Advertisement

Polihexanide

  • Günter KampfEmail author
Chapter

Abstract

Polihexanide chloride (PHMB) is mostly bactericidal at 0.016–0.02% (1 h) and yeasticidal at 0.1% (5 min). The fungicidal and mycobactericidal activity depends on the species. Epidemiological cut-off values to determine acquired resistance have not been proposed yet. Elevated MIC values suggestive of PHMB resistance have been reported among some species including A. westerdijkiae, Shingomonas spp. and Azospirillum spp. (>1,000 mg/l) which are able to metabolize PHMB. Resistance genes have been described in S. cerevisiae (NCW2 gene) and E. coli (rhs genes). No cross-tolerance to other biocidal agents or antibiotics was found so far. Low-level exposure leads to no MIC change in 31 species, a weak MIC change in 18 species and a strong MIC change in 6 species being stable only in E. faecalis and S. aureus and resulting in MIC values as high as 31.3 mg/l (E. faecalis) or 23.5 mg/l (S. aureus). The effect of PHMB on biofilm formation or fixation is unknown; biofilm removal by PHMB is poor.

References

  1. 1.
    Ali S, Wilson APR (2017) Effect of poly-hexamethylene biguanide hydrochloride (PHMB) treated non-sterile medical gloves upon the transmission of Streptococcus pyogenes, carbapenem-resistant E. coli, MRSA and Klebsiella pneumoniae from contact surfaces. BMC Infect Dis 17(1):574.  https://doi.org/10.1186/s12879-017-2661-9CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Allen MJ, White GF, Morby AP (2006) The response of Escherichia coli to exposure to the biocide polyhexamethylene biguanide. Microbiology (Reading, England) 152(Pt 4):989–1000.  https://doi.org/10.1099/mic.0.28643-0
  3. 3.
    Anderson MJ, Scholz MT, Parks PJ, Peterson ML (2013) Ex vivo porcine vaginal mucosal model of infection for determining effectiveness and toxicity of antiseptics. J Appl Microbiol 115(3):679–688.  https://doi.org/10.1111/jam.12277CrossRefPubMedGoogle Scholar
  4. 4.
    Ansorg R, Rath PM, Fabry W (2003) Inhibition of the anti-staphylococcal activity of the antiseptic polihexanide by mucin. Arzneimittelforschung 53(5):368–371.  https://doi.org/10.1055/s-0031-1297121CrossRefPubMedGoogle Scholar
  5. 5.
    Assadian O, Wehse K, Hubner NO, Koburger T, Bagel S, Jethon F, Kramer A (2011) Minimum inhibitory (MIC) and minimum microbicidal concentration (MMC) of polihexanide and triclosan against antibiotic sensitive and resistant Staphylococcus aureus and Escherichia coli strains. GMS Krankenhaushygiene interdisziplinar 6(1):Doc06.  https://doi.org/10.3205/dgkh000163
  6. 6.
    Behrens-Baumann W, Seibold M, Hofmuller W, Walter S, Haeberle H, Wecke T, Tammer I, Tintelnot K (2012) Benefit of polyhexamethylene biguanide in Fusarium keratitis. Ophthalmic Res 48(4):171–176.  https://doi.org/10.1159/000337140CrossRefPubMedGoogle Scholar
  7. 7.
    Bernauer U (2015) Opinion of the scientific committee on consumer safety (SCCS)–2nd Revision of the safety of the use of poly(hexamethylene) biguanide hydrochloride or polyaminopropyl biguanide (PHMB) in cosmetic products. Regul Toxicol Pharmacol: RTP 73(3):885–886.  https://doi.org/10.1016/j.yrtph.2015.09.035CrossRefPubMedGoogle Scholar
  8. 8.
    Chadeau E, Dumas E, Adt I, Degraeve P, Noel C, Girodet C, Oulahal N (2012) Assessment of the mode of action of polyhexamethylene biguanide against Listeria innocua by Fourier transformed infrared spectroscopy and fluorescence anisotropy analysis. Can J Microbiol 58(12):1353–1361.  https://doi.org/10.1139/w2012-113CrossRefPubMedGoogle Scholar
  9. 9.
    Chindera K, Mahato M, Sharma AK, Horsley H, Kloc-Muniak K, Kamaruzzaman NF, Kumar S, McFarlane A, Stach J, Bentin T, Good L (2016) The antimicrobial polymer PHMB enters cells and selectively condenses bacterial chromosomes. Scientific reports 6:23121.  https://doi.org/10.1038/srep23121CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Codling CE, Maillard JY, Russell AD (2003) Performance of contact lens disinfecting solutions against Pseudomonas aeruginosa in the presence of organic load. Eye & contact lens 29(2):100–102.  https://doi.org/10.1097/01.icl.0000062347.66975.f1CrossRefGoogle Scholar
  11. 11.
    Cowley NL, Forbes S, Amezquita A, McClure P, Humphreys GJ, McBain AJ (2015) Effects of formulation on microbicide potency and mitigation of the development of bacterial insusceptibility. Appl Environ Microbiol 81(20):7330–7338.  https://doi.org/10.1128/aem.01985-15CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Das JR, Bhakoo M, Jones MV, Gilbert P (1998) Changes in the biocide susceptibility of Staphylococcus epidermidis and Escherichia coli cells associated with rapid attachment to plastic surfaces. J Appl Microbiol 84(5):852–858CrossRefPubMedGoogle Scholar
  13. 13.
    Davis SC, Harding A, Gil J, Parajon F, Valdes J, Solis M, Higa A (2017) Effectiveness of a polyhexanide irrigation solution on methicillin-resistant Staphylococcus aureus biofilms in a porcine wound model. Int Wound J 14(6):937–944.  https://doi.org/10.1111/iwj.12734CrossRefPubMedGoogle Scholar
  14. 14.
    Decker EM, Bartha V, Kopunic A, von Ohle C (2017) Antimicrobial efficiency of mouthrinses versus and in combination with different photodynamic therapies on periodontal pathogens in an experimental study. J Periodontal Res 52(2):162–175.  https://doi.org/10.1111/jre.12379CrossRefPubMedGoogle Scholar
  15. 15.
    Eberlein T, Assadian O (2010) Clinical use of polihexanide on acute and chronic wounds for antisepsis and decontamination. Skin Pharmacol Physiol 23(Suppl):45–51.  https://doi.org/10.1159/000318267CrossRefPubMedGoogle Scholar
  16. 16.
    Egli-Gany D, Brill FH, Hintzpeter M, Andree S, Pavel V (2012) Evaluation of the antiseptic efficacy and local tolerability of a polihexanide-based antiseptic on resident skin flora. Adv Skin Wound Care 25(9):404–408.  https://doi.org/10.1097/01.ASW.0000419405.52570.3eCrossRefPubMedGoogle Scholar
  17. 17.
    Elsztein C, de Lima Rde C, de Barros Pita W, de Morais MA, Jr (2016) NCW2, a Gene Involved in the Tolerance to Polyhexamethylene Biguanide (PHMB), May Help in the Organisation of beta-1,3-Glucan Structure of Saccharomyces cerevisiae Cell Wall. Curr Microbiol 73(3):341–345.  https://doi.org/10.1007/s00284-016-1067-z
  18. 18.
    Elsztein C, de Lucena RM, de Morais MA, Jr. (2011) The resistance of the yeast Saccharomyces cerevisiae to the biocide polyhexamethylene biguanide: involvement of cell wall integrity pathway and emerging role for YAP1. BMC Mol Biol 12:38.  https://doi.org/10.1186/1471-2199-12-38
  19. 19.
    Epstein AB (2007) In the aftermath of the Fusarium keratitis outbreak: what have we learned. Clin Ophtalm 1(4):355–366Google Scholar
  20. 20.
    European Chemicals Agency (ECHA) PHMB. Substance information. https://echa.europa.eu/substance-information/-/substanceinfo/100.115.789. Accessed 05 Feb 2018
  21. 21.
    Fabry W, Kock HJ (2014) In-vitro activity of polyhexanide alone and in combination with antibiotics against Staphylococcus aureus. J Hosp Infect 86(1):68–72.  https://doi.org/10.1016/j.jhin.2013.10.002CrossRefPubMedGoogle Scholar
  22. 22.
    Fabry W, Reimer C, Azem T, Aepinus C, Kock HJ, Vahlensieck W (2013) Activity of the antiseptic polyhexanide against meticillin-susceptible and meticillin-resistant Staphylococcus aureus. J Global Antimicrob Resist 1(4):195–199.  https://doi.org/10.1016/j.jgar.2013.05.007CrossRefGoogle Scholar
  23. 23.
    Fabry W, Trampenau C, Bettag C, Handschin AE, Lettgen B, Huber FX, Hillmeier J, Kock HJ (2006) Bacterial decontamination of surgical wounds treated with Lavasept. Int J Hyg Environ Health 209(6):567–573.  https://doi.org/10.1016/j.ijheh.2006.03.008CrossRefPubMedGoogle Scholar
  24. 24.
    Fabry WH, Kock HJ, Vahlensieck W (2014) Activity of the antiseptic polyhexanide against gram-negative bacteria. Microb Drug Resist (Larchmont, NY) 20(2):138–143.  https://doi.org/10.1089/mdr.2013.0113
  25. 25.
    Forbes S, Dobson CB, Humphreys GJ, McBain AJ (2014) Transient and sustained bacterial adaptation following repeated sublethal exposure to microbicides and a novel human antimicrobial peptide. Antimicrob Agents Chemother 58(10):5809–5817.  https://doi.org/10.1128/aac.03364-14CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Forbes S, Knight CG, Cowley NL, Amezquita A, McClure P, Humphreys G, McBain AJ (2016) Variable effects of exposure to formulated microbicides on antibiotic susceptibility in firmicutes and proteobacteria. Appl Environ Microbiol 82(12):3591–3598.  https://doi.org/10.1128/aem.00701-16CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Frenzel E, Schmidt S, Niederweis M, Steinhauer K (2011) Importance of porins for biocide efficacy against Mycobacterium smegmatis. Appl Environ Microbiol 77(9):3068–3073.  https://doi.org/10.1128/aem.02492-10CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Geraldo IM, Gilman A, Shintre MS, Modak SM (2008) Rapid antibacterial activity of 2 novel hand soaps: evaluation of the risk of development of bacterial resistance to the antibacterial agents. Infect Control Hosp Epidemiol 29(8):736–741.  https://doi.org/10.1086/589723CrossRefPubMedGoogle Scholar
  29. 29.
    Gilbert P, Das JR, Jones MV, Allison DG (2001) Assessment of resistance towards biocides following the attachment of micro-organisms to, and growth on, surfaces. J Appl Microbiol 91(2):248–254CrossRefPubMedGoogle Scholar
  30. 30.
    Goroncy-Bermes P, Brill FHH, Brill H (2013) Antimicrobial activity of wound antiseptics against Extended-Spectrum Beta-Lactamase-producing bacteria. Wound Med 1(1):41–43CrossRefGoogle Scholar
  31. 31.
    Gunther F, Blessing B, Tacconelli E, Mutters NT (2017) MRSA decolonization failure-are biofilms the missing link? Antimicrob Resist Infect Control 6:32.  https://doi.org/10.1186/s13756-017-0192-1CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Hammer TR, Mucha H, Hoefer D (2012) Dermatophyte susceptibility varies towards antimicrobial textiles. Mycoses 55(4):344–351.  https://doi.org/10.1111/j.1439-0507.2011.02121.xCrossRefPubMedGoogle Scholar
  33. 33.
    Hansmann F, Kramer A, Ohgke H, Strobel H, Muller M, Geerling G (2005) [Lavasept as an alternative to PVP-iodine as a preoperative antiseptic in ophthalmic surgery. Randomized, controlled, prospective double-blind trial]. Der Ophthalmologe: Zeitschrift der Deutschen Ophthalmologischen Gesellschaft 102(11):1043–1046, 1048–1050.  https://doi.org/10.1007/s00347-004-1120-3
  34. 34.
    Hill CW, Sandt CH, Vlazny DA (1994) Rhs elements of Escherichia coli: a family of genetic composites each encoding a large mosaic protein. Mol Microbiol 12(6):865–871CrossRefPubMedGoogle Scholar
  35. 35.
    Hirsch T, Limoochi-Deli S, Lahmer A, Jacobsen F, Goertz O, Steinau HU, Seipp HM, Steinstraesser L (2011) Antimicrobial activity of clinically used antiseptics and wound irrigating agents in combination with wound dressings. Plast Reconstr Surg 127(4):1539–1545.  https://doi.org/10.1097/PRS.0b013e318208d00fCrossRefPubMedGoogle Scholar
  36. 36.
    Hoekstra MJ, Westgate SJ, Mueller S (2017) Povidone-iodine ointment demonstrates in vitro efficacy against biofilm formation. Int Wound J 14(1):172–179.  https://doi.org/10.1111/iwj.12578CrossRefPubMedGoogle Scholar
  37. 37.
    Hubner NO, Kramer A (2010) Review on the efficacy, safety and clinical applications of polihexanide, a modern wound antiseptic. Skin Pharmacol Physiol 23(Suppl):17–27.  https://doi.org/10.1159/000318264CrossRefPubMedGoogle Scholar
  38. 38.
    Hubner NO, Matthes R, Koban I, Randler C, Muller G, Bender C, Kindel E, Kocher T, Kramer A (2010) Efficacy of chlorhexidine, polihexanide and tissue-tolerable plasma against Pseudomonas aeruginosa biofilms grown on polystyrene and silicone materials. Skin Pharmacol Physiol 23(Suppl):28–34.  https://doi.org/10.1159/000318265CrossRefPubMedGoogle Scholar
  39. 39.
    Johani K, Malone M, Jensen SO, Dickson HG, Gosbell IB, Hu H, Yang Q, Schultz G, Vickery K (2018) Evaluation of short exposure times of antimicrobial wound solutions against microbial biofilms: from in vitro to in vivo. J Antimicrob Chemother 73(2):494–502.  https://doi.org/10.1093/jac/dkx391CrossRefPubMedGoogle Scholar
  40. 40.
    Juncker JC (2016) COMMISSION IMPLEMENTING DECISION (EU) 2016/109 of 27 January 2016 not to approve PHMB (1600; 1.8) as an existing active substance for use in biocidal products for product-types 1, 6 and 9. Off J Eur Union 59 (L 21):84–85Google Scholar
  41. 41.
    Juncker JC (2016) COMMISSION IMPLEMENTING REGULATION (EU) 2016/124 of 29 January 2016 approving PHMB (1600; 1.8) as an existing active substance for use in biocidal products for product-type 4. Off J Eur Union 59 (L 24):1–5Google Scholar
  42. 42.
    Juncker JC (2016) COMMISSION IMPLEMENTING REGULATION (EU) 2016/125 of 29 January 2016 approving PHMB (1600; 1.8) as an existing active substance for use in biocidal products for product-types 2, 3, 11. Off J Eur Union 59 (L 24):6–11Google Scholar
  43. 43.
    Juncker JC (2017) COMMISSION IMPLEMENTING DECISION (EU) 2017/802 of 10 May 2017 not approving PHMB (1600; 1.8) as an existing active substance for use in biocidal products for product-type 5. Off J Eur Union 60 (L 120):29–30Google Scholar
  44. 44.
    Kahar Bador M, Rai V, Yusof MY, Kwong WK, Assadian O (2015) Evaluation of the efficacy of antibacterial medical gloves in the ICU setting. J Hosp Infect 90(3):248–252.  https://doi.org/10.1016/j.jhin.2015.03.009CrossRefPubMedGoogle Scholar
  45. 45.
    Kamaruzzaman NF, Firdessa R, Good L (2016) Bactericidal effects of polyhexamethylene biguanide against intracellular Staphylococcus aureus EMRSA-15 and USA 300. J Antimicrob Chemother 71(5):1252–1259.  https://doi.org/10.1093/jac/dkv474CrossRefPubMedGoogle Scholar
  46. 46.
    Kapalschinski N, Seipp HM, Kuckelhaus M, Harati KK, Kolbenschlag JJ, Daigeler A, Jacobsen F, Lehnhardt M, Hirsch T (2017) Albumin reduces the antibacterial efficacy of wound antiseptics against Staphylococcus aureus. J Wound Care 26(4):184–187.  https://doi.org/10.12968/jowc.2017.26.4.184CrossRefPubMedGoogle Scholar
  47. 47.
    Kapalschinski N, Seipp HM, Onderdonk AB, Goertz O, Daigeler A, Lahmer A, Lehnhardt M, Hirsch T (2013) Albumin reduces the antibacterial activity of polyhexanide-biguanide-based antiseptics against Staphylococcus aureus and MRSA. Burns: J Int Soc Burn Injuries 39(6):1221–1225.  https://doi.org/10.1016/j.burns.2013.03.003CrossRefGoogle Scholar
  48. 48.
    Koban I, Geisel MH, Holtfreter B, Jablonowski L, Hubner NO, Matthes R, Masur K, Weltmann KD, Kramer A, Kocher T (2013) Synergistic effects of nonthermal plasma and disinfecting agents against dental biofilms in vitro. ISRN Dent 2013:573262.  https://doi.org/10.1155/2013/573262CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Koburger T, Hübner N-O, Braun M, Siebert J, Kramer A (2010) Standardized comparison of antiseptic efficacy of triclosan, PVP-iodine, octenidine dihydrochloride, polyhexanide and chlorhexidine digluconate. J Antimicrob Chemother 65(8):1712–1719CrossRefPubMedGoogle Scholar
  50. 50.
    Koburger T, Müller G, Eisenbeiß W, Assadian O, Kramer A (2007) Microbicidal activity of polihexanide. GMS Krankenhaushygiene interdisziplinar 2 (2):DOC44Google Scholar
  51. 51.
    Kramer A, Dissemond J, Kim S, Willy C, Mayer D, Papke R, Tuchmann F, Assadian O (2017) Consensus on wound antisepsis: update 2018. Skin Pharmacol Physiol 31(1):28–58.  https://doi.org/10.1159/000481545CrossRefPubMedGoogle Scholar
  52. 52.
    Landelle C, von Dach E, Haustein T, Agostinho A, Renzi G, Renzoni A, Pittet D, Schrenzel J, Francois P, Harbarth S (2016) Randomized, placebo-controlled, double-blind clinical trial to evaluate the efficacy of polyhexanide for topical decolonization of MRSA carriers. J Antimicrob Chemother 71(2):531–538.  https://doi.org/10.1093/jac/dkv331CrossRefPubMedGoogle Scholar
  53. 53.
    Lin JC, Ward TP, Belyea DA, McEvoy P, Kramer KK (1997) Treatment of Nocardia asteroides keratitis with polyhexamethylene biguanide. Ophthalmology 104(8):1306–1311CrossRefPubMedGoogle Scholar
  54. 54.
    Lucas AD (2012) Environmental fate of polyhexamethylene biguanide. Bull Environ Contam Toxicol 88(3):322–325.  https://doi.org/10.1007/s00128-011-0436-3CrossRefPubMedGoogle Scholar
  55. 55.
    Mashat BH (2016) Polyhexamethylene biguanide hydrochloride: features and applications. Br J Environ Sci 4(1):49–55Google Scholar
  56. 56.
    Messick CR, Pendland SL, Moshirfar M, Fiscella RG, Losnedahl KJ, Schriever CA, Schreckenberger PC (1999) In-vitro activity of polyhexamethylene biguanide (PHMB) against fungal isolates associated with infective keratitis. J Antimicrob Chemother 44(2):297–298CrossRefPubMedGoogle Scholar
  57. 57.
    Mikkola R, Andersson MA, Hautaniemi M, Salkinoja-Salonen MS (2015) Toxic indole alkaloids avrainvillamide and stephacidin B produced by a biocide tolerant indoor mold Aspergillus westerdijkiae. Toxicon: Official J Int Soc Toxinol 99:58–67.  https://doi.org/10.1016/j.toxicon.2015.03.011CrossRefGoogle Scholar
  58. 58.
    Minnich KE, Stolarick R, Wilkins RG, Chilson G, Pritt SL, Unverdorben M (2012) The effect of a wound care solution containing polyhexanide and betaine on bacterial counts: results of an in vitro study. Ostomy/Wound Manage 58(10):32–36Google Scholar
  59. 59.
    Moore LE, Ledder RG, Gilbert P, McBain AJ (2008) In vitro study of the effect of cationic biocides on bacterial population dynamics and susceptibility. Appl Environ Microbiol 74(15):4825–4834.  https://doi.org/10.1128/aem.00573-08CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Mori M, Gomi M, Matsumune N, Niizeki K, Sakagami Y (2013) Biofilm-forming activity of bacteria isolated from toilet bowl biofilms and the bactericidal activity of disinfectants against the isolates. Biocontrol Sci 18(3):129–135CrossRefPubMedGoogle Scholar
  61. 61.
    Muller G, Kramer A (2000) In vitro action of a combination of selected antimicrobial agents and chondroitin sulfate. Chem Biol Interact 124(2):77–85CrossRefPubMedGoogle Scholar
  62. 62.
    Muller G, Kramer A (2008) Biocompatibility index of antiseptic agents by parallel assessment of antimicrobial activity and cellular cytotoxicity. J Antimicrob Chemother 61(6):1281–1287.  https://doi.org/10.1093/jac/dkn125CrossRefPubMedGoogle Scholar
  63. 63.
    National Center for Biotechnology Information (2018) Polyhexanide. PubChem Compound Database; CID=20977. https://pubchem.ncbi.nlm.nih.gov/compound/20977. Accessed 25 Jan 2018
  64. 64.
    Norman G, Christie J, Liu Z, Westby MJ, Jefferies JM, Hudson T, Edwards J, Mohapatra DP, Hassan IA, Dumville JC (2017) Antiseptics for burns. Cochrane Database Syst Rev 7:Cd011821.  https://doi.org/10.1002/14651858.cd011821.pub2
  65. 65.
    O’Malley LP, Collins AN, White GF (2006) Biodegradability of end-groups of the biocide polyhexamethylene biguanide (PHMB) assessed using model compounds. J Ind Microbiol Biotechnol 33(8):677–684.  https://doi.org/10.1007/s10295-006-0103-6CrossRefPubMedGoogle Scholar
  66. 66.
    O’Malley LP, Shaw CH, Collins AN (2007) Microbial degradation of the biocide polyhexamethylene biguanide: isolation and characterization of enrichment consortia and determination of degradation by measurement of stable isotope incorporation into DNA. J Appl Microbiol 103(4):1158–1169.  https://doi.org/10.1111/j.1365-2672.2007.03354.xCrossRefPubMedGoogle Scholar
  67. 67.
    Payne B, Simmen HP, Csuka E, Hintzpeter M, Pahl S, Brill FHH (2018) Randomised, double-blind, controlled clinical trial on the antiseptic efficacy by reduction of CFU with polihexanide 0.04% on acute traumatic wounds. J Hosp Infect 98(4):429–432.  https://doi.org/10.1016/j.jhin.2017.12.020CrossRefPubMedGoogle Scholar
  68. 68.
    Rembe JD, Fromm-Dornieden C, Schafer N, Bohm JK, Stuermer EK (2016) Comparing two polymeric biguanides: chemical distinction, antiseptic efficacy and cytotoxicity of polyaminopropyl biguanide and polyhexamethylene biguanide. J Med Microbiol 65(8):867–876.  https://doi.org/10.1099/jmm.0.000294CrossRefPubMedGoogle Scholar
  69. 69.
    Renzoni A, Von Dach E, Landelle C, Diene SM, Manzano C, Gonzales R, Abdelhady W, Randall CP, Bonetti EJ, Baud D, O’Neill AJ, Bayer A, Cherkaoui A, Schrenzel J, Harbarth S, Francois P (2017) Impact of exposure of methicillin-resistant staphylococcus aureus to polyhexanide in vitro and in vivo. Antimicrob Agents Chemother 61(10).  https://doi.org/10.1128/aac.00272-17
  70. 70.
    Rohrer N, Widmer AF, Waltimo T, Kulik EM, Weiger R, Filipuzzi-Jenny E, Walter C (2010) Antimicrobial efficacy of 3 oral antiseptics containing octenidine, polyhexamethylene biguanide, or Citroxx: can chlorhexidine be replaced? Infect Control Hosp Epidemiol 31(7):733–739.  https://doi.org/10.1086/653822CrossRefPubMedGoogle Scholar
  71. 71.
    Rosenthal RA, Bell WM, Abshire R (1999) Disinfecting action of a new multi-purpose disinfection solution for contact lenses. Cont Lens Anterior Eye 22(4):104–109CrossRefPubMedGoogle Scholar
  72. 72.
    Rosenthal RA, Dassanayake NL, Schlitzer RL, Schlech BA, Meadows DL, Stone RP (2006) Biocide uptake in contact lenses and loss of fungicidal activity during storage of contact lenses. Eye contact Lens 32(6):262–266.  https://doi.org/10.1097/ICL.0b013e31802b413fCrossRefPubMedGoogle Scholar
  73. 73.
    Rosenthal RA, Stein JM, McAnally CL, Schlech BA (1995) A comparative study of the microbiologic effectiveness of chemical disinfectants and peroxide-neutralizer systems. CLAO J: Official Publ Contact Lens Assoc Ophthalmologists, Inc 21(2):99–110Google Scholar
  74. 74.
    Rosin M, Welk A, Bernhardt O, Ruhnau M, Pitten FA, Kocher T, Kramer A (2001) Effect of a polyhexamethylene biguanide mouthrinse on bacterial counts and plaque. J Clin Periodontol 28(12):1121–1126CrossRefPubMedGoogle Scholar
  75. 75.
    Roth B, Brill FH (2010) Polihexanide for wound treatment–how it began. Skin Pharmacol Physiol 23(Suppl):4–6.  https://doi.org/10.1159/000318236CrossRefPubMedGoogle Scholar
  76. 76.
    Saleh K, Sonesson A, Persson K, Riesbeck K, Schmidtchen A (2016) Can dressings soaked with polyhexanide reduce bacterial loads in full-thickness skin grafting? A randomized controlled trial. J Am Acad Dermatol 75(6):1221–1228.e1224.  https://doi.org/10.1016/j.jaad.2016.07.020
  77. 77.
    Schedler K, Assadian O, Brautferger U, Muller G, Koburger T, Classen S, Kramer A (2017) Proposed phase 2/ step 2 in-vitro test on basis of EN 14561 for standardised testing of the wound antiseptics PVP-iodine, chlorhexidine digluconate, polihexanide and octenidine dihydrochloride. BMC Infect Dis 17(1):143.  https://doi.org/10.1186/s12879-017-2220-4CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Scientific Committee On Consumer Safety S (2015) Opinion on the safety of poly(hexamethylene) biguanide hydrochloride (PHMB). https://eceuropaeu/health/scientific_committees/consumer_safety/docs/sccs_o_157pdf. Accessed 02 Feb 2018Google Scholar
  79. 79.
    Souza AL, Ceridorio LF, Paula GF, Mattoso LH, Oliveira ON Jr (2015) Understanding the biocide action of poly(hexamethylene biguanide) using Langmuir monolayers of dipalmitoyl phosphatidylglycerol. Colloids Surf B 132:117–121.  https://doi.org/10.1016/j.colsurfb.2015.05.018CrossRefGoogle Scholar
  80. 80.
    Tambe SM, Sampath L, Modak SM (2001) In vitro evaluation of the risk of developing bacterial resistance to antiseptics and antibiotics used in medical devices. J Antimicrob Chemother 47(5):589–598CrossRefPubMedGoogle Scholar
  81. 81.
    Ueda S, Kuwabara Y (2007) Susceptibility of biofilm Escherichia coli, Salmonella Enteritidis and Staphylococcus aureus to detergents and sanitizers. Biocontrol Sci 12(4):149–153CrossRefPubMedGoogle Scholar
  82. 82.
    United States Environmental Protection Agency (2004) Reregistration Eligibility Decision for PHMB. https://nepis.epa.gov/Exe/ZyPDF.cgi/P100142G.PDF?Dockey=P100142G.PDF
  83. 83.
    Uzer Celik E, Tunac AT, Ates M, Sen BH (2016) Antimicrobial activity of different disinfectants against cariogenic microorganisms. Braz Oral Res 30(1):e125.  https://doi.org/10.1590/1807-3107BOR-2016.vol30.0125CrossRefPubMedGoogle Scholar
  84. 84.
    Welk A, Splieth CH, Schmidt-Martens G, Schwahn C, Kocher T, Kramer A, Rosin M (2005) The effect of a polyhexamethylene biguanide mouthrinse compared with a triclosan rinse and a chlorhexidine rinse on bacterial counts and 4-day plaque re-growth. J Clin Periodontol 32(5):499–505.  https://doi.org/10.1111/j.1600-051X.2005.00702.xCrossRefPubMedGoogle Scholar
  85. 85.
    Werthen M, Davoudi M, Sonesson A, Nitsche DP, Morgelin M, Blom K, Schmidtchen A (2004) Pseudomonas aeruginosa-induced infection and degradation of human wound fluid and skin proteins ex vivo are eradicated by a synthetic cationic polymer. J Antimicrob Chemother 54(4):772–779.  https://doi.org/10.1093/jac/dkh407CrossRefPubMedGoogle Scholar
  86. 86.
    Wessels S, Ingmer H (2013) Modes of action of three disinfectant active substances: a review. Regul Toxicol Pharmacol: RTP 67(3):456–467.  https://doi.org/10.1016/j.yrtph.2013.09.006CrossRefPubMedGoogle Scholar
  87. 87.
    Wiegand C, Abel M, Ruth P, Elsner P, Hipler UC (2015) pH influence on antibacterial efficacy of common antiseptic substances. Skin Pharmacol Physiol 28(3):147–158.  https://doi.org/10.1159/000367632CrossRefPubMedGoogle Scholar
  88. 88.
    Wiegand C, Abel M, Ruth P, Hipler UC (2012) Analysis of the adaptation capacity of Staphylococcus aureus to commonly used antiseptics by microplate laser nephelometry. Skin Pharmacol Physiol 25(6):288–297.  https://doi.org/10.1159/000341222CrossRefPubMedGoogle Scholar
  89. 89.
    Xu Y, He Y, Zhou L, Gao C, Sun S, Wang X, Pang G (2014) Effects of contact lens solution disinfectants against filamentous fungi. Optom Vis Sci: Official Publ Am Acad Optom 91(12):1440–1445.  https://doi.org/10.1097/opx.0000000000000407CrossRefGoogle Scholar
  90. 90.
    Yabes JM, White BK, Murray CK, Sanchez CJ, Mende K, Beckius ML, Zera WC, Wenke JC, Akers KS (2017) In vitro activity of Manuka Honey and polyhexamethylene biguanide on filamentous fungi and toxicity to human cell lines. Med Mycol 55(3):334–343.  https://doi.org/10.1093/mmy/myw070CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Yamamoto M, Takami T, Matsumura R, Dorofeev A, Hirata Y, Nagamune H (2016) In vitro evaluation of the biocompatibility of newly synthesized bis-quaternary ammonium compounds with spacer structures derived from pentaerythritol or hydroquinone. Biocontrol science 21(4):231–241.  https://doi.org/10.4265/bio.21.231CrossRefPubMedGoogle Scholar
  92. 92.
    Yanai R, Ueda K, Nishida T, Toyohara M, Mori O (2011) Effects of ionic and surfactant agents on the antimicrobial activity of polyhexamethylene biguanide. Eye Contact Lens 37(2):85–89.  https://doi.org/10.1097/ICL.0b013e31820cebc3CrossRefPubMedGoogle Scholar
  93. 93.
    Yanai R, Yamada N, Ueda K, Tajiri M, Matsumoto T, Kido K, Nakamura S, Saito F, Nishida T (2006) Evaluation of povidone-iodine as a disinfectant solution for contact lenses: antimicrobial activity and cytotoxicity for corneal epithelial cells. Cont Lens Anterior Eye 29(2):85–91.  https://doi.org/10.1016/j.clae.2006.02.006CrossRefPubMedGoogle Scholar
  94. 94.
    Yoshimatsu T, Hiyama K (2007) Mechanism of the action of didecyldimethylammonium chloride (DDAC) against Escherichia coil and morphological changes of the cells. Biocontrol Sci 12(3):93–99CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Institute of Hygiene and Environmental MedicineUniversity of GreifswaldGreifswaldGermany

Personalised recommendations