou HY, Chuang YC (2017) Desiccation and ethanol resistances of multidrug resistant Acinetobacter baumannii embedded in biofilm: the favorable antiseptic efficacy of combination chlorhexidine gluconate and ethanol. J Microbiol Immunol Infection = Wei mian yu gan ran za zhi. https://doi.org/10.1016/j.jmii.2017.02.003

  24. Cincarova L, Polansky O, Babak V, Kulich P, Kralik P (2016) Changes in the expression of biofilm-associated surface proteins in Staphylococcus aureus food-environmental isolates subjected to sublethal concentrations of disinfectants. Biomed Res Int 2016:4034517. https://doi.org/10.1155/2016/4034517

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Corbin A, Pitts B, Parker A, Stewart PS (2011) Antimicrobial penetration and efficacy in an in vitro oral biofilm model. Antimicrob Agents Chemother 55(7):3338–3344. https://doi.org/10.1128/aac.00206-11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Costa V, Reis E, Quintanilha A, Moradas-Ferreira P (1993) Acquisition of ethanol tolerance in Saccharomyces cerevisiae: the key role of the mitochondrial superoxide dismutase. Arch Biochem Biophys 300(2):608–614

    Article  CAS  PubMed  Google Scholar 

  27. Department of Health and Human Services; Food and Drug Administration (1994) Tentative final monograph for health care antiseptic products; proposed rule. Fed Reg 59(116):31401–31452

    Google Scholar 

  28. Department of Health and Human Services; Food and Drug Administration (2015) Safety and effectiveness of healthcare antiseptics. Topical antimicrobial drug products for over-the-counter human use; proposed amendment of the tentative final monograph; reopening of administrative record; proposed rule. Fed Reg 80(84):25166–25205

    Google Scholar 

  29. Embil JM, Zhanel GG, Plourde PJ, Hoban D (2002) Scissors: a potential source of nosocomial infection. Infect Control Hosp Epidemiol 23(3):147–151. https://doi.org/10.1086/502026

    Article  PubMed  Google Scholar 

  30. Epstein AK, Pokroy B, Seminara A, Aizenberg J (2011) Bacterial biofilm shows persistent resistance to liquid wetting and gas penetration. Proc Natl Acad Sci USA 108(3):995–1000. https://doi.org/10.1073/pnas.1011033108

    Article  PubMed  Google Scholar 

  31. Epstein F (1896) Zur Frage der Alkoholdesinfektion. Z Hyg 24:1–21

    Google Scholar 

  32. Eterpi M, McDonnell G, Thomas V (2011) Decontamination efficacy against mycoplasma. Lett Appl Microbiol 52(2):150–155. https://doi.org/10.1111/j.1472-765X.2010.02979.x

    Article  PubMed  CAS  Google Scholar 

  33. European Chemicals Agency (ECHA) Ethanol. Substance information. https://echa.europa.eu/substance-information/-/substanceinfo/100.000.526. Accessed 30 Aug 2017

  34. European Chemicals Agency (ECHA) Ethanol. Biocidal active substances https://echa.europa.eu/information-on-chemicals/biocidal-active-substances?p_p_id = echarevbiocides_WAR_echarevbiocidesportlet&p_p_lifecycle = 1&p_p_state = normal&p_p_mode = view&p_p_col_id = column-1&p_p_col_pos = 1&p_p_col_count = 2&_echarevbiocides_WAR_echarevbiocidesportlet_javax.portlet.action = searchBiocidesAction. Accessed 30 Aug 2017

  35. Fletcher M (1983) The effects of methanol, ethanol, propanol and butanol on bacterial attachment to surfaces. J Gen Microbiol 129(3):633–641

    CAS  Google Scholar 

  36. Frobisher M Jr, Sommermeyer L, Blackwell MJ (1953) Studies on disinfection of clinical thermometers I. Oral thermometers. Appl Microbiol 1(4):187–194

    PubMed  PubMed Central  CAS  Google Scholar 

  37. Garcia de Cabo A, Martinez Larriba PL, Checa Pinilla J, Guerra Sanz F (1978) A new method of disinfection of the flexible fibrebronchoscope. Thorax 33(2):270–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gavalda L, Olmo AR, Hernandez R, Dominguez MA, Salamonsen MR, Ayats J, Alcaide F, Soriano A, Rosell A (2015) Microbiological monitoring of flexible bronchoscopes after high-level disinfection and flushing channels with alcohol: results and costs. Respir Med 109(8):1079–1085. https://doi.org/10.1016/j.rmed.2015.04.015

    Article  PubMed  Google Scholar 

  39. Gershenfeld L (1938) The sterility of alcohol. Am J Med Sci 195(3):358–360

    Article  CAS  Google Scholar 

  40. Goroncy-Bermes P, Koburger T, Meyer B (2010) Impact of the amount of hand rub applied in hygienic hand disinfection on the reduction of microbial counts on hands. J Hosp Infect 74(3):212–218

    Article  CAS  PubMed  Google Scholar 

  41. Gravesen A, Lekkas C, Knochel S (2005) Surface attachment of Listeria monocytogenes is induced by sublethal concentrations of alcohol at low temperatures. Appl Environ Microbiol 71(9):5601–5603. https://doi.org/10.1128/aem.71.9.5601-5603.2005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Guilhermetti M, Marques Wiirzler LA, Castanheira Facio B, da Silva Furlan M, Campo Meschial W, Bronharo Tognim MC, Botelho Garcia L, Luiz Cardoso C (2010) Antimicrobial efficacy of alcohol-based hand gels. J Hosp Infect 74(3):219–224. https://doi.org/10.1016/S0195-6701(09)00424-1, https://doi.org/10.1016/j.jhin.2009.09.019

  43. Guo W, Shan K, Xu B, Li J (2015) Determining the resistance of carbapenem-resistant Klebsiella pneumoniae to common disinfectants and elucidating the underlying resistance mechanisms. Pathogens Global Health 109(4):184–192. https://doi.org/10.1179/2047773215y.0000000022

    Article  PubMed  CAS  Google Scholar 

  44. Gutierrez-Martin CB, Yubero S, Martinez S, Frandoloso R, Rodriguez-Ferri EF (2011) Evaluation of efficacy of several disinfectants against Campylobacter jejuni strains by a suspension test. Res Vet Sci 91(3):e44–47. https://doi.org/10.1016/j.rvsc.2011.01.020

    Article  PubMed  CAS  Google Scholar 

  45. Hall TJ, Wren MW, Jeanes A, Gant VA (2009) A comparison of the antibacterial efficacy and cytotoxicity to cultured human skin cells of 7 commercial hand rubs and Xgel, a new copper-based biocidal hand rub. Am J Infect Control 37(4):322–326

    Article  PubMed  Google Scholar 

  46. Hare R, Raik E, Gash S (1963) Efficiency of antiseptics when acting on dried organisms. BMJ 1(5329):496–500

    Article  CAS  PubMed  Google Scholar 

  47. Harrington C, Walker H (1903) The germicidal action of alcohol. Boston Med Surg J 148(21):548–552

    Article  Google Scholar 

  48. Heipieper HJ, de Bont JA (1994) Adaptation of Pseudomonas putida S12 to ethanol and toluene at the level of fatty acid composition of membranes. Appl Environ Microbiol 60(12):4440–4444

    PubMed  PubMed Central  CAS  Google Scholar 

  49. Jabbar U, Leischner J, Kasper D, Gerber R, Sambol SP, Parada JP, Johnson S, Gerding DN (2010) Effectiveness of alcohol-based hand rubs for removal of Clostridium difficile spores from hands. Infect Control Hosp Epidemiol 31(6):565–570. https://doi.org/10.1086/652772

    Article  PubMed  Google Scholar 

  50. Kampf G (2017) Ethanol. In: Kampf G (ed) Kompendium Händehygiene. mhp-Verlag, Wiesbaden, pp 325–351

    Google Scholar 

  51. Kampf G, Hollingsworth A (2008) Comprehensive bactericidal activity of an ethanol-based hand gel in 15 seconds. Ann Clin Microbiol Antimicrob 7:2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kampf G, Marschall S, Eggerstedt S, Ostermeyer C (2010) Efficacy of ethanol-based hand foams using clinically relevant amounts: a cross-over controlled study among healthy volunteers. BMC Infect Dis 10:78

    Article  PubMed  PubMed Central  Google Scholar 

  53. Kampf G, Meyer B, Goroncy-Bermes P (2003) Comparison of two test methods for the determination of sufficient antimicrobial efficacy of three different alcohol-based hand rubs for hygienic hand disinfection. J Hosp Infect 55(3):220–225

    Article  CAS  PubMed  Google Scholar 

  54. Kampf G, Rudolf M, Labadie J-C, Barrett SP (2002) Spectrum of antimicrobial activity and user acceptability of the hand disinfectant agent Sterillium Gel. J Hosp Infect 52(2):141–147

    Article  CAS  PubMed  Google Scholar 

  55. Knobloch JK, Horstkotte MA, Rohde H, Kaulfers PM, Mack D (2002) Alcoholic ingredients in skin disinfectants increase biofilm expression of Staphylococcus epidermidis. J Antimicrob Chemother 49(4):683–687

    Article  CAS  PubMed  Google Scholar 

  56. Kobayashi Y, Takano T, Hirayama N, Sato N, Shimoide H (1995) Isolation of nontuberculous mycobacteria during colonoscopy. Kekkaku: [Tuberculosis] 70(11):629–634

    CAS  Google Scholar 

  57. Kubota H, Senda S, Tokuda H, Uchiyama H, Nomura N (2009) Stress resistance of biofilm and planktonic Lactobacillus plantarum subsp. plantarum JCM 1149. Food Microbiol 26(6):592–597. https://doi.org/10.1016/j.fm.2009.04.001

    Article  PubMed  CAS  Google Scholar 

  58. Lanjri S, Uwingabiye J, Frikh M, Abdellatifi L, Kasouati J, Maleb A, Bait A, Lemnouer A, Elouennass M (2017) In vitro evaluation of the susceptibility of Acinetobacter baumannii isolates to antiseptics and disinfectants: comparison between clinical and environmental isolates. Antimicrob Resist Infect Control 6:36. https://doi.org/10.1186/s13756-017-0195-y

    Article  PubMed  PubMed Central  Google Scholar 

  59. Leung CY, Chan YC, Samaranayake LP, Seneviratne CJ (2012) Biocide resistance of Candida and Escherichia coli biofilms is associated with higher antioxidative capacities. J Hosp Infect 81(2):79–86. https://doi.org/10.1016/j.jhin.2011.09.014

    Article  PubMed  CAS  Google Scholar 

  60. Liao Y, Zhao H, Lu X, Yang S, Zhou J, Yang R (2015) Efficacy of ethanol against Trichosporon asahii biofilm in vitro. Med Mycol 53(4):396–404. https://doi.org/10.1093/mmy/myv006

    Article  PubMed  CAS  Google Scholar 

  61. Lin F, Xu Y, Chang Y, Liu C, Jia X, Ling B (2017) Molecular characterization of reduced susceptibility to biocides in clinical isolates of Acinetobacter baumannii. Front Microbiol 8:1836. https://doi.org/10.3389/fmicb.2017.01836

    Article  PubMed  PubMed Central  Google Scholar 

  62. Liu J, Yu S, Han B, Chen J (2017) Effects of benzalkonium chloride and ethanol on dual-species biofilms of Serratia liquefaciens S1 and Shewanella putrefaciens S4. Food Control 78(Supplement C):196–202. https://doi.org/10.1016/j.foodcont.2017.02.063

  63. Liu Q, Liu M, Wu Q, Li C, Zhou T, Ni Y (2009) Sensitivities to biocides and distribution of biocide resistance genes in quaternary ammonium compound tolerant Staphylococcus aureus isolated in a teaching hospital. Scand J Infect Dis 41(6–7):403–409. https://doi.org/10.1080/00365540902856545

    Article  PubMed  CAS  Google Scholar 

  64. Lou Y, Yousef AE (1997) Adaptation to sublethal environmental stresses protects Listeria monocytogenes against lethal preservation factors. Appl Environ Microbiol 63(4):1252–1255

    PubMed  PubMed Central  CAS  Google Scholar 

  65. Luther MK, Bilida S, Mermel LA, LaPlante KL (2015) Ethanol and isopropyl alcohol exposure increases biofilm formation in Staphylococcus aureus and Staphylococcus epidermidis. Infect Dis Ther 4(2):219–226. https://doi.org/10.1007/s40121-015-0065-y

    Article  PubMed  PubMed Central  Google Scholar 

  66. Macinga DR, Shumaker DJ, Werner HP, Edmonds SL, Leslie RA, Parker AE, Arbogast JW (2014) The relative influences of product volume, delivery format and alcohol concentration on dry-time and efficacy of alcohol-based hand rubs. BMC Infect Dis 14:511. https://doi.org/10.1186/1471-2334-14-511

    Article  PubMed  PubMed Central  Google Scholar 

  67. Mainous ME, Smith SA (2005) Efficacy of common disinfectants against mycobacterium marinum. J Aquat Anim Health 17(3):284–288. https://doi.org/10.1577/H04-051.1

    Article  Google Scholar 

  68. Maisch T, Shimizu T, Isbary G, Heinlin J, Karrer S, Klampfl TG, Li YF, Morfill G, Zimmermann JL (2012) Contact-free inactivation of Candida albicans biofilms by cold atmospheric air plasma. Appl Environ Microbiol 78(12):4242–4247. https://doi.org/10.1128/aem.07235-11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Mariscal A, Carnero-Varo M, Gutierrez-Bedmar M, Garcia-Rodriguez A, Fernandez-Crehuet J (2007) A fluorescent method for assessing the antimicrobial efficacy of disinfectant against Escherichia coli ATCC 35218 biofilm. Appl Microbiol Biotechnol 77(1):233–240. https://doi.org/10.1007/s00253-007-1137-z

    Article  PubMed  CAS  Google Scholar 

  70. Mariscal A, Lopez-Gigosos RM, Carnero-Varo M, Fernandez-Crehuet J (2009) Fluorescent assay based on resazurin for detection of activity of disinfectants against bacterial biofilm. Appl Microbiol Biotechnol 82(4):773–783. https://doi.org/10.1007/s00253-009-1879-x

    Article  PubMed  CAS  Google Scholar 

  71. Mattner F, Gastmeier P (2004) Bacterial contamination of multiple-dose vials: a prevalence study. Am J Infect Control 32(1):12–16. https://doi.org/10.1016/j.ajic.2003.06.004

    Article  PubMed  Google Scholar 

  72. Miyano N, Oie S, Kamiya A (2003) Efficacy of disinfectants and hot water against biofilm cells of Burkholderia cepacia. Biol Pharm Bull 26(5):671–674

    Article  CAS  PubMed  Google Scholar 

  73. Moretro T, Vestby LK, Nesse LL, Storheim SE, Kotlarz K, Langsrud S (2009) Evaluation of efficacy of disinfectants against Salmonella from the feed industry. J Appl Microbiol 106(3):1005–1012. https://doi.org/10.1111/j.1365-2672.2008.04067.x

    Article  PubMed  CAS  Google Scholar 

  74. Narayanan A, Nair MS, Karumathil DP, Baskaran SA, Venkitanarayanan K, Amalaradjou MA (2016) Inactivation of Acinetobacter baumannii biofilms on polystyrene, stainless steel, and urinary catheters by octenidine dihydrochloride. Front Microbiol 7:847. https://doi.org/10.3389/fmicb.2016.00847

    Article  PubMed  PubMed Central  Google Scholar 

  75. Narui K, Takano M, Noguchi N, Sasatsu M (2007) Susceptibilities of methicillin-resistant Staphylococcus aureus isolates to seven biocides. Biol & Pharm Bull 30(3):585–587

    Article  CAS  Google Scholar 

  76. National Center for Biotechnology Information Ethanol. PubChem Compound Database; CID = 702. https://pubchem.ncbi.nlm.nih.gov/compound/702. Accessed 30 Aug 2017

  77. Nett JE, Guite KM, Ringeisen A, Holoyda KA, Andes DR (2008) Reduced biocide susceptibility in Candida albicans biofilms. Antimicrob Agents Chemother 52(9):3411–3413. https://doi.org/10.1128/aac.01656-07

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Neufeld F, Schiemann O (1939) Über die Wirkung des Alkohols bei der Händedesinfektion. Z Hyg 121:312–333

    Article  Google Scholar 

  79. Ogawa M, Nomoto M, Fukuda K, Miyamoto H, Taniguchi H (2011) Nontuberculous mycobacteria in wet areas of a hospital and standard residences. J UOEH 33(4):319–329

    Article  PubMed  Google Scholar 

  80. Oh DH, Marshall DL (1993) Antimicrobial activity of ethanol, glycerol monolaurate or lactic acid against Listeria monocytogenes. Int J Food Microbiol 20(4):239–246

    Article  CAS  PubMed  Google Scholar 

  81. Ohara T, Itoh Y, Itoh K (1998) Ultrasound instruments as possible vectors of staphylococcal infection. J Hosp Infect 40(1):73–77

    Article  CAS  PubMed  Google Scholar 

  82. Oliveira PS, Souza SG, Campos GB, da Silva DC, Sousa DS, Araujo SP, Ferreira LP, Santos VM, Amorim AT, Santos AM, Timenetsky J, Cruz MP, Yatsuda R, Marques LM (2014) Isolation, pathogenicity and disinfection of Staphylococcus aureus carried by insects in two public hospitals of Vitoria da Conquista, Bahia, Brazil. Brazilian J Infect Dis: An Off Public Brazilian Soc Infect Dis 18(2):129–136. https://doi.org/10.1016/j.bjid.2013.06.008

    Article  Google Scholar 

  83. Omidbakhsh N (2010) Theoretical and experimental aspects of microbicidal activities of hard surface disinfectants: are their label claims based on testing under field conditions? J AOAC Int 93(6):1944–1951

    PubMed  CAS  Google Scholar 

  84. Park HS, Ham Y, Shin K, Kim YS, Kim TJ (2015) Sanitizing effect of ethanol against biofilms formed by three gram-negative pathogenic bacteria. Curr Microbiol 71(1):70–75. https://doi.org/10.1007/s00284-015-0828-4

    Article  PubMed  CAS  Google Scholar 

  85. Park SH, Oh KH, Kim CK (2001) Adaptive and cross-protective responses of pseudomonas sp. DJ-12 to several aromatics and other stress shocks. Curr Microbiol 43(3):176–181. https://doi.org/10.1007/s002840010283

    Article  PubMed  CAS  Google Scholar 

  86. Passerini de Rossi B, Feldman L, Pineda MS, Vay C, Franco M (2012) Comparative in vitro efficacies of ethanol-, EDTA- and levofloxacin-based catheter lock solutions on eradication of Stenotrophomonas maltophilia biofilms. J Med Microbiol 61(Pt 9):1248–1253. https://doi.org/10.1099/jmm.0.039743-0

    Article  PubMed  CAS  Google Scholar 

  87. Peeters E, Nelis HJ, Coenye T (2008) Evaluation of the efficacy of disinfection procedures against Burkholderia cenocepacia biofilms. J Hosp Infect 70(4):361–368. https://doi.org/10.1016/j.jhin.2008.08.015

    Article  PubMed  CAS  Google Scholar 

  88. Penna TC, Mazzola PG, Silva Martins AM (2001) The efficacy of chemical agents in cleaning and disinfection programs. BMC Infect Dis 1:16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Peters BM, Ward RM, Rane HS, Lee SA, Noverr MC (2013) Efficacy of ethanol against Candida albicans and Staphylococcus aureus polymicrobial biofilms. Antimicrob Agents Chemother 57(1):74–82. https://doi.org/10.1128/aac.01599-12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Redelman CV, Maduakolam C, Anderson GG (2012) Alcohol treatment enhances Staphylococcus aureus biofilm development. FEMS Immunol Med Microbiol 66(3):411–418. https://doi.org/10.1111/1574-695x.12005

    Article  PubMed  CAS  Google Scholar 

  91. Reinicke EA (1894) Bakteriologische Untersuchungen über die Desinfektion der Hände. Zentralbl Gynäkol 47:1189–1199

    Google Scholar 

  92. Rodriguez Ferri EF, Martinez S, Frandoloso R, Yubero S, Gutierrez Martin CB (2010) Comparative efficacy of several disinfectants in suspension and carrier tests against Haemophilus parasuis serovars 1 and 5. Res Vet Sci 88(3):385–389. https://doi.org/10.1016/j.rvsc.2009.12.001

    Article  PubMed  CAS  Google Scholar 

  93. Rutala WA, Cole EC, Wannamaker NS, Weber DJ (1991) Inactivation of Mycobacterium tuberculosis and mycobacterium bovis by 14 hospital disinfectants. Am J Med 91(3b):267s–271s

    Article  CAS  PubMed  Google Scholar 

  94. Salo S, Wirtanen G (2005) Disinfectant efficacy on foodborne spoilage yeast strains. Food Bioprod Process 83(4):288–296

    Article  Google Scholar 

  95. Santos GOD, Milanesi FC, Greggianin BF, Fernandes MI, Oppermann RV, Weidlich P (2017) Chlorhexidine with or without alcohol against biofilm formation: efficacy, adverse events and taste preference. Brazilian Oral Res 31:e32. https://doi.org/10.1590/1807-3107BOR-2017.vol31.0032

    Article  Google Scholar 

  96. Schiavone M, Formosa-Dague C, Elsztein C, Teste MA, Martin-Yken H, De Morais MA, Jr., Dague E, Francois JM (2016) Evidence for a role for the plasma membrane in the nanomechanical properties of the cell wall as revealed by an atomic force microscopy study of the response of Saccharomyces cerevisiae to ethanol stress. Appl Environ Microbiol 82(15):4789–4801. https://doi.org/10.1128/aem.01213-16

  97. Seier-Petersen MA, Jasni A, Aarestrup FM, Vigre H, Mullany P, Roberts AP, Agerso Y (2014) Effect of subinhibitory concentrations of four commonly used biocides on the conjugative transfer of Tn916 in Bacillus subtilis. J Antimicrob Chemother 69(2):343–348. https://doi.org/10.1093/jac/dkt370

    Article  PubMed  CAS  Google Scholar 

  98. Semchyshyn HM (2014) Hormetic concentrations of hydrogen peroxide but not ethanol induce cross-adaptation to different stresses in budding yeast. Int J Microbiol 2014:485792. https://doi.org/10.1155/2014/485792

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Singh D, Kaur H, Gardner WG, Treen LB (2002) Bacterial contamination of hospital pagers. Infect Control Hosp Epidemiol 23(5):274–276. https://doi.org/10.1086/502048

    Article  PubMed  Google Scholar 

  100. Sommermeyer L, Frobisher M Jr (1953) Laboratory studies on disinfection of rectal thermometers. Nurs Res 2(2):85–89

    Article  CAS  PubMed  Google Scholar 

  101. Takenaka S, Trivedi HM, Corbin A, Pitts B, Stewart PS (2008) Direct visualization of spatial and temporal patterns of antimicrobial action within model oral biofilms. Appl Environ Microbiol 74(6):1869–1875. https://doi.org/10.1128/aem.02218-07

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Takla TA, Zelenitsky SA, Vercaigne LM (2008) Effectiveness of a 30% ethanol/4% trisodium citrate locking solution in preventing biofilm formation by organisms causing haemodialysis catheter-related infections. J Antimicrob Chemother 62(5):1024–1026. https://doi.org/10.1093/jac/dkn291

    Article  PubMed  CAS  Google Scholar 

  103. Theraud M, Bedouin Y, Guiguen C, Gangneux JP (2004) Efficacy of antiseptics and disinfectants on clinical and environmental yeast isolates in planktonic and biofilm conditions. J Med Microbiol 53(Pt 10):1013–1018. https://doi.org/10.1099/jmm.0.05474-0

    Article  PubMed  CAS  Google Scholar 

  104. Tote K, Horemans T, Vanden Berghe D, Maes L, Cos P (2010) Inhibitory effect of biocides on the viable masses and matrices of Staphylococcus aureus and Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 76(10):3135–3142. https://doi.org/10.1128/aem.02095-09

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Traore O, Springthorpe VS, Sattar SA (2002) Testing chemical germicides against Candida species using quantitative carrier and fingerpad methods. J Hosp Infect 50(1):66–75. https://doi.org/10.1053/jhin.2001.1133

    Article  PubMed  CAS  Google Scholar 

  106. United States Environmental Protection Agency (1995) Reregistration Eligibility Decision (RED) aliphatic alcohols. https://www3.epa.gov/pesticides/chem_search/reg_actions/reregistration/red_G-4_1-Mar-95.pdf

  107. van Klingeren B (1995) Disinfectant testing on surfaces. J Hosp Infect 30(Suppl):397–408

    Article  PubMed  Google Scholar 

  108. van Klingeren B, Pullen W (1987) Comparative testing of disinfectants against mycobacterium tuberculosis and mycobacterium terrae in a quantitative suspension test. J Hosp Infect 10(3):292–298. http://dx.doi.org/10.1016/0195-6701(87)90012-0

  109. Vieira CD, Farias Lde M, Diniz CG, Alvarez-Leite ME, Camargo ER, Carvalho MA (2005) New methods in the evaluation of chemical disinfectants used in health care services. Am J Infect Control 33(3):162–169. https://doi.org/10.1016/j.ajic.2004.10.007

    Article  PubMed  Google Scholar 

  110. Wang M, Zhao J, Yang Z, Du Z, Yang Z (2007) Electrochemical insights into the ethanol tolerance of Saccharomyces cerevisiae. Bioelectrochemistry (Amsterdam, Netherlands) 71(2):107–112. https://doi.org/10.1016/j.bioelechem.2007.04.003

  111. Wang Y, Leng V, Patel V, Phillips KS (2017) Injections through skin colonized with staphylococcus aureus biofilm introduce contamination despite standard antimicrobial preparation procedures. Sci Rep 7:45070. https://doi.org/10.1038/srep45070

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Weber DJ, Wilson MB, Rutala WA, Thomann CA (1990) Manual ventilation bags as a source for bacterial colonization of intubated patients. Am Rev Respir Dis 142(4):892–894. https://doi.org/10.1164/ajrccm/142.4.892

    Article  PubMed  CAS  Google Scholar 

  113. WHO (2009) WHO guidelines on hand hygiene in health care. First Global Patient Safety Challenge Clean Care is Safer Care. WHO, Geneva

    Google Scholar 

  114. WHO (2015) WHO model list of essential medicines. WHO. http://www.who.int/medicines/publications/essentialmedicines/EML2015_8-May-15.pdf

  115. WHO (2016) Global guidelines for the prevention of surgical site infections. WHO, Geneva

    Google Scholar 

  116. WHO (2017) WHO model list of essential medicines for children. WHO. Accessed 30 Aug 2017

    Google Scholar 

  117. Wong HS, Townsend KM, Fenwick SG, Trengove RD, O’Handley RM (2010) Comparative susceptibility of planktonic and 3-day-old Salmonella Typhimurium biofilms to disinfectants. J Appl Microbiol 108(6):2222–2228. https://doi.org/10.1111/j.1365-2672.2009.04630.x

    Article  PubMed  CAS  Google Scholar 

  118. Woo PC, Leung KW, Wong SS, Chong KT, Cheung EY, Yuen KY (2002) Relatively alcohol-resistant mycobacteria are emerging pathogens in patients receiving acupuncture treatment. J Clin Microbiol 40(4):1219–1224

    Article  PubMed  PubMed Central  Google Scholar 

  119. Zachary KC, Bayne PS, Morrison VJ, Ford DS, Silver LC, Hooper DC (2001) Contamination of gowns, gloves, and stethoscopes with vancomycin-resistant enterococci. Infect Control Hosp Epidemiol 22(9):560–564. https://doi.org/10.1086/501952

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Günter Kampf .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kampf, G. (2018). Ethanol. In: Antiseptic Stewardship. Springer, Cham. https://doi.org/10.1007/978-3-319-98785-9_2

Download citation

Publish with us

Policies and ethics