Advertisement

Didecyldimethylammonium Chloride

  • Günter KampfEmail author
Chapter

Abstract

Didecyldimethylammonium chloride (DDAC) is mostly bactericidal at 1% (1 min) and yeasticidal at 0.0076% (15 min). A mycobactericidal activity is variable. Epidemiological cut-off values to determine acquired resistance have not been proposed yet. Elevated MIC values suggestive of DDAC resistance have been reported among some species including P. aeruginosa (>1,000 mg/l), P. fluorescens (>250 mg/l), A. xylosoxidans (>50 mg/l) and P. cepacia (MBC of 20%). Specific resistance mechanisms are largely unknown; only in P. fluorescens, metabolization of DDAC has been described. Cross-tolerance to benzalkonium chloride and other biocidal agents can occur in E. coli and P. fluorescens. Occasional cross-resistance to selected antibiotics was found in C. coli, E. coli, L. monocytogenes and S. enterica. Low-level exposure leads to no MIC change in 23 species, a weak MIC change in 18 species and a strong MIC change in 6 species being stable only in P. aeruginosa and resulting in MIC values as high as >1,000 mg/l (P. aeruginosa), 125 mg/l (A. proteolyticus) or P. fluorescens (>50 mg/l). The effect of DDAC on biofilm formation, removal or fixation is unknown.

References

  1. 1.
    Alaniz S, Abad-Campos P, García-Jiménez J, Armengol J (2011) Evaluation of fungicides to control Cylindrocarpon liriodendri and Cylindrocarpon macrodidymum in vitro, and their effect during the rooting phase in the grapevine propagation process. Crop Protect 30(4):489–494.  https://doi.org/10.1016/j.cropro.2010.12.020CrossRefGoogle Scholar
  2. 2.
    Barroso JM (2013) COMMISSION DIRECTIVE 2013/4/EU of 14 February 2013 amending Directive 98/8/EC of the European Parliament and of the Council to include Didecyldimethylammonium Chloride as an active substance in Annex I thereto. Off J Eur Union 56(L 44):10–11Google Scholar
  3. 3.
    Beier RC, Foley SL, Davidson MK, White DG, McDermott PF, Bodeis-Jones S, Zhao S, Andrews K, Crippen TL, Sheffield CL, Poole TL, Anderson RC, Nisbet DJ (2015) Characterization of antibiotic and disinfectant susceptibility profiles among Pseudomonas aeruginosa veterinary isolates recovered during 1994–2003. J Appl Microbiol 118(2):326–342.  https://doi.org/10.1111/jam.12707CrossRefPubMedGoogle Scholar
  4. 4.
    Buffet-Bataillon S, Branger B, Cormier M, Bonnaure-Mallet M, Jolivet-Gougeon A (2011) Effect of higher minimum inhibitory concentrations of quaternary ammonium compounds in clinical E. coli isolates on antibiotic susceptibilities and clinical outcomes. J Hosp Infect 79(2):141–146.  https://doi.org/10.1016/j.jhin.2011.06.008CrossRefPubMedGoogle Scholar
  5. 5.
    Caballero Gómez N, Abriouel H, Grande MJ, Pérez Pulido R, Gálvez A (2012) Effect of enterocin AS-48 in combination with biocides on planktonic and sessile Listeria monocytogenes. Food Microbiol 30(1):51–58.  https://doi.org/10.1016/j.fm.2011.12.013CrossRefGoogle Scholar
  6. 6.
    Casado Munoz Mdel C, Benomar N, Lavilla Lerma L, Knapp CW, Galvez A, Abriouel H (2016) Biocide tolerance, phenotypic and molecular response of lactic acid bacteria isolated from naturally-fermented Alorena table to different physico-chemical stresses. Food Microbiol 60:1–12.  https://doi.org/10.1016/j.fm.2016.06.013CrossRefPubMedGoogle Scholar
  7. 7.
    Chantefort A, Druilles J, Huet M (1990) Resistance de certains Pseudomonas aux antiseptiques et desinfectants. Medecine et maladies infectieuses 20(5):234–240.  https://doi.org/10.1016/S0399-077X(05)81134-5CrossRefGoogle Scholar
  8. 8.
    Chapuis A, Amoureux L, Bador J, Gavalas A, Siebor E, Chretien ML, Caillot D, Janin M, de Curraize C, Neuwirth C (2016) Outbreak of extended-spectrum beta-lactamase producing enterobacter cloacae with High MICs of quaternary ammonium compounds in a hematology ward associated with contaminated sinks. Front Microbiol 7:1070.  https://doi.org/10.3389/fmicb.2016.01070CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Chojecka A, Wiercinska O, Rohm-Rodowald E, Kanclerski K, Jakimiak B (2014) Effect of adaptation process of Pseudomonas aeruginosa to didecyldimethylammonium chloride in 2-propanol on bactericidal efficiency of this active substance. Rocz Panstw Zakl Hig 65(4):359–364PubMedGoogle Scholar
  10. 10.
    Cowley NL, Forbes S, Amezquita A, McClure P, Humphreys GJ, McBain AJ (2015) Effects of formulation on microbicide potency and mitigation of the development of bacterial insusceptibility. Appl Environ Microbiol 81(20):7330–7338.  https://doi.org/10.1128/aem.01985-15CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Engelbrecht K, Ambrose D, Sifuentes L, Gerba C, Weart I, Koenig D (2013) Decreased activity of commercially available disinfectants containing quaternary ammonium compounds when exposed to cotton towels. Am J Infect Control 41(10):908–911.  https://doi.org/10.1016/j.ajic.2013.01.017CrossRefPubMedGoogle Scholar
  12. 12.
    European Chemicals Agency (ECHA) Didecyldimethylammonium chloride. Substance information. https://echa.europa.eu/substance-information/-/substanceinfo/100.027.751. Accessed 25 Jan 2018
  13. 13.
    Forbes S, Knight CG, Cowley NL, Amezquita A, McClure P, Humphreys G, McBain AJ (2016) Variable effects of exposure to formulated microbicides on antibiotic susceptibility in Firmicutes and Proteobacteria. Appl Environ Microbiol 82(12):3591–3598.  https://doi.org/10.1128/aem.00701-16CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Giacometti A, Cirioni O, Greganti G, Fineo A, Ghiselli R, Del Prete MS, Mocchegiani F, Fileni B, Caselli F, Petrelli E, Saba V, Scalise G (2002) Antiseptic compounds still active against bacterial strains isolated from surgical wound infections despite increasing antibiotic resistance. Eur J Clin Microbiol Infect Dis 21(7):553–556.  https://doi.org/10.1007/s10096-002-0765-6CrossRefPubMedGoogle Scholar
  15. 15.
    Gomi M, Osaki Y, Mori M, Sakagami Y (2012) Synergistic bactericidal effects of a sublethal concentration of didecyldimethylammonium chloride (DDAC) and low concentrations of nonionic surfactants against Staphylococcus aureus. Biocontrol Sci 17(4):175–181CrossRefPubMedGoogle Scholar
  16. 16.
    Gramaje D, Aroca Á, Raposo R, García-Jiménez J, Armengol J (2009) Evaluation of fungicides to control Petri disease pathogens in the grapevine propagation process. Crop Protect 28(12):1091–1097.  https://doi.org/10.1016/j.cropro.2009.05.010CrossRefGoogle Scholar
  17. 17.
    Guerin-Mechin L, Leveau JY, Dubois-Brissonnet F (2004) Resistance of spheroplasts and whole cells of Pseudomonas aeruginosa to bactericidal activity of various biocides: evidence of the membrane implication. Microbiol Res 159(1):51–57.  https://doi.org/10.1016/j.micres.2004.01.003CrossRefPubMedGoogle Scholar
  18. 18.
    Gutierrez-Martin CB, Yubero S, Martinez S, Frandoloso R, Rodriguez-Ferri EF (2011) Evaluation of efficacy of several disinfectants against Campylobacter jejuni strains by a suspension test. Res Vet Sci 91(3):e44–e47.  https://doi.org/10.1016/j.rvsc.2011.01.020CrossRefPubMedGoogle Scholar
  19. 19.
    Hammer TR, Mucha H, Hoefer D (2012) Dermatophyte susceptibility varies towards antimicrobial textiles. Mycoses 55(4):344–351.  https://doi.org/10.1111/j.1439-0507.2011.02121.xCrossRefPubMedGoogle Scholar
  20. 20.
    Hugon E, Marchandin H, Poiree M, Fosse T, Sirvent N (2015) Achromobacter bacteraemia outbreak in a paediatric onco-haematology department related to strain with high surviving ability in contaminated disinfectant atomizers. J Hosp Infect 89(2):116–122.  https://doi.org/10.1016/j.jhin.2014.07.012CrossRefPubMedGoogle Scholar
  21. 21.
    Ioannou CJ, Hanlon GW, Denyer SP (2007) Action of disinfectant quaternary ammonium compounds against Staphylococcus aureus. Antimicrob Agents Chemother 51(1):296–306.  https://doi.org/10.1128/aac.00375-06CrossRefPubMedGoogle Scholar
  22. 22.
    Italy (2012) Didecyldimethylammonium chloride. Product-type PT 8 (Wood preservative).92Google Scholar
  23. 23.
    Italy (2015) Didecyldimethylammonium chloride Product-type 8 (Wood preservative). 148Google Scholar
  24. 24.
    Jansen AC, Boucher CE, Coetsee E, Kock JLF, van Wyk PWJ, Swart HC, Bragg RR (2013) The influence of Didecyldimethylammonium Chloride on the morphology and elemental composition of Staphylococcus aureus as determined by NanoSAM. Sci Res Essays 8(3):152–160Google Scholar
  25. 25.
    Korukluoglu M, Sahan Y, Yigit A (2006) The fungicidal efficacy of various commercial disinfectants used in the food industry. Ann Microbiol 56(4):325–330CrossRefGoogle Scholar
  26. 26.
    Langsrud S, Sundheim G, Borgmann-Strahsen R (2003) Intrinsic and acquired resistance to quaternary ammonium compounds in food-related Pseudomonas spp. J Appl Microbiol 95(4):874–882CrossRefPubMedGoogle Scholar
  27. 27.
    Laopaiboon L, Hall SJ, Smith RN (2002) The effect of a quaternary ammonium biocide on the performance and characteristics of laboratory-scale rotating biological contactors. J Appl Microbiol 93(6):1051–1058CrossRefPubMedGoogle Scholar
  28. 28.
    Lo Cascio G, Bonora MG, Zorzi A, Mortani E, Tessitore N, Loschiavo C, Lupo A, Solbiati M, Fontana R (2006) A napkin-associated outbreak of Burkholderia cenocepacia bacteraemia in haemodialysis patients. J Hosp Infect 64(1):56–62.  https://doi.org/10.1016/j.jhin.2006.04.010CrossRefPubMedGoogle Scholar
  29. 29.
    Majtan V, Majtanova L (1999) The effect of new disinfectant substances on the metabolism of Enterobacter cloacae. Int J Antimicrob Agents 11(1):59–64CrossRefPubMedGoogle Scholar
  30. 30.
    Moore LE, Ledder RG, Gilbert P, McBain AJ (2008) In vitro study of the effect of cationic biocides on bacterial population dynamics and susceptibility. Appl Environ Microbiol 74(15):4825–4834.  https://doi.org/10.1128/aem.00573-08CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Mori M, Gomi M, Matsumune N, Niizeki K, Sakagami Y (2013) Biofilm-forming activity of bacteria isolated from toilet bowl biofilms and the bactericidal activity of disinfectants against the isolates. Biocontrol Sci 18(3):129–135CrossRefPubMedGoogle Scholar
  32. 32.
    National Center for Biotechnology Information Didecyl dimethyl ammonium chloride. PubChem Compound Database; CID=23558. https://pubchem.ncbi.nlm.nih.gov/compound/23558. Accessed 24 Jan 2018
  33. 33.
    Nishihara T, Okamoto T, Nishiyama N (2000) Biodegradation of didecyldimethylammonium chloride by Pseudomonas fluorescens TN4 isolated from activated sludge. J Appl Microbiol 88(4):641–647CrossRefPubMedGoogle Scholar
  34. 34.
    Olszewska MA, Zhao T, Doyle MP (2016) Inactivation and induction of sublethal injury of Listeria monocytogenes in biofilm treated with various sanitizers. Food Control 70(Supplement C):371–379.  https://doi.org/10.1016/j.foodcont.2016.06.015
  35. 35.
    Rauwel G, Leclercq L, Criquelion J, Aubry JM, Nardello-Rataj V (2012) Aqueous mixtures of di-n-decyldimethylammonium chloride/polyoxyethylene alkyl ether: dramatic influence of tail/tail and head/head interactions on co-micellization and biocidal activity. J Colloid Interface Sci 374(1):176–186.  https://doi.org/10.1016/j.jcis.2012.02.006CrossRefPubMedGoogle Scholar
  36. 36.
    Ribic U, Klancnik A, Jersek B (2017) Characterization of Staphylococcus epidermidis strains isolated from industrial cleanrooms under regular routine disinfection. J Appl Microbiol 122(5):1186–1196.  https://doi.org/10.1111/jam.13424CrossRefPubMedGoogle Scholar
  37. 37.
    Schwaiger K, Harms KS, Bischoff M, Preikschat P, Molle G, Bauer-Unkauf I, Lindorfer S, Thalhammer S, Bauer J, Holzel CS (2014) Insusceptibility to disinfectants in bacteria from animals, food and humans-is there a link to antimicrobial resistance? Front Microbiol 5:88.  https://doi.org/10.3389/fmicb.2014.00088CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Siebor E, Llanes C, Lafon I, Ogier-Desserrey A, Duez JM, Pechinot A, Caillot D, Grandjean M, Sixt N, Neuwirth C (2007) Presumed pseudobacteremia outbreak resulting from contamination of proportional disinfectant dispenser. Eur J Clin Microbiol Infect Dis 26(3):195–198.  https://doi.org/10.1007/s10096-007-0260-1CrossRefPubMedGoogle Scholar
  39. 39.
    Soumet C, Fourreau E, Legrandois P, Maris P (2012) Resistance to phenicol compounds following adaptation to quaternary ammonium compounds in Escherichia coli. Vet Microbiol 158(1–2):147–152.  https://doi.org/10.1016/j.vetmic.2012.01.030CrossRefPubMedGoogle Scholar
  40. 40.
    Soumet C, Meheust D, Pissavin C, Le Grandois P, Fremaux B, Feurer C, Le Roux A, Denis M, Maris P (2016) Reduced susceptibilities to biocides and resistance to antibiotics in food-associated bacteria following exposure to quaternary ammonium compounds. J Appl Microbiol 121(5):1275–1281.  https://doi.org/10.1111/jam.13247CrossRefPubMedGoogle Scholar
  41. 41.
    Soumet C, Ragimbeau C, Maris P (2005) Screening of benzalkonium chloride resistance in Listeria monocytogenes strains isolated during cold smoked fish production. Lett Appl Microbiol 41(3):291–296.  https://doi.org/10.1111/j.1472-765X.2005.01763.xCrossRefPubMedGoogle Scholar
  42. 42.
    Trauth E, Lemaı̂tre J-P, Rojas C, Diviès C, Cachon R (2001) Resistance of immobilized lactic acid bacteria to the inhibitory effect of quaternary ammonium sanitizers. LWT Food Sci Technol 34(4):239–243.  https://doi.org/10.1006/fstl.2001.0759
  43. 43.
    United States Environmental Protection Agency (2006) Reregistration eligibility decision for aliphatic alkyl quaternaries (DDAC) https://archive.epa.gov/pesticides/reregistration/web/pdf/ddac_red.pdf
  44. 44.
    Walsh SE, Maillard JY, Russell AD, Catrenich CE, Charbonneau DL, Bartolo RG (2003) Development of bacterial resistance to several biocides and effects on antibiotic susceptibility. J Hosp Infect 55(2):98–107CrossRefPubMedGoogle Scholar
  45. 45.
    Wieland N, Boss J, Lettmann S, Fritz B, Schwaiger K, Bauer J, Holzel CS (2017) Susceptibility to disinfectants in antimicrobial-resistant and -susceptible isolates of Escherichia coli, Enterococcus faecalis and Enterococcus faecium from poultry-ESBL/AmpC-phenotype of E. coli is not associated with resistance to a quaternary ammonium compound, DDAC. J Appl Microbiol 122(6):1508–1517.  https://doi.org/10.1111/jam.13440CrossRefPubMedGoogle Scholar
  46. 46.
    Yoshimatsu T, Hiyama K (2007) Mechanism of the action of didecyldimethylammonium chloride (DDAC) against Escherichia coil and morphological changes of the cells. Biocontrol Sci 12(3):93–99CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Institute of Hygiene and Environmental MedicineUniversity of GreifswaldGreifswaldGermany

Personalised recommendations