Advertisement

Octenidine Dihydrochloride

  • Günter KampfEmail author
Chapter

Abstract

Octenidine dihydrochloride (OCT), mostly in combination with 2% phenoxyethanol, is bactericidal (1 min) and yeasticidal (30 s) at 0.1%. The mycobactericidal activity is unknown. Epidemiological cut-off values to determine acquired resistance have not been proposed yet. Elevated MIC values suggestive of OCT tolerance have been reported among few species including S. salivarius (≤800 mg/l), P. aeruginosa (≤128 mg/l) and S. mutans (≤120 mg/l). Specific resistance mechanisms have not been described yet. Cross-tolerance to chlorhexidine and selected antibiotics can occur in P. aeruginosa. Low-level exposure leads to no or a weak MIC change in S. aureus and a strong and stable MIC change in P. aeruginosa resulting in MIC values as high as 128 mg/l. Bacterial biofilm formation is rather inhibited than enhanced by high concentrations of OCT (0.31–3%). OCT (0.1%) in combination with 2% phenoxyethanol can mostly remove single-species biofilm in 30 min, but the effect on mixed-species biofilm removal is poor.

References

  1. 1.
    Al-Doori Z, Goroncy-Bermes P, Gemmell CG, Morrison D (2007) Low-level exposure of MRSA to octenidine dihydrochloride does not select for resistance. J Antimicrob Chemother 59(6):1280–1282CrossRefPubMedGoogle Scholar
  2. 2.
    Alvarez-Marin R, Aires-de-Sousa M, Nordmann P, Kieffer N, Poirel L (2017) Antimicrobial activity of octenidine against multidrug-resistant Gram-negative pathogens. Eur J Clin Microbiol Infect Dis 36(12):2379–2383.  https://doi.org/10.1007/s10096-017-3070-0CrossRefPubMedGoogle Scholar
  3. 3.
    Amalaradjou MA, Norris CE, Venkitanarayanan K (2009) Effect of octenidine hydrochloride on planktonic cells and biofilms of Listeria monocytogenes. Appl Environ Microbiol 75(12):4089–4092.  https://doi.org/10.1128/aem.02807-08CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Amalaradjou MA, Venkitanarayanan K (2014) Antibiofilm effect of octenidine hydrochloride on staphylococcus aureus, MRSA and VRSA. Pathogens (Basel, Switzerland) 3(2):404–416.  https://doi.org/10.3390/pathogens3020404
  5. 5.
    Anderson MJ, Scholz MT, Parks PJ, Peterson ML (2013) Ex vivo porcine vaginal mucosal model of infection for determining effectiveness and toxicity of antiseptics. J Appl Microbiol 115(3):679–688.  https://doi.org/10.1111/jam.12277CrossRefPubMedGoogle Scholar
  6. 6.
    Assadian O (2016) Octenidine dihydrochloride: chemical characteristics and antimicrobial properties. J Wound Care 25(3 Suppl):S3–6.  https://doi.org/10.12968/jowc.2016.25.Sup3.S3CrossRefPubMedGoogle Scholar
  7. 7.
    Bartoszewicz M, Rygiel A, Krzeminski M, Przondo-Mordarska A (2007) Penetration of a selected antibiotic and antiseptic into a biofilm formed on orthopedic steel implants. Ortopedia, Traumatologia, Rehabilitacja 9(3):310–318PubMedGoogle Scholar
  8. 8.
    Baskaran SA, Upadhyay A, Upadhyaya I, Bhattaram V, Venkitanarayanan K (2012) Efficacy of octenidine hydrochloride for reducing Escherichia coli O157:H7, Salmonella spp., and Listeria monocytogenes on cattle hides. Appl Environ Microbiol 78(12):4538–4541.  https://doi.org/10.1128/aem.00259-12CrossRefPubMedGoogle Scholar
  9. 9.
    Beiswanger BB, Mallatt ME, Mau MS, Jackson RD, Hennon DK (1990) The clinical effects of a mouthrinse containing 0.1% octenidine. J Dent Res 69(2):454–457CrossRefPubMedGoogle Scholar
  10. 10.
    Bock LJ, Hind CK, Sutton JM, Wand ME (2018) Growth media and assay plate material can impact on the effectiveness of cationic biocides and antibiotics against different bacterial species. Lett Appl Microbiol 66(5):368–377.  https://doi.org/10.1111/lam.12863CrossRefPubMedGoogle Scholar
  11. 11.
    Brill F, Goroncy-Bermes P, Sand W (2006) Influence of growth media on the sensitivity of Staphylococcus aureus and Pseudomonas aeruginosa to cationic biocides. Int J Hyg Environ Health 209(1):89–95CrossRefPubMedGoogle Scholar
  12. 12.
    Bukhary S, Balto H (2017) Antibacterial efficacy of octenisept, alexidine, chlorhexidine, and Sodium hypochlorite against Enterococcus faecalis biofilms. J Endodontics 43(4):643–647.  https://doi.org/10.1016/j.joen.2016.09.013CrossRefGoogle Scholar
  13. 13.
    Cherian B, Gehlot PM, Manjunath MK (2016) Comparison of the antimicrobial efficacy of octenidine dihydrochloride and chlorhexidine with and without passive ultrasonic irrigation—an invitro study. J Clin Diagn Res 10(6):Zc71–77.  https://doi.org/10.7860/jcdr/2016/17911.8021
  14. 14.
    Christiansen B (1988) The effectiveness of a skin disinfectant with a cation active additive. Zentralbl Bakteriol Hyg I Abt Orig B 186(4):368–374Google Scholar
  15. 15.
    Coaguila-Llerena H, Stefanini da Silva V, Tanomaru-Filho M, Guerreiro Tanomaru JM, Faria G (2018) Cleaning capacity of octenidine as root canal irrigant: a scanning electron microscopy study. Microsc Res Tech.  https://doi.org/10.1002/jemt.23007CrossRefPubMedGoogle Scholar
  16. 16.
    Conceicao T, de Lencastre H, Aires-de-Sousa M (2016) Efficacy of octenidine against antibiotic-resistant Staphylococcus aureus epidemic clones. J Antimicrob Chemother 71(10):2991–2994.  https://doi.org/10.1093/jac/dkw241CrossRefPubMedGoogle Scholar
  17. 17.
    Davis SC, Harding A, Gil J, Parajon F, Valdes J, Solis M, Higa A (2017) Effectiveness of a polyhexanide irrigation solution on methicillin-resistant Staphylococcus aureus biofilms in a porcine wound model. Int Wound J 14(6):937–944.  https://doi.org/10.1111/iwj.12734CrossRefPubMedGoogle Scholar
  18. 18.
    de Lucena JM, Decker EM, Walter C, Boeira LS, Lost C, Weiger R (2013) Antimicrobial effectiveness of intracanal medicaments on Enterococcus faecalis: chlorhexidine versus octenidine. Int Endod J 46(1):53–61.  https://doi.org/10.1111/j.1365-2591.2012.02093.xCrossRefPubMedGoogle Scholar
  19. 19.
    Decker EM, Bartha V, Kopunic A, von Ohle C (2017) Antimicrobial efficiency of mouthrinses versus and in combination with different photodynamic therapies on periodontal pathogens in an experimental study. J Periodontal Res 52(2):162–175.  https://doi.org/10.1111/jre.12379CrossRefPubMedGoogle Scholar
  20. 20.
    Dettenkofer M, Wilson C, Gratwohl A, Schmoor C, Bertz H, Frei R, Heim D, Luft D, Schulz S, Widmer AF (2010) Skin disinfection with octenidine dihydrochloride for central venous catheter site care: a double-blind, randomized, controlled trial. Clin Microbiol Infect 16(6):600–606.  https://doi.org/10.1111/j.1469-0691.2009.02917.xCrossRefPubMedGoogle Scholar
  21. 21.
    Dogan AA, Adiloglu AK, Onal S, Cetin ES, Polat E, Uskun E, Koksal F (2008) Short-term relative antibacterial effect of octenidine dihydrochloride on the oral microflora in orthodontically treated patients. Int J Infect Dis: IJID: Official Publication of the International Society for Infectious Diseases 12(6):e19–25.  https://doi.org/10.1016/j.ijid.2008.03.013CrossRefGoogle Scholar
  22. 22.
    Dogan AA, Cetin ES, Hussein E, Adiloglu AK (2009) Microbiological evaluation of octenidine dihydrochloride mouth rinse after 5 days’ use in orthodontic patients. The Angle orthodontist 79(4):766–772.  https://doi.org/10.2319/062008-322.1CrossRefPubMedGoogle Scholar
  23. 23.
    Eisenbeiß W, Siemers F, Amtsberg G, Hinz P, Hartmann B, Kohlmann T, Ekkernkamp A, Albrecht U, Assadian O, Kramer A (2012) Prospective, double-blinded, randomised controlled trial assessing the effect of an Octenidine-based hydrogel on bacterial colonisation and epithelialization of skin graft wounds in burn patients. Int J Burns Trauma 2(2):71–79Google Scholar
  24. 24.
    Eldeniz AU, Guneser MB, Akbulut MB (2015) Comparative antifungal efficacy of light-activated disinfection and octenidine hydrochloride with contemporary endodontic irrigants. Lasers Med Sci 30(2):669–675.  https://doi.org/10.1007/s10103-013-1387-1CrossRefPubMedGoogle Scholar
  25. 25.
    European Medicines Agency (2010) Public summary of opinion on orphan designation; octenidine dihydrochloride for the prevention of late-onset sepsis in premature infants of less than or equal to 32 weeks of gestational age. http://www.emaeuropaeu/docs/en_GB/document_library/Orphan_designation/2010/08/WC500095702pdf. Accessed 15 March 2018
  26. 26.
    European Medicines Agency (2011) Opinion of the Committee for Medicinal Products for Veterinary Use on the establishment of maximum residue limits; procedure no: EU/09/170/SCM; name of the substance: octenidine dihydrochloride (INN). http://www.emaeuropaeu/docs/en_GB/document_library/Maximum_Residue_Limits_-_Opinion/2012/03/WC500124460pdf. Accessed 15 March 2018
  27. 27.
    European Medicines Agency (2016) European Medicines Agency decision P/0360/2016. http://www.emaeuropaeu/docs/en_GB/document_library/PIP_decision/WC500220327pdf. Accessed 15 March 2018
  28. 28.
    European Medicines Agency (2017) List of nationally authorised medicinal products; active substance: octenidine dihydrochloride/phenoxyethanol; procedure no.: PSUSA/00002199/201701. http://www.emaeuropaeu/docs/en_GB/document_library/Periodic_safety_update_single_assessment/2017/10/WC500237398pdf. Accessed 15 March 2018
  29. 29.
    Frenzel E, Schmidt S, Niederweis M, Steinhauer K (2011) Importance of porins for biocide efficacy against Mycobacterium smegmatis. Appl Environ Microbiol 77(9):3068–3073.  https://doi.org/10.1128/aem.02492-10CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Ghannoum MA, Abu Elteen K, Ellabib M, Whittaker PA (1990) Antimycotic effects of octenidine and pirtenidine. J Antimicrob Chemother 25:237–245CrossRefPubMedGoogle Scholar
  31. 31.
    Ghannoum MA, Abu Elteen K, Stretton RJ, Whittaker PA (1990) Effects of octendine and pirtenidine on adhesion of Candida species to human buccal epithelial cells in vitro. Arch Oral Biol 35(4):249–253CrossRefPubMedGoogle Scholar
  32. 32.
    Ghivari SB, Bhattacharya H, Bhat KG, Pujar MA (2017) Antimicrobial activity of root canal irrigants against biofilm forming pathogens—an in vitro study. J Conserv Dentistry: JCD 20(3):147–151.  https://doi.org/10.4103/jcd.jcd_38_16CrossRefGoogle Scholar
  33. 33.
    Goroncy-Bermes P, Brill FHH, Brill H (2013) Antimicrobial activity of wound antiseptics against extended-spectrum beta-lactamase-producing bacteria. Wound Med 1(1):41–43CrossRefGoogle Scholar
  34. 34.
    Guneser MB, Akbulut MB, Eldeniz AU (2016) Antibacterial effect of chlorhexidine-cetrimide combination, Salvia officinalis plant extract and octenidine in comparison with conventional endodontic irrigants. Dent Mater J 35(5):736–741.  https://doi.org/10.4012/dmj.2015-159CrossRefPubMedGoogle Scholar
  35. 35.
    Gunther F, Blessing B, Tacconelli E, Mutters NT (2017) MRSA decolonization failure-are biofilms the missing link? Antimicrob Resist Infect Control 6:32.  https://doi.org/10.1186/s13756-017-0192-1CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Gusic I, Medic D, Radovanovic Kanjuh M, Ethuric M, Brkic S, Turkulov V, Predin T, Mirnic J (2016) Treatment of periodontal disease with an octenidine-based antiseptic in HIV-positive patients. Int J Dental Hygiene 14(2):108–116.  https://doi.org/10.1111/idh.12141CrossRefGoogle Scholar
  37. 37.
    Hammerle G, Strohal R (2016) Efficacy and cost-effectiveness of octenidine wound gel in the treatment of chronic venous leg ulcers in comparison to modern wound dressings. Int Wound J 13(2):182–188.  https://doi.org/10.1111/iwj.12250CrossRefPubMedGoogle Scholar
  38. 38.
    Hardy K, Sunnucks K, Gil H, Shabir S, Trampari E, Hawkey P, Webber M, Wright GD (2018) Increased usage of antiseptics is associated with reduced susceptibility in clinical isolates of Staphylococcus aureus. mBio 9(3):e00894-18.  https://doi.org/10.1128/mBio.00894-18
  39. 39.
    Harke H-P (1989) Octenidindihydrochlorid, Eigenschaften eines neuen antimikrobiellen Wirkstoffes. Zentralbl Hyg Umweltmed 188(1–2):188–193PubMedGoogle Scholar
  40. 40.
    Hirsch T, Limoochi-Deli S, Lahmer A, Jacobsen F, Goertz O, Steinau HU, Seipp HM, Steinstraesser L (2011) Antimicrobial activity of clinically used antiseptics and wound irrigating agents in combination with wound dressings. Plast Reconstr Surg 127(4):1539–1545.  https://doi.org/10.1097/PRS.0b013e318208d00fCrossRefPubMedGoogle Scholar
  41. 41.
    Hoekstra MJ, Westgate SJ, Mueller S (2017) Povidone-iodine ointment demonstrates in vitro efficacy against biofilm formation. Int Wound J 14(1):172–179.  https://doi.org/10.1111/iwj.12578CrossRefPubMedGoogle Scholar
  42. 42.
    Hubner NO, Siebert J, Kramer A (2010) Octenidine dihydrochloride, a modern antiseptic for skin, mucous membranes and wounds. Skin Pharmacol Physiol 23(5):244–258.  https://doi.org/10.1159/000314699CrossRefPubMedGoogle Scholar
  43. 43.
    Junka A, Bartoszewicz M, Smutnicka D, Secewicz A, Szymczyk P (2014) Efficacy of antiseptics containing povidone-iodine, octenidine dihydrochloride and ethacridine lactate against biofilm formed by Pseudomonas aeruginosa and Staphylococcus aureus measured with the novel biofilm-oriented antiseptics test. Int Wound J 11(6):730–734.  https://doi.org/10.1111/iwj.12057CrossRefPubMedGoogle Scholar
  44. 44.
    Junka AF, Zywicka A, Szymczyk P, Dziadas M, Bartoszewicz M, Fijalkowski K (2017) A.D.A.M. test (Antibiofilm Dressing’s Activity Measurement)—simple method for evaluating anti-biofilm activity of drug-saturated dressings against wound pathogens. J Microbiol Meth 143:6–12.  https://doi.org/10.1016/j.mimet.2017.09.014CrossRefGoogle Scholar
  45. 45.
    Kapalschinski N, Seipp HM, Kuckelhaus M, Harati KK, Kolbenschlag JJ, Daigeler A, Jacobsen F, Lehnhardt M, Hirsch T (2017) Albumin reduces the antibacterial efficacy of wound antiseptics against Staphylococcus aureus. J Wound Care 26(4):184–187.  https://doi.org/10.12968/jowc.2017.26.4.184CrossRefPubMedGoogle Scholar
  46. 46.
    Koban I, Geisel MH, Holtfreter B, Jablonowski L, Hubner NO, Matthes R, Masur K, Weltmann KD, Kramer A, Kocher T (2013) Synergistic effects of nonthermal plasma and disinfecting agents against dental biofilms in vitro. ISRN Dentistry 2013:573262.  https://doi.org/10.1155/2013/573262CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Koburger T, Hübner N-O, Braun M, Siebert J, Kramer A (2010) Standardized comparison of antiseptic efficacy of triclosan, PVP-iodine, octenidine dihydrochloride, polyhexanide and chlorhexidine digluconate. J Antimicrob Chemother 65(8):1712–1719CrossRefPubMedGoogle Scholar
  48. 48.
    Kocak MM, Ozcan S, Kocak S, Topuz O, Erten H (2009) Comparison of the efficacy of three different mouthrinse solutions in decreasing the level of Streptococcus mutans in saliva. Eur J Dentistry 3(1):57–61Google Scholar
  49. 49.
    Kodedova M, Sigler K, Lemire BD, Gaskova D (2011) Fluorescence method for determining the mechanism and speed of action of surface-active drugs on yeast cells. Biotechniques 50(1):58–63.  https://doi.org/10.2144/000113568CrossRefPubMedGoogle Scholar
  50. 50.
    Kramer A, Dissemond J, Kim S, Willy C, Mayer D, Papke R, Tuchmann F, Assadian O (2017) Consensus on wound antisepsis: update 2018. Skin Pharmacol Physiol 31(1):28–58.  https://doi.org/10.1159/000481545CrossRefPubMedGoogle Scholar
  51. 51.
    Krishnan U, Saji S, Clarkson R, Lalloo R, Moule AJ (2017) Free Active chlorine in sodium hypochlorite solutions admixed with octenidine, SmearOFF, chlorhexidine, and EDTA. J End 43(8):1354–1359.  https://doi.org/10.1016/j.joen.2017.03.034CrossRefGoogle Scholar
  52. 52.
    Lefebvre E, Vighetto C, Di Martino P, Larreta Garde V, Seyer D (2016) Synergistic antibiofilm efficacy of various commercial antiseptics, enzymes and EDTA: a study of Pseudomonas aeruginosa and Staphylococcus aureus biofilms. Int J Antimicrob Agents 48(2):181–188.  https://doi.org/10.1016/j.ijantimicag.2016.05.008CrossRefPubMedGoogle Scholar
  53. 53.
    Lorenz K, Jockel-Schneider Y, Petersen N, Stolzel P, Petzold M, Vogel U, Hoffmann T, Schlagenhauf U, Noack B (2018) Impact of different concentrations of an octenidine dihydrochloride mouthwash on salivary bacterial counts: a randomized, placebo-controlled cross-over trial. Clin Oral Invest.  https://doi.org/10.1007/s00784-018-2379-0CrossRefGoogle Scholar
  54. 54.
    Lutz JT, Diener IV, Freiberg K, Zillmann R, Shah-Hosseini K, Seifert H, Berger-Schreck B, Wisplinghoff H (2016) Efficacy of two antiseptic regimens on skin colonization of insertion sites for two different catheter types: a randomized, clinical trial. Infection 44(6):707–712.  https://doi.org/10.1007/s15010-016-0899-6CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Melhorn S, Staubach P (2018) [Octenidine dihydrochloride: the antiseptic that does not like every base formulation]. Der Hautarzt; Zeitschrift fur Dermatologie, Venerologie, und verwandte Gebiete.  https://doi.org/10.1007/s00105-018-4139-0
  56. 56.
    Muller G, Kramer A (2008) Biocompatibility index of antiseptic agents by parallel assessment of antimicrobial activity and cellular cytotoxicity. J Antimicrob Chemother 61(6):1281–1287.  https://doi.org/10.1093/jac/dkn125CrossRefPubMedGoogle Scholar
  57. 57.
    Muller G, Langer J, Siebert J, Kramer A (2014) Residual antimicrobial effect of chlorhexidine digluconate and octenidine dihydrochloride on reconstructed human epidermis. Skin Pharmacol Physiol 27(1):1–8.  https://doi.org/10.1159/000350172CrossRefPubMedGoogle Scholar
  58. 58.
    Narayanan A, Nair MS, Karumathil DP, Baskaran SA, Venkitanarayanan K, Amalaradjou MA (2016) Inactivation of acinetobacter baumannii biofilms on polystyrene, stainless steel, and urinary catheters by octenidine dihydrochloride. Front Microbiol 7:847.  https://doi.org/10.3389/fmicb.2016.00847CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    National Center for Biotechnology Information (2018) Octenidine. PubChem Compound Database; CID = 51167. https://pubchem.ncbi.nlm.nih.gov/compound/51167. Accessed 15 March 2018
  60. 60.
    National Center for Biotechnology Information (2018) Octenidine hydrochloride PubChem Compound Database; CID = 51166. https://pubchem.ncbi.nlm.nih.gov/compound/51166. Accessed 15 March 2018
  61. 61.
    Ng CKL, Singhal V, Widmer F, Wright LC, Sorrell TC, Jolliffe KA (2007) Synthesis, antifungal and haemolytic activity of a series of bis(pyridinium)alkanes. Bioorg Med Chem 15(10):3422–3429CrossRefPubMedGoogle Scholar
  62. 62.
    Obermeier A, Schneider J, Fohr P, Wehner S, Kuhn KD, Stemberger A, Schieker M, Burgkart R (2015) In vitro evaluation of novel antimicrobial coatings for surgical sutures using octenidine. BMC Microbiol 15:186.  https://doi.org/10.1186/s12866-015-0523-4CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Pitten F-A, Kramer A (1999) Antimicrobial efficacy of antiseptic mouthrinse solutions. Eur J Clin Pharmacol 55(2):95–100CrossRefPubMedGoogle Scholar
  64. 64.
    Pitten F-A, Werner H-P, Kramer A (2003) A standardized test to assess the impact of different organic challenges on the antimicrobial activity of antiseptics. J Hosp Infect 55(2):108–115CrossRefPubMedGoogle Scholar
  65. 65.
    Reiser M, Scherag A, Forstner C, Brunkhorst FM, Harbarth S, Doenst T, Pletz MW, Hagel S (2017) Effect of pre-operative octenidine nasal ointment and showering on surgical site infections in patients undergoing cardiac surgery. J Hosp Infect 95(2):137–143.  https://doi.org/10.1016/j.jhin.2016.11.004CrossRefPubMedGoogle Scholar
  66. 66.
    Rochon-Edouard S, Pons JL, Veber B, Larkin M, Vassal S, Lemeland JF (2004) Comparative in vitro and in vivo study of nine alcohol-based handrubs. Am J Infect Control 32(4):200–204.  https://doi.org/10.1016/j.ajic.2003.08.003CrossRefPubMedGoogle Scholar
  67. 67.
    Rohrer N, Widmer AF, Waltimo T, Kulik EM, Weiger R, Filipuzzi-Jenny E, Walter C (2010) Antimicrobial efficacy of 3 oral antiseptics containing octenidine, polyhexamethylene biguanide, or Citroxx: can chlorhexidine be replaced? Infect Control Hosp Epidemiol 31(7):733–739.  https://doi.org/10.1086/653822CrossRefPubMedGoogle Scholar
  68. 68.
    Rupf S, Balkenhol M, Sahrhage TO, Baum A, Chromik JN, Ruppert K, Wissenbach DK, Maurer HH, Hannig M (2012) Biofilm inhibition by an experimental dental resin composite containing octenidine dihydrochloride. Dental Materials: Official Publication of the Academy of Dental Materials 28(9):974–984.  https://doi.org/10.1016/j.dental.2012.04.034CrossRefGoogle Scholar
  69. 69.
    Schedler K, Assadian O, Brautferger U, Muller G, Koburger T, Classen S, Kramer A (2017) Proposed phase 2/step 2 in-vitro test on basis of EN 14561 for standardised testing of the wound antiseptics PVP-iodine, chlorhexidine digluconate, polihexanide and octenidine dihydrochloride. BMC Infect Dis 17(1):143.  https://doi.org/10.1186/s12879-017-2220-4CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Sedlock DM, Bailey DM (1985) Microbicidal activity of octenidine hydrochloride, a new alkanediylbis[pyridine] germicidal agent. Antimicrob Agents Chemother 28(6):786–790CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Shepherd MJ, Moore G, Wand ME, Sutton JM, Bock LJ (2018) Pseudomonas aeruginosa adapts to octenidine in the laboratory and a simulated clinical setting, leading to increased tolerance to chlorhexidine and other biocides. J Hosp Infect.  https://doi.org/10.1016/j.jhin.2018.03.037CrossRefPubMedGoogle Scholar
  72. 72.
    Slee AM, O’Connor JR (1983) In vitro antiplaque activity of octenidine dihydrochloride (WIN 41464-2) against preformed plaques of selected oral plaque-forming microorganisms. Antimicrob Agents Chemother 23(3):379–384CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Sloot N, Siebert J, Höffler U (1999) Eradication of MRSA from carriers by means of whole-body washing with an antiseptic in combination with mupirocin nasal ointment. Zentralbl Hyg Umweltmed 202(6):513–523CrossRefPubMedGoogle Scholar
  74. 74.
    Swidsinski A, Loening-Baucke V, Swidsinski S, Verstraelen H (2015) Polymicrobial Gardnerella biofilm resists repeated intravaginal antiseptic treatment in a subset of women with bacterial vaginosis: a preliminary report. Arch Gynecol Obstet 291(3):605–609.  https://doi.org/10.1007/s00404-014-3484-1CrossRefPubMedGoogle Scholar
  75. 75.
    Tandjung L, Waltimo T, Hauser I, Heide P, Decker EM, Weiger R (2007) Octenidine in root canal and dentine disinfection ex vivo. Int Endod J 40(11):845–851.  https://doi.org/10.1111/j.1365-2591.2007.01279.xCrossRefPubMedGoogle Scholar
  76. 76.
    Tanner J, Gould D, Jenkins P, Hilliam R, Mistry N, Walsh S (2012) A fresh look at preoperative body washing. J Infect Prev 13(1):11–15.  https://doi.org/10.1177/1757177411428095CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Tietz A, Frei R, Dangel M, Bolliger D, Passweg JR, Gratwohl A, Widmer AF (2005) Octenidine hydrochloride for the care of central venous catheter insertion sites in severely immunocompromised patients. Infect Control Hosp Epidemiol 26(8):703–707CrossRefPubMedGoogle Scholar
  78. 78.
    Tirali RE, Bodur H, Ece G (2012) In vitro antimicrobial activity of sodium hypochlorite, chlorhexidine gluconate and octenidine dihydrochloride in elimination of microorganisms within dentinal tubules of primary and permanent teeth. Medicina oral, patologia oral y cirugia bucal 17(3):e517–522CrossRefPubMedGoogle Scholar
  79. 79.
    Tirali RE, Turan Y, Akal N, Karahan ZC (2009) In vitro antimicrobial activity of several concentrations of NaOCl and octenisept in elimination of endodontic pathogens. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 108(5):e117–120.  https://doi.org/10.1016/j.tripleo.2009.07.012CrossRefPubMedGoogle Scholar
  80. 80.
    Tylewska-Wierzbanowska S, Rogulska U, Lewandowska G, Chmielewski T (2017) Bactericidal activity of octenidine to various genospecies of Borrelia burgdorferi, Sensu Lato Spirochetes in vitro and in vivo. Pol J Microbiol 66(2):259–263CrossRefPubMedGoogle Scholar
  81. 81.
    Upadhyay A, Chen C, Yin H, Upadhyaya I, Fancher S, Liu Y, Nair MS, Jankelunas L, Patel JR, Venkitanarayanan K (2016) Inactivation of Listeria monocytogenes, Salmonella spp. and Escherichia coli O157:H7 on cantaloupes by octenidine dihydrochloride. Food Microbiol 58:121–127.  https://doi.org/10.1016/j.fm.2016.04.007CrossRefPubMedGoogle Scholar
  82. 82.
    Uzer Celik E, Tunac AT, Ates M, Sen BH (2016) Antimicrobial activity of different disinfectants against cariogenic microorganisms. Brazilian Oral Res 30(1):e125.  https://doi.org/10.1590/1807-3107BOR-2016.vol30.0125CrossRefGoogle Scholar
  83. 83.
    van Meurs SJ, Gawlitta D, Heemstra KA, Poolman RW, Vogely HC, Kruyt MC (2014) Selection of an optimal antiseptic solution for intraoperative irrigation: an in vitro study. J Bone Joint Surgery American 96(4):285–291.  https://doi.org/10.2106/jbjs.m.00313CrossRefGoogle Scholar
  84. 84.
    Varelmann D, Hostmann F, Stüber F, Schroeder S (2004) Livide Verfärbung der Hand als unerwünschtes Ereignis bei axillärer Plexusanästhesie. Der Anaesthesist 53:441–444CrossRefPubMedGoogle Scholar
  85. 85.
    Welk A, Zahedani M, Beyer C, Kramer A, Muller G (2016) Antibacterial and antiplaque efficacy of a commercially available octenidine-containing mouthrinse. Clin Oral Invest 20(7):1469–1476.  https://doi.org/10.1007/s00784-015-1643-9CrossRefGoogle Scholar
  86. 86.
    Wiegand C, Abel M, Ruth P, Elsner P, Hipler UC (2015) pH influence on antibacterial efficacy of common antiseptic substances. Skin Pharmacol Physiol 28(3):147–158.  https://doi.org/10.1159/000367632CrossRefPubMedGoogle Scholar
  87. 87.
    Wiegand C, Abel M, Ruth P, Hipler UC (2012) Analysis of the adaptation capacity of Staphylococcus aureus to commonly used antiseptics by microplate laser nephelometry. Skin Pharmacol Physiol 25(6):288–297.  https://doi.org/10.1159/000341222CrossRefPubMedGoogle Scholar
  88. 88.
    Yamamoto M, Takami T, Matsumura R, Dorofeev A, Hirata Y, Nagamune H (2016) In vitro evaluation of the biocompatibility of newly synthesized bis-quaternary ammonium compounds with spacer structures derived from pentaerythritol or hydroquinone. Biocontrol Sci 21(4):231–241.  https://doi.org/10.4265/bio.21.231CrossRefPubMedGoogle Scholar
  89. 89.
    Zumtobel M, Assadian O, Leonhard M, Stadler M, Schneider B (2009) The antimicrobial effect of Octenidine-dihydrochloride coated polymer tracheotomy tubes on Staphylococcus aureus and Pseudomonas aeruginosa colonisation. BMC Microbiol 9:150.  https://doi.org/10.1186/1471-2180-9-150CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Institute of Hygiene and Environmental MedicineUniversity of GreifswaldGreifswaldGermany

Personalised recommendations