Advertisement

Benzalkonium Chloride

  • Günter KampfEmail author
Chapter

Abstract

Benzalkonium chloride (BAC) is mostly bactericidal at 1% and yeasticidal at 0.2% (5 min). A mycobactericidal activity cannot be expected. Epidemiological cut-off values to determine acquired resistance have been proposed for Salmonella spp. (128 mg/l), E. coli (64 mg/l), K. pneumoniae and Enterobacter spp. (32 mg/l), S. aureus and C. albicans (16 mg/l), and E. faecalis and E. faecium (8 mg/l). Elevated MIC values suggestive of BAC resistance have been reported among numerous species including A. hydrophila (≤31,300 mg/l), B. cereus and E. meningoseptica (≤7,800 mg/l), P. aeruginosa (≤5,000 mg/l) and L. monocytogenes (≤625 mg/l). Specific resistance mechanisms are often known, e.g. resistance genes, efflux pumps, membrane changes or plasmids. Cross-tolerance to chlorhexidine, triclosan, hexachlorophene and selected antibiotics can occur in numerous species. Low-level exposure leads to no MIC change in 19 species, a weak MIC change in 25 species and a strong MIC change in 31 species (14 of them being stable) resulting in MIC values as high as 3,000 mg/l (S. Typhimurium) or 2,500 mg/l (P. aeruginosa). Bacterial biofilm formation is rather inhibited than enhanced by BAC. Biofilm removal by BAC is poor.

References

  1. 1.
    Aarestrup FM, Hasman H (2004) Susceptibility of different bacterial species isolated from food animals to copper sulphate, zinc chloride and antimicrobial substances used for disinfection. Vet Microbiol 100(1–2):83–89.  https://doi.org/10.1016/j.vetmic.2004.01.013CrossRefPubMedGoogle Scholar
  2. 2.
    Aarestrup FM, Knochel S, Hasman H (2007) Antimicrobial susceptibility of Listeria monocytogenes from food products. Foodborne Pathog Dis 4(2):216–221.  https://doi.org/10.1089/fpd.2006.0078CrossRefPubMedGoogle Scholar
  3. 3.
    Aase B, Sundheim G, Langsrud S, Rorvik LM (2000) Occurrence of and a possible mechanism for resistance to a quaternary ammonium compound in Listeria monocytogenes. Int J Food Microbiol 62(1–2):57–63CrossRefPubMedGoogle Scholar
  4. 4.
    Abuzaid A, Hamouda A, Amyes SG (2012) Klebsiella pneumoniae susceptibility to biocides and its association with cepA, qacDeltaE and qacE efflux pump genes and antibiotic resistance. J Hosp Infect 81(2):87–91.  https://doi.org/10.1016/j.jhin.2012.03.003CrossRefPubMedGoogle Scholar
  5. 5.
    Adair FW, Geftic SG, Gelzer J (1969) Resistance of Pseudomonas to quaternary ammonium compounds. I. Growth in benzalkonium chloride solution. Appl Microbiol 18(3):299–302PubMedPubMedCentralGoogle Scholar
  6. 6.
    Ahn Y, Kim JM, Lee YJ, LiPuma J, Hussong D, Marasa B, Cerniglia C (2017) Effects of extended storage of chlorhexidine gluconate and benzalkonium chloride solutions on the viability of Burkholderia cenocepacia. J Microbiol Biotechnol 27(12):2211–2220.  https://doi.org/10.4014/jmb.1706.06034CrossRefPubMedGoogle Scholar
  7. 7.
    Akamatsu T, Tabata K, Hironga M, Kawakami H, Uyeda M (1996) Transmission of Helicobacter pylori infection via flexible fiberoptic endoscopy. Am J Infect Control 24(5):396–401CrossRefPubMedGoogle Scholar
  8. 8.
    Akinkunmi EO, Lamikanra A (2012) Susceptibility of community associated methicillin resistant Staphylococcus aureus isolated from faeces to antiseptics. J Infect Developing Countries 6(4):317–323CrossRefGoogle Scholar
  9. 9.
    Alam MM, Kobayashi N, Uehara N, Watanabe N (2003) Analysis on distribution and genomic diversity of high-level antiseptic resistance genes qacA and qacB in human clinical isolates of Staphylococcus aureus. Microb Drug Resist (Larchmont, NY) 9(2):109–121.  https://doi.org/10.1089/107662903765826697
  10. 10.
    Ammar AM, Attia AM, Abd El-Hamid MI, El-Shorbagy IM, Abd El-Kader SA (2016) Genetic basis of resistance waves among methicillin resistant Staphylococcus aureus isolates recovered from milk and meat products in Egypt. Cell Mol Biol (Noisy-le-Grand, France) 62 (10):7–15Google Scholar
  11. 11.
    Araujo PA, Mergulhao F, Melo L, Simoes M (2014) The ability of an antimicrobial agent to penetrate a biofilm is not correlated with its killing or removal efficiency. Biofouling 30(6):675–683.  https://doi.org/10.1080/08927014.2014.904294CrossRefPubMedGoogle Scholar
  12. 12.
    Argudin MA, Lauzat B, Kraushaar B, Alba P, Agerso Y, Cavaco L, Butaye P, Porrero MC, Battisti A, Tenhagen BA, Fetsch A, Guerra B (2016) Heavy metal and disinfectant resistance genes among livestock-associated methicillin-resistant Staphylococcus aureus isolates. Vet Microbiol 191:88–95.  https://doi.org/10.1016/j.vetmic.2016.06.004CrossRefPubMedGoogle Scholar
  13. 13.
    Argudin MA, Mendoza MC, Martin MC, Rodicio MR (2014) Molecular basis of antimicrobial drug resistance in Staphylococcus aureus isolates recovered from young healthy carriers in Spain. Microb Pathog 74:8–14.  https://doi.org/10.1016/j.micpath.2014.06.005CrossRefPubMedGoogle Scholar
  14. 14.
    Argudin MA, Vanderhaeghen W, Butaye P (2015) Diversity of antimicrobial resistance and virulence genes in methicillin-resistant non-Staphylococcus aureus staphylococci from veal calves. Res Vet Sci 99:10–16.  https://doi.org/10.1016/j.rvsc.2015.01.004CrossRefPubMedGoogle Scholar
  15. 15.
    Arioli S, Elli M, Ricci G, Mora D (2013) Assessment of the susceptibility of lactic acid bacteria to biocides. Int J Food Microbiol 163(1):1–5.  https://doi.org/10.1016/j.ijfoodmicro.2013.02.002CrossRefPubMedGoogle Scholar
  16. 16.
    Avrain L, Allain L, Vernozy-Rozand C, Kempf I (2003) Disinfectant susceptibility testing of avian and swine Campylobacter isolates by a filtration method. Vet Microbiol 96(1):35–40CrossRefPubMedGoogle Scholar
  17. 17.
    Aykan SB, Caglar K, Engin ED, Sipahi AB, Sultan N, Yalinay Cirak M (2013) Investigation of the presence of disinfectant resistance genes qacA/B in nosocomial methicillin-resistant staphylococcus aureus isolates and evaluation of their in vitro disinfectant susceptibilities. Mikrobiyoloji Bul 47(1):1–10Google Scholar
  18. 18.
    Babaei M, Sulong A, Hamat R, Nordin S, Neela V (2015) Extremely high prevalence of antiseptic resistant Quaternary Ammonium Compound E gene among clinical isolates of multiple drug resistant Acinetobacter baumannii in Malaysia. Ann Clin Microbiol Antimicrob 14:11.  https://doi.org/10.1186/s12941-015-0071-7CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Ban GH, Kang DH (2016) Effect of sanitizer combined with steam heating on the inactivation of foodborne pathogens in a biofilm on stainless steel. Food Microbiol 55:47–54.  https://doi.org/10.1016/j.fm.2015.11.003CrossRefPubMedGoogle Scholar
  20. 20.
    Barroso JM (2013) COMMISSION DIRECTIVE 2013/7/EU of 21 February 2013 amending Directive 98/8/EC of the European Parliament and of the Council to include Alkyl (C12–16) dimethylbenzyl ammonium chloride as an active substance in Annex I thereto. Off J Eur Union 56(L 49):66-69Google Scholar
  21. 21.
    Bay DC, Stremick CA, Slipski CJ, Turner RJ (2017) Secondary multidrug efflux pump mutants alter Escherichia coli biofilm growth in the presence of cationic antimicrobial compounds. Res Microbiol 168(3):208–221.  https://doi.org/10.1016/j.resmic.2016.11.003CrossRefPubMedGoogle Scholar
  22. 22.
    Beier RC, Foley SL, Davidson MK, White DG, McDermott PF, Bodeis-Jones S, Zhao S, Andrews K, Crippen TL, Sheffield CL, Poole TL, Anderson RC, Nisbet DJ (2015) Characterization of antibiotic and disinfectant susceptibility profiles among Pseudomonas aeruginosa veterinary isolates recovered during 1994–2003. J Appl Microbiol 118(2):326–342.  https://doi.org/10.1111/jam.12707CrossRefPubMedGoogle Scholar
  23. 23.
    Ben Slama K, Jouini A, Ben Sallem R, Somalo S, Saenz Y, Estepa V, Boudabous A, Torres C (2010) Prevalence of broad-spectrum cephalosporin-resistant Escherichia coli isolates in food samples in Tunisia, and characterization of integrons and antimicrobial resistance mechanisms implicated. Int J Food Microbiol 137(2–3):281–286.  https://doi.org/10.1016/j.ijfoodmicro.2009.12.003CrossRefPubMedGoogle Scholar
  24. 24.
    Bisbiroulas P, Psylou M, Iliopoulou I, Diakogiannis I, Berberi A, Mastronicolis SK (2011) Adaptational changes in cellular phospholipids and fatty acid composition of the food pathogen Listeria monocytogenes as a stress response to disinfectant sanitizer benzalkonium chloride. Lett Appl Microbiol 52(3):275–280.  https://doi.org/10.1111/j.1472-765X.2010.02995.xCrossRefPubMedGoogle Scholar
  25. 25.
    Bischoff M, Bauer J, Preikschat P, Schwaiger K, Molle G, Holzel C (2012) First detection of the antiseptic resistance gene qacA/B in Enterococcus faecalis. Microb Drug Res (Larchmont, NY) 18(1):7–12.  https://doi.org/10.1089/mdr.2011.0092
  26. 26.
    Bjergbaek LA, Haagensen JA, Molin S, Roslev P (2008) Effect of oxygen limitation and starvation on the benzalkonium chloride susceptibility of Escherichia coli. J Appl Microbiol 105(5):1310–1317.  https://doi.org/10.1111/j.1365-2672.2008.03901.xCrossRefPubMedGoogle Scholar
  27. 27.
    Bjorland J, Bratlie MS, Steinum T (2007) The smr gene resides on a novel plasmid pSP187 identified in a Staphylococcus pasteuri isolate recovered from unpasteurized milk. Plasmid 57(2):145–155.  https://doi.org/10.1016/j.plasmid.2006.08.004CrossRefPubMedGoogle Scholar
  28. 28.
    Bjorland J, Steinum T, Kvitle B, Waage S, Sunde M, Heir E (2005) Widespread distribution of disinfectant resistance genes among staphylococci of bovine and caprine origin in Norway. J Clin Microbiol 43(9):4363–4368.  https://doi.org/10.1128/jcm.43.9.4363-4368.2005CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Bjorland J, Steinum T, Sunde M, Waage S, Heir E (2003) Novel plasmid-borne gene qacJ mediates resistance to quaternary ammonium compounds in equine Staphylococcus aureus, Staphylococcus simulans, and Staphylococcus intermedius. Antimicrob Agents Chemother 47(10):3046–3052CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Bloß R, Meyer S, Kampf G (2010) Adsorption of active ingredients from surface disinfectants to different types of fabrics. J Hosp Infect 75:56–61CrossRefPubMedGoogle Scholar
  31. 31.
    Bock LJ, Hind CK, Sutton JM, Wand ME (2018) Growth media and assay plate material can impact on the effectiveness of cationic biocides and antibiotics against different bacterial species. Lett Appl Microbiol 66(5):368–377.  https://doi.org/10.1111/lam.12863CrossRefPubMedGoogle Scholar
  32. 32.
    Bore E, Hebraud M, Chafsey I, Chambon C, Skjaeret C, Moen B, Moretro T, Langsrud O, Rudi K, Langsrud S (2007) Adapted tolerance to benzalkonium chloride in Escherichia coli K-12 studied by transcriptome and proteome analyses. Microbiology (Reading, England) 153(Pt 4):935–946.  https://doi.org/10.1099/mic.0.29288-0
  33. 33.
    Bore E, Langsrud S (2005) Characterization of micro-organisms isolated from dairy industry after cleaning and fogging disinfection with alkyl amine and peracetic acid. J Appl Microbiol 98(1):96–105.  https://doi.org/10.1111/j.1365-2672.2004.02436.xCrossRefPubMedGoogle Scholar
  34. 34.
    Braga TM, Marujo PE, Pomba C, Lopes MF (2011) Involvement, and dissemination, of the Enterococcal small multidrug resistance transporter QacZ in resistance to quaternary ammonium compounds. J Antimicrob Chemother 66(2):283–286.  https://doi.org/10.1093/jac/dkq460CrossRefPubMedGoogle Scholar
  35. 35.
    Braga TM, Pomba C, Lopes MF (2013) High-level vancomycin resistant Enterococcus faecium related to humans and pigs found in dust from pig breeding facilities. Vet Microbiol 161(3–4):344–349.  https://doi.org/10.1016/j.vetmic.2012.07.034CrossRefPubMedGoogle Scholar
  36. 36.
    Braoudaki M, Hilton AC (2004) Adaptive resistance to biocides in Salmonella enterica and Escherichia coli O157 and cross-resistance to antimicrobial agents. J Clin Microbiol 42(1):73–78CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Braoudaki M, Hilton AC (2005) Mechanisms of resistance in Salmonella enterica adapted to erythromycin, benzalkonium chloride and triclosan. Int J Antimicrob Agents 25(1):31–37.  https://doi.org/10.1016/j.ijantimicag.2004.07.016CrossRefPubMedGoogle Scholar
  38. 38.
    Bridier A, Briandet R, Thomas V, Dubois-Brissonnet F (2011) Comparative biocidal activity of peracetic acid, benzalkonium chloride and ortho-phthalaldehyde on 77 bacterial strains. J Hosp Infect 78(3):208–213.  https://doi.org/10.1016/j.jhin.2011.03.014CrossRefPubMedGoogle Scholar
  39. 39.
    Bridier A, Dubois-Brissonnet F, Greub G, Thomas V, Briandet R (2011) Dynamics of the action of biocides in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 55(6):2648–2654.  https://doi.org/10.1128/aac.01760-10CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Brill F, Goroncy-Bermes P, Sand W (2006) Influence of growth media on the sensitivity of Staphylococcus aureus and Pseudomonas aeruginosa to cationic biocides. Int J Hyg Environ Health 209(1):89–95CrossRefPubMedGoogle Scholar
  41. 41.
    Buffet-Bataillon S, Branger B, Cormier M, Bonnaure-Mallet M, Jolivet-Gougeon A (2011) Effect of higher minimum inhibitory concentrations of quaternary ammonium compounds in clinical E. coli isolates on antibiotic susceptibilities and clinical outcomes. J Hosp Infect 79(2):141–146.  https://doi.org/10.1016/j.jhin.2011.06.008CrossRefPubMedGoogle Scholar
  42. 42.
    Buffet-Bataillon S, Tattevin P, Bonnaure-Mallet M, Jolivet-Gougeon A (2012) Emergence of resistance to antibacterial agents: the role of quaternary ammonium compounds–a critical review. Int J Antimicrob Agents 39(5):381–389.  https://doi.org/10.1016/j.ijantimicag.2012.01.011CrossRefPubMedGoogle Scholar
  43. 43.
    Bundgaard-Nielsen K, Nielsen PV (1996) Fungicidal effect of 15 disinfectants against 25 fungal contaminants commonly found in bread and cheese manufacturing. J Food Prot 59(3):268–275CrossRefPubMedGoogle Scholar
  44. 44.
    Buzón-Durán L, Alonso-Calleja C, Riesco-Peláez F, Capita R (2017) Effect of sub-inhibitory concentrations of biocides on the architecture and viability of MRSA biofilms. Food Microbiol 65(Supplement C):294–301.  https://doi.org/10.1016/j.fm.2017.01.003
  45. 45.
    Caballero Gómez N, Abriouel H, Grande MJ, Pérez Pulido R, Gálvez A (2012) Effect of enterocin AS-48 in combination with biocides on planktonic and sessile Listeria monocytogenes. Food Microbiol 30(1):51–58.  https://doi.org/10.1016/j.fm.2011.12.013CrossRefGoogle Scholar
  46. 46.
    Cabo ML, Herrera JJ, Crespo MD, Pastoriza L (2009) Comparison among the effectiveness of ozone, nisin and benzalkonium chloride for the elimination of planktonic cells and biofilms of Staphylococcus aureus CECT4459 on polypropylene. Food Control 20(5):521–525.  https://doi.org/10.1016/j.foodcont.2008.08.002CrossRefGoogle Scholar
  47. 47.
    Campanac C, Pineau L, Payard A, Baziard-Mouysset G, Roques C (2002) Interactions between biocide cationic agents and bacterial biofilms. Antimicrob Agents Chemother 46(5):1469–1474CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Capita R, Buzon-Duran L, Riesco-Pelaez F, Alonso-Calleja C (2017) Effect of sub-lethal concentrations of biocides on the structural parameters and viability of the biofilms formed by Salmonella Typhimurium. Foodborne Pathog Dis 14(6):350–356.  https://doi.org/10.1089/fpd.2016.2241CrossRefPubMedGoogle Scholar
  49. 49.
    Casado Munoz Mdel C, Benomar N, Ennahar S, Horvatovich P, Lavilla Lerma L, Knapp CW, Galvez A, Abriouel H (2016) Comparative proteomic analysis of a potentially probiotic Lactobacillus pentosus MP-10 for the identification of key proteins involved in antibiotic resistance and biocide tolerance. Int J Food Microbiol 222:8–15.  https://doi.org/10.1016/j.ijfoodmicro.2016.01.012CrossRefPubMedGoogle Scholar
  50. 50.
    Casado Munoz Mdel C, Benomar N, Lavilla Lerma L, Knapp CW, Galvez A, Abriouel H (2016) Biocide tolerance, phenotypic and molecular response of lactic acid bacteria isolated from naturally-fermented Alorena table to different physico-chemical stresses. Food Microbiol 60:1–12.  https://doi.org/10.1016/j.fm.2016.06.013CrossRefPubMedGoogle Scholar
  51. 51.
    CDC (1969) Food and drug administration warning: contaminated detergent solution. MMWR—Morb Mortal Wkly Rep 18(42):366Google Scholar
  52. 52.
    Cervinkova D, Babak V, Marosevic D, Kubikova I, Jaglic Z (2013) The role of the qacA gene in mediating resistance to quaternary ammonium compounds. Microb Drug Res (Larchmont, NY) 19(3):160–167.  https://doi.org/10.1089/mdr.2012.0154
  53. 53.
    Chah KF, Agbo IC, Eze DC, Somalo S, Estepa V, Torres C (2010) Antimicrobial resistance, integrons and plasmid replicon typing in multiresistant clinical Escherichia coli strains from Enugu State, Nigeria. J Basic Microbiol 50(Suppl 1):S18–24.  https://doi.org/10.1002/jobm.200900325CrossRefPubMedGoogle Scholar
  54. 54.
    Chaieb K, Zmantar T, Souiden Y, Mahdouani K, Bakhrouf A (2011) XTT assay for evaluating the effect of alcohols, hydrogen peroxide and benzalkonium chloride on biofilm formation of Staphylococcus epidermidis. Microb Pathog 50(1):1–5.  https://doi.org/10.1016/j.micpath.2010.11.004CrossRefPubMedGoogle Scholar
  55. 55.
    Chang JM, McCanna DJ, Subbaraman LN, Jones LW (2015) Efficacy of antimicrobials against biofilms of Achromobacter and Pseudomonas. Optom Vis Sci: Official Publ Am Acad Optom 92(4):506–513.  https://doi.org/10.1097/opx.0000000000000549CrossRefGoogle Scholar
  56. 56.
    Chantefort A, Druilles J, Huet M (1990) Resistance de certains Pseudomonas aux antiseptiques et desinfectants. Med Mal Infectieuses 20(5):234–240.  https://doi.org/10.1016/S0399-077X(05)81134-5CrossRefGoogle Scholar
  57. 57.
    Chapuis A, Amoureux L, Bador J, Gavalas A, Siebor E, Chretien ML, Caillot D, Janin M, de Curraize C, Neuwirth C (2016) Outbreak of Extended-Spectrum Beta-Lactamase Producing Enterobacter cloacae with High MICs of Quaternary Ammonium Compounds in a Hematology Ward Associated with Contaminated Sinks. Frontiers Microbiol 7:1070.  https://doi.org/10.3389/fmicb.2016.01070CrossRefGoogle Scholar
  58. 58.
    Chen X, Wu Z, Zhou Y, Zhu J, Li K, Shao H, Wei L (2017) Molecular and virulence characteristics of methicillin-resistant Staphylococcus aureus in burn patients. Front Lab Med 1(1):43–47.  https://doi.org/10.1016/j.flm.2017.02.010CrossRefGoogle Scholar
  59. 59.
    Cho OH, Baek EH, Bak MH, Suh YS, Park KH, Kim S, Bae IG, Lee SH (2016) The effect of targeted decolonization on methicillin-resistant Staphylococcus aureus colonization or infection in a surgical intensive care unit. Am J Infect Control 44(5):533–538.  https://doi.org/10.1016/j.ajic.2015.12.007CrossRefPubMedGoogle Scholar
  60. 60.
    Cho OH, Park KH, Song JY, Hong JM, Kim T, Hong SI, Kim S, Bae IG (2017) Prevalence and microbiological characteristics of qacA/B-Positive Methicillin-Resistant Staphylococcus aureus Isolates in a Surgical Intensive Care Unit. Microb Drug Res (Larchmont, NY).  https://doi.org/10.1089/mdr.2017.0072
  61. 61.
    Choudhury MA, Sidjabat HE, Rathnayake IU, Gavin N, Chan RJ, Marsh N, Banu S, Huygens F, Paterson DL, Rickard CM, McMillan DJ (2017) Culture-independent detection of chlorhexidine resistance genes qacA/B and smr in bacterial DNA recovered from body sites treated with chlorhexidine-containing dressings. J Med Microbiol 66(4):447–453.  https://doi.org/10.1099/jmm.0.000463CrossRefPubMedGoogle Scholar
  62. 62.
    Chuanchuen R, Khemtong S, Padungtod P (2007) Occurrence of qacE/qacEDelta1 genes and their correlation with class 1 integrons in salmonella enterica isolates from poultry and swine. Southeast Asian J Trop Med Public Health 38(5):855–862PubMedGoogle Scholar
  63. 63.
    Chuanchuen R, Pathanasophon P, Khemtong S, Wannaprasat W, Padungtod P (2008) Susceptibilities to antimicrobials and disinfectants in Salmonella isolates obtained from poultry and swine in Thailand. J Vet Med Sci 70(6):595–601CrossRefPubMedGoogle Scholar
  64. 64.
    Coelho JR, Carrico JA, Knight D, Martinez JL, Morrissey I, Oggioni MR, Freitas AT (2013) The use of machine learning methodologies to analyse antibiotic and biocide susceptibility in Staphylococcus aureus. PLoS ONE 8(2):e55582.  https://doi.org/10.1371/journal.pone.0055582CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Cole EC, Addison RM, Rubino JR, Leese KE, Dulaney PD, Newell MS, Wilkins J, Gaber DJ, Wineinger T, Criger DA (2003) Investigation of antibiotic and antibacterial agent cross-resistance in target bacteria from homes of antibacterial product users and nonusers. J Appl Microbiol 95(4):664–676CrossRefPubMedGoogle Scholar
  66. 66.
    Condell O, Iversen C, Cooney S, Power KA, Walsh C, Burgess C, Fanning S (2012) Efficacy of biocides used in the modern food industry to control salmonella enterica, and links between biocide tolerance and resistance to clinically relevant antimicrobial compounds. Appl Environ Microbiol 78(9):3087–3097.  https://doi.org/10.1128/aem.07534-11CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Conficoni D, Losasso C, Cortini E, Di Cesare A, Cibin V, Giaccone V, Corno G, Ricci A (2016) Resistance to Biocides in Listeria monocytogenes Collected in Meat-Processing Environments. Front Microbiol 7:1627.  https://doi.org/10.3389/fmicb.2016.01627CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Corcoran M, Morris D, De Lappe N, O’Connor J, Lalor P, Dockery P, Cormican M (2014) Commonly used disinfectants fail to eradicate Salmonella enterica biofilms from food contact surface materials. Appl Environ Microbiol 80(4):1507–1514.  https://doi.org/10.1128/aem.03109-13CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Correa JE, De Paulis A, Predari S, Sordelli DO, Jeric PE (2008) First report of qacG, qacH and qacJ genes in Staphylococcus haemolyticus human clinical isolates. J Antimicrob Chemother 62(5):956–960.  https://doi.org/10.1093/jac/dkn327CrossRefPubMedGoogle Scholar
  70. 70.
    Costa D, Poeta P, Saenz Y, Coelho AC, Matos M, Vinue L, Rodrigues J, Torres C (2008) Prevalence of antimicrobial resistance and resistance genes in faecal Escherichia coli isolates recovered from healthy pets. Vet Microbiol 127(1–2):97–105.  https://doi.org/10.1016/j.vetmic.2007.08.004CrossRefPubMedGoogle Scholar
  71. 71.
    Costa DM, Lopes LKO, Hu H, Tipple AFV, Vickery K (2017) Alcohol fixation of bacteria to surgical instruments increases cleaning difficulty and may contribute to sterilization inefficacy. Am J Infect Control 45(8):e81–e86.  https://doi.org/10.1016/j.ajic.2017.04.286CrossRefPubMedGoogle Scholar
  72. 72.
    Couto N, Belas A, Couto I, Perreten V, Pomba C (2014) Genetic relatedness, antimicrobial and biocide susceptibility comparative analysis of methicillin-resistant and -susceptible Staphylococcus pseudintermedius from Portugal. Microb Drug Res (Larchmont, NY) 20(4):364–371.  https://doi.org/10.1089/mdr.2013.0043
  73. 73.
    Couto N, Belas A, Kadlec K, Schwarz S, Pomba C (2015) Clonal diversity, virulence patterns and antimicrobial and biocide susceptibility among human, animal and environmental MRSA in Portugal. J Antimicrob Chemother 70(9):2483–2487.  https://doi.org/10.1093/jac/dkv141CrossRefPubMedGoogle Scholar
  74. 74.
    Couto N, Belas A, Tilley P, Couto I, Gama LT, Kadlec K, Schwarz S, Pomba C (2013) Biocide and antimicrobial susceptibility of methicillin-resistant staphylococcal isolates from horses. Vet Microbiol 166(1–2):299–303.  https://doi.org/10.1016/j.vetmic.2013.05.011CrossRefPubMedGoogle Scholar
  75. 75.
    Cowley NL, Forbes S, Amezquita A, McClure P, Humphreys GJ, McBain AJ (2015) Effects of formulation on microbicide potency and mitigation of the development of bacterial insusceptibility. Appl Environ Microbiol 81(20):7330–7338.  https://doi.org/10.1128/aem.01985-15CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Cruz CD, Fletcher GC (2012) Assessing manufacturers’ recommended concentrations of commercial sanitizers on inactivation of Listeria monocytogenes. Food Control 26(1):194–199.  https://doi.org/10.1016/j.foodcont.2012.01.041CrossRefGoogle Scholar
  77. 77.
    Curiao T, Marchi E, Viti C, Oggioni MR, Baquero F, Martinez JL, Coque TM (2015) Polymorphic variation in susceptibility and metabolism of triclosan-resistant mutants of Escherichia coli and Klebsiella pneumoniae clinical strains obtained after exposure to biocides and antibiotics. Antimicrob Agents Chemother 59(6):3413–3423.  https://doi.org/10.1128/aac.00187-15CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Day S, Lalitha P, Haug S, Fothergill AW, Cevallos V, Vijayakumar R, Prajna NV, Acharya NR, McLeod SD, Lietman TM (2009) Activity of antibiotics against Fusarium and Aspergillus. Br J Ophthalmol 93(1):116–119.  https://doi.org/10.1136/bjo.2008.142364CrossRefPubMedGoogle Scholar
  79. 79.
    de Solis NMG, Davison AL, Pinney RJ (1994) Effect of plasmids conferring preservative resistance on performance of bacterial strains in compendial preservative efficacy tests. Eur J Pharm Sci 2(3):221–228.  https://doi.org/10.1016/0928-0987(94)90026-4CrossRefGoogle Scholar
  80. 80.
    DeMarco CE, Cushing LA, Frempong-Manso E, Seo SM, Jaravaza TA, Kaatz GW (2007) Efflux-related resistance to norfloxacin, dyes, and biocides in bloodstream isolates of Staphylococcus aureus. Antimicrob Agents Chemother 51(9):3235–3239.  https://doi.org/10.1128/aac.00430-07CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Deng W, Quan Y, Yang S, Guo L, Zhang X, Liu S, Chen S, Zhou K, He L, Li B, Gu Y, Zhao S, Zou L (2017) Antibiotic resistance in salmonella from retail foods of animal origin and its association with disinfectant and heavy metal resistance. Microb Drug Res (Larchmont, NY).  https://doi.org/10.1089/mdr.2017.0127
  82. 82.
    Department of Health and Human Services; Food and Drug Administration (2015) Safety and effectiveness of healthcare antiseptics. Topical antimicrobial drug products for over-the-counter human use; proposed amendment of the tentative final monograph; reopening of administrative record; proposed rule. Fed Reg 80(84):25166–25205Google Scholar
  83. 83.
    Derde LP, Cooper BS, Goossens H, Malhotra-Kumar S, Willems RJ, Gniadkowski M, Hryniewicz W, Empel J, Dautzenberg MJ, Annane D, Aragao I, Chalfine A, Dumpis U, Esteves F, Giamarellou H, Muzlovic I, Nardi G, Petrikkos GL, Tomic V, Marti AT, Stammet P, Brun-Buisson C, Bonten MJ (2014) Interventions to reduce colonisation and transmission of antimicrobial-resistant bacteria in intensive care units: an interrupted time series study and cluster randomised trial. Lancet Infect Dis 14(1):31–39.  https://doi.org/10.1016/s1473-3099(13)70295-0CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Deus D, Krischek C, Pfeifer Y, Sharifi AR, Fiegen U, Reich F, Klein G, Kehrenberg C (2017) Comparative analysis of the susceptibility to biocides and heavy metals of extended-spectrum beta-lactamase-producing Escherichia coli isolates of human and avian origin, Germany. Diagn Microbiol Infect Dis 88(1):88–92.  https://doi.org/10.1016/j.diagmicrobio.2017.01.023CrossRefPubMedGoogle Scholar
  85. 85.
    Dominciano LCC, Oliveira CAF, Lee SH, Corassin CH (2016) Individual and combined antimicrobial activity of oleuropein and chemical sanitizers. J Food Chem Nanotechnol 2(3):124–127Google Scholar
  86. 86.
    dos Anjos MM, Ruiz SP, Nakamura CV, de Abreu Filho BA (2013) Resistance of Alicyclobacillus acidoterrestris spores and biofilm to industrial sanitizers. J Food Prot 76(8):1408–1413.  https://doi.org/10.4315/0362-028x.jfp-13-020CrossRefPubMedGoogle Scholar
  87. 87.
    Duran N, Temiz M, Duran GG, Eryilmaz N, Jenedi K (2014) Relationship between the resistance genes to quaternary ammonium compounds and antibiotic resistance in staphylococci isolated from surgical site infections. Med Sci Monit: Int Med J Exp Clin Res 20:544–550.  https://doi.org/10.12659/msm.890177CrossRefGoogle Scholar
  88. 88.
    Dutta V, Elhanafi D, Kathariou S (2013) Conservation and distribution of the benzalkonium chloride resistance cassette bcrABC in Listeria monocytogenes. Appl Environ Microbiol 79(19):6067–6074.  https://doi.org/10.1128/aem.01751-13CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Dynes JJ, Lawrence JR, Korber DR, Swerhone GD, Leppard GG, Hitchcock AP (2009) Morphological and biochemical changes in Pseudomonas fluorescens biofilms induced by sub-inhibitory exposure to antimicrobial agents. Can J Microbiol 55(2):163–178.  https://doi.org/10.1139/w08-109CrossRefPubMedGoogle Scholar
  90. 90.
    Ebner R, Johler S, Sihto HM, Stephan R, Zweifel C (2013) Microarray-based characterization of Staphylococcus aureus isolates obtained from chicken carcasses. J Food Prot 76(8):1471–1474.  https://doi.org/10.4315/0362-028x.jfp-13-009CrossRefPubMedGoogle Scholar
  91. 91.
    Ebner R, Stephan R, Althaus D, Brisse S, Maury M, Tasara T (2015) Phenotypic and genotypic characteristics of Listeria monocytogenes strains isolated during 2011–2014 from different food matrices in Switzerland. Food Control 57(Supplement C):321–326.  https://doi.org/10.1016/j.foodcont.2015.04.030
  92. 92.
    Ebrahimi A, Hemati M, Shabanpour Z, Habibian Dehkordi S, Bahadoran S, Lotfalian S, Khubani S (2015) Effects of benzalkonium chloride on planktonic growth and biofilm formation by animal bacterial pathogens. Jundishapur J Microbiol 8(2):e16058.  https://doi.org/10.5812/jjm.16058CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Ehrenkranz NJ, Bolyard EA, Wiener M, Cleary TJ (1980) Antibiotic-sensitive Serratia marcescens infections complicating cardiopulmonary operations: contaminated disinfectant as a reservoir. Lancet 2(8207):1289–1292CrossRefPubMedGoogle Scholar
  94. 94.
    Elhanafi D, Dutta V, Kathariou S (2010) Genetic characterization of plasmid-associated benzalkonium chloride resistance determinants in a Listeria monocytogenes strain from the 1998–1999 outbreak. Appl Environ Microbiol 76(24):8231–8238.  https://doi.org/10.1128/aem.02056-10CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Elli M, Arioli S, Guglielmetti S, Mora D (2013) Biocide susceptibility in Bifidobacteria of human origin. J Glob Antimicrob Resist 1(2):97–101.  https://doi.org/10.1016/j.jgar.2013.03.007CrossRefPubMedGoogle Scholar
  96. 96.
    Engelbrecht K, Ambrose D, Sifuentes L, Gerba C, Weart I, Koenig D (2013) Decreased activity of commercially available disinfectants containing quaternary ammonium compounds when exposed to cotton towels. Am J Infect Control 41(10):908–911.  https://doi.org/10.1016/j.ajic.2013.01.017CrossRefPubMedGoogle Scholar
  97. 97.
    Espigares E, Moreno Roldan E, Espigares M, Abreu R, Castro B, Dib AL, Arias A (2017) Phenotypic Resistance to Disinfectants and Antibiotics in Methicillin-Resistant Staphylococcus aureus Strains Isolated from Pigs. Zoonoses Public Health 64(4):272–280.  https://doi.org/10.1111/zph.12308CrossRefPubMedGoogle Scholar
  98. 98.
    Estepa V, Rojo-Bezares B, Azcona-Gutierrez JM, Olarte I, Torres C, Saenz Y (2017) Characterisation of carbapenem-resistance mechanisms in clinical Pseudomonas aeruginosa isolates recovered in a Spanish hospital. Enferm Infecc Microbiol Clin 35(3):141–147.  https://doi.org/10.1016/j.eimc.2015.12.014CrossRefPubMedGoogle Scholar
  99. 99.
    Fagerlund A, Langsrud S, Heir E, Mikkelsen MI, Moretro T (2016) Biofilm matrix composition affects the susceptibility of food associated staphylococci to cleaning and disinfection agents. Front Microbiol 7:856.  https://doi.org/10.3389/fmicb.2016.00856CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Fagerlund A, Moretro T, Heir E, Briandet R, Langsrud S (2017) Cleaning and disinfection of biofilms composed of Listeria monocytogenes and background microbiota from meat processing surfaces. Appl Environ Microbiol.  https://doi.org/10.1128/aem.01046-17CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Feder-Kubis J, Tomczuk K (2013) The effect of the cationic structures of chiral ionic liquids on their antimicrobial activities. Tetrahedron 69(21):4190–4198.  https://doi.org/10.1016/j.tet.2013.03.107CrossRefGoogle Scholar
  102. 102.
    Fernández-Fuentes MA, Ortega Morente E, Abriouel H, Pérez Pulido R, Gálvez A (2012) Isolation and identification of bacteria from organic foods: Sensitivity to biocides and antibiotics. Food Control 26(1):73–78.  https://doi.org/10.1016/j.foodcont.2012.01.017CrossRefGoogle Scholar
  103. 103.
    Fernández Fuentes MA, Ortega Morente E, Abriouel H, Pérez Pulido R, Gálvez A (2014) Antimicrobial resistance determinants in antibiotic and biocide-resistant gram-negative bacteria from organic foods. Food Control 37(Supplement C):9–14.  https://doi.org/10.1016/j.foodcont.2013.08.041
  104. 104.
    Fernandez Marquez ML, Grande Burgos MJ, Lopez Aguayo MC, Perez Pulido R, Galvez A, Lucas R (2017) Characterization of biocide-tolerant bacteria isolated from cheese and dairy small-medium enterprises. Food Microbiol 62:77–81.  https://doi.org/10.1016/j.fm.2016.10.008CrossRefPubMedGoogle Scholar
  105. 105.
    Fidalgo SG, Longbottom CJ, Rjley TV (2002) Susceptibility of Erysipelothrix rhusiopathiae to antimicrobial agents and home disinfectants. Pathology 34(5):462–465CrossRefPubMedGoogle Scholar
  106. 106.
    Firth N, Skurray RA (1998) Mobile elements in the evolution and spread of multiple-drug resistance in staphylococci. Drug Resist Updates: Rev Commentaries Antimicrob Anticancer Chemother 1(1):49–58CrossRefGoogle Scholar
  107. 107.
    Fleurette J, Bes M, Brun Y, Freney J, Forey F, Coulet M, Reverdy ME, Etienne J (1989) Clinical isolates of Staphylococcus lugdunensis and S. schleiferi: bacteriological characteristics and susceptibility to antimicrobial agents. Res Microbiol 140(2):107–118CrossRefPubMedGoogle Scholar
  108. 108.
    Forbes S, Cowley N, Humphreys G, Mistry H, Amezquita A, McBain AJ (2017) Formulation of Biocides Increases Antimicrobial Potency and Mitigates the Enrichment of Nonsusceptible Bacteria in Multispecies Biofilms. Appl Environ Microbiol 83(7).  https://doi.org/10.1128/aem.03054-16
  109. 109.
    Forbes S, Knight CG, Cowley NL, Amezquita A, McClure P, Humphreys G, McBain AJ (2016) Variable effects of exposure to formulated microbicides on antibiotic susceptibility in firmicutes and proteobacteria. Appl Environ Microbiol 82(12):3591–3598.  https://doi.org/10.1128/aem.00701-16CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Fox JG, Beaucage CM, Folta CA, Thornton GW (1981) Nosocomial transmission of Serratia marcescens in a veterinary hospital due to contamination by benzalkonium chloride. J Clin Microbiol 14(2):157–160PubMedPubMedCentralGoogle Scholar
  111. 111.
    Frank MJ, Schaffner W (1976) Contaminated aqueous benzalkonium chloride. An unnecessary hospital infection hazard. JAMA 236(21):2418–2419CrossRefPubMedGoogle Scholar
  112. 112.
    Fuentes DE, Navarro CA, Tantalean JC, Araya MA, Saavedra CP, Perez JM, Calderon IL, Youderian PA, Mora GC, Vasquez CC (2005) The product of the qacC gene of Staphylococcus epidermidis CH mediates resistance to beta-lactam antibiotics in gram-positive and gram-negative bacteria. Res Microbiol 156(4):472–477.  https://doi.org/10.1016/j.resmic.2005.01.002CrossRefPubMedGoogle Scholar
  113. 113.
    Furi L, Ciusa ML, Knight D, Di Lorenzo V, Tocci N, Cirasola D, Aragones L, Coelho JR, Freitas AT, Marchi E, Moce L, Visa P, Northwood JB, Viti C, Borghi E, Orefici G, Morrissey I, Oggioni MR (2013) Evaluation of reduced susceptibility to quaternary ammonium compounds and bisbiguanides in clinical isolates and laboratory-generated mutants of Staphylococcus aureus. Antimicrob Agents Chemother 57(8):3488–3497.  https://doi.org/10.1128/aac.00498-13CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Gadea R, Fernandez Fuentes MA, Perez Pulido R, Galvez A, Ortega E (2017) Effects of exposure to quaternary-ammonium-based biocides on antimicrobial susceptibility and tolerance to physical stresses in bacteria from organic foods. Food Microbiol 63:58–71.  https://doi.org/10.1016/j.fm.2016.10.037CrossRefPubMedGoogle Scholar
  115. 115.
    Garrido AM, Burgos MJ, Marquez ML, Aguayo MC, Pulido RP, del Arbol JT, Galvez A, Lopez RL (2015) Biocide tolerance in Salmonella from meats in Southern Spain. Braz J Microbiol: [Publ Braz Soc Microbiol] 46(4):1177–1181.  https://doi.org/10.1590/s1517-838246420140396CrossRefGoogle Scholar
  116. 116.
    Gaston MA, Hoffman PN, Pitt TL (1986) A comparison of strains of Serratia marcescens isolated from neonates with strains isolated from sporadic and epidemic infections in adults. J Hosp Infect 8(1):86–95CrossRefPubMedGoogle Scholar
  117. 117.
    Gaze WH, Abdouslam N, Hawkey PM, Wellington EM (2005) Incidence of class 1 integrons in a quaternary ammonium compound-polluted environment. Antimicrob Agents Chemother 49(5):1802–1807.  https://doi.org/10.1128/aac.49.5.1802-1807.2005CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Ghasemzadeh-Moghaddam H, van Belkum A, Hamat RA, van Wamel W, Neela V (2014) Methicillin-susceptible and -resistant Staphylococcus aureus with high-level antiseptic and low-level mupirocin resistance in Malaysia. Microb Drug Res (Larchmont, NY) 20 (5):472–477.  https://doi.org/10.1089/mdr.2013.0222
  119. 119.
    Gholamrezazadeh M, Shakibaie MR, Monirzadeh F, Masoumi S, Hashemizadeh Z (2017) Effect of nano-silver, nano-copper, deconex and benzalkonium chloride on biofilm formation and expression of transcription regulatory quorum sensing gene (rh1R) in drug-resistance Pseudomonas aeruginosa burn isolates. Burns: J Int Soc Burn Injuries.  https://doi.org/10.1016/j.burns.2017.10.021CrossRefGoogle Scholar
  120. 120.
    Giaouris E, Chorianopoulos N, Doulgeraki A, Nychas GJ (2013) Co-culture with Listeria monocytogenes within a dual-species biofilm community strongly increases resistance of Pseudomonas putida to benzalkonium chloride. PLoS ONE 8(10):e77276.  https://doi.org/10.1371/journal.pone.0077276CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Gkana EN, Giaouris ED, Doulgeraki AI, Kathariou S, Nychas GJE (2017) Biofilm formation by Salmonella Typhimurium and Staphylococcus aureus on stainless steel under either mono- or dual-species multi-strain conditions and resistance of sessile communities to sub-lethal chemical disinfection. Food Control 73(Part B):838–846.  https://doi.org/10.1016/j.foodcont.2016.09.038
  122. 122.
    Gomaa FAM, Helal ZH, Khan MI (2017) High Prevalence of blaNDM-1, blaVIM, qacE, and qacEDelta1 genes and their association with decreased susceptibility to antibiotics and common hospital biocides in clinical isolates of acinetobacter baumannii. Microorganisms 5(2).  https://doi.org/10.3390/microorganisms5020018
  123. 123.
    Gomes IB, Malheiro J, Mergulhao F, Maillard JY, Simoes M (2016) Comparison of the efficacy of natural-based and synthetic biocides to disinfect silicone and stainless steel surfaces. Pathog Dis 74(4):ftw014.  https://doi.org/10.1093/femspd/ftw014
  124. 124.
    Grande Burgos MJ, Fernandez Marquez ML, Perez Pulido R, Galvez A, Lucas Lopez R (2016) Virulence factors and antimicrobial resistance in Escherichia coli strains isolated from hen egg shells. Int J Food Microbiol 238:89–95.  https://doi.org/10.1016/j.ijfoodmicro.2016.08.037CrossRefPubMedGoogle Scholar
  125. 125.
    Grande Burgos MJ, Lucas López R, López Aguayo M, Pérez Pulido R, Gálvez A (2013) Inhibition of planktonic and sessile Salmonella enterica cells by combinations of enterocin AS-48, polymyxin B and biocides. Food Control 30(1):214–221.  https://doi.org/10.1016/j.foodcont.2012.07.011CrossRefGoogle Scholar
  126. 126.
    Grande Burgos MJ, Pérez-Pulido R, Gálvez A, Lucas R (2017) Biofilms formed by microbiota recovered from fresh produce: Bacterial biodiversity, and inactivation by benzalkonium chloride and enterocin AS-48. LWT Food Sci Technol 77(Supplement C):80–84.  https://doi.org/10.1016/j.lwt.2016.11.033
  127. 127.
    Grobe KJ, Zahller J, Stewart PS (2002) Role of dose concentration in biocide efficacy against Pseudomonas aeruginosa biofilms. J Ind Microbiol Biotechnol 29(1):10–15.  https://doi.org/10.1038/sj.jim.7000256CrossRefPubMedGoogle Scholar
  128. 128.
    Guang-Sen S, Boost M, Cho P (2016) Prevalence of antiseptic resistance genes increases in staphylococcal isolates from orthokeratology lens wearers over initial six-month period of use. Eur J Clin Microbiol Infect Dis 35(6):955–962.  https://doi.org/10.1007/s10096-016-2622-zCrossRefPubMedGoogle Scholar
  129. 129.
    Guerin-Mechin L, Leveau JY, Dubois-Brissonnet F (2004) Resistance of spheroplasts and whole cells of Pseudomonas aeruginosa to bactericidal activity of various biocides: evidence of the membrane implication. Microbiol Res 159(1):51–57.  https://doi.org/10.1016/j.micres.2004.01.003CrossRefPubMedGoogle Scholar
  130. 130.
    Guo W, Cui S, Xu X, Wang H (2014) Resistant mechanism study of benzalkonium chloride selected Salmonella Typhimurium mutants. Microb Drug Res (Larchmont, NY) 20(1):11–16.  https://doi.org/10.1089/mdr.2012.0225
  131. 131.
    Guo W, Shan K, Xu B, Li J (2015) Determining the resistance of carbapenem-resistant Klebsiella pneumoniae to common disinfectants and elucidating the underlying resistance mechanisms. Pathog Glob Health 109(4):184–192.  https://doi.org/10.1179/2047773215y.0000000022CrossRefPubMedPubMedCentralGoogle Scholar
  132. 132.
    Gupta AK, Ahmad I, Summerbell RC (2002) Fungicidal activities of commonly used disinfectants and antifungal pharmaceutical spray preparations against clinical strains of Aspergillus and Candida species. Med Mycol 40(2):201–208CrossRefPubMedGoogle Scholar
  133. 133.
    Gutierrez-Martin CB, Yubero S, Martinez S, Frandoloso R, Rodriguez-Ferri EF (2011) Evaluation of efficacy of several disinfectants against Campylobacter jejuni strains by a suspension test. Res Vet Sci 91(3):e44–47.  https://doi.org/10.1016/j.rvsc.2011.01.020CrossRefPubMedGoogle Scholar
  134. 134.
    Hakuno H, Yamamoto M, Oie S, Kamiya A (2010) Microbial contamination of disinfectants used for intermittent self-catheterization. Jpn J Infect Dis 63(4):277–279PubMedGoogle Scholar
  135. 135.
    Hardy PC, Ederer GM, Matsen JM (1970) Contamination of commercially packaged urinary catheter kits with the pseudomonad EO-1. N Engl J Med 282(1):33–35.  https://doi.org/10.1056/nejm197001012820108CrossRefPubMedGoogle Scholar
  136. 136.
    Harrison JJ, Turner RJ, Joo DA, Stan MA, Chan CS, Allan ND, Vrionis HA, Olson ME, Ceri H (2008) Copper and quaternary ammonium cations exert synergistic bactericidal and antibiofilm activity against Pseudomonas aeruginosa. Antimicrob Agents Chemother 52(8):2870–2881.  https://doi.org/10.1128/aac.00203-08CrossRefPubMedPubMedCentralGoogle Scholar
  137. 137.
    Hasanvand A, Ghafourian S, Taherikalani M, Jalilian FA, Sadeghifard N, Pakzad I (2015) Antiseptic resistance in methicillin sensitive and methicillin resistant staphylococcus aureus isolates from some major hospitals, Iran. Recent Pat Anti-Infect Drug Dis 10(2):105–112CrossRefGoogle Scholar
  138. 138.
    Hassanzadeh S, Mashhadi R, Yousefi M, Askari E, Saniei M, Pourmand MR (2017) Frequency of efflux pump genes mediating ciprofloxacin and antiseptic resistance in methicillin-resistant Staphylococcus aureus isolates. Microb Pathog 111:71–74.  https://doi.org/10.1016/j.micpath.2017.08.026CrossRefPubMedGoogle Scholar
  139. 139.
    He GX, Landry M, Chen H, Thorpe C, Walsh D, Varela MF, Pan H (2014) Detection of benzalkonium chloride resistance in community environmental isolates of staphylococci. J Med Microbiol 63(Pt 5):735–741.  https://doi.org/10.1099/jmm.0.073072-0CrossRefPubMedGoogle Scholar
  140. 140.
    He XF, Zhang HJ, Cao JG, Liu F, Wang JK, Ma WJ, Yin W (2017) A novel method to detect bacterial resistance to disinfectants. Genes Dis 4(3):163–169.  https://doi.org/10.1016/j.gendis.2017.07.001CrossRefGoogle Scholar
  141. 141.
    Heir E, Sundheim G, Holck AL (1995) Resistance to quaternary ammonium compounds in Staphylococcus spp. isolated from the food industry and nucleotide sequence of the resistance plasmid pST827. J Appl Bacteriol 79(2):149–156CrossRefPubMedGoogle Scholar
  142. 142.
    Heir E, Sundheim G, Holck AL (1998) The Staphylococcus qacH gene product: a new member of the SMR family encoding multidrug resistance. FEMS Microbiol Lett 163(1):49–56CrossRefPubMedGoogle Scholar
  143. 143.
    Heir E, Sundheim G, Holck AL (1999) Identification and characterization of quaternary ammonium compound resistant staphylococci from the food industry. Int J Food Microbiol 48(3):211–219CrossRefPubMedGoogle Scholar
  144. 144.
    Heir E, Sundheim G, Holck AL (1999) The qacG gene on plasmid pST94 confers resistance to quaternary ammonium compounds in staphylococci isolated from the food industry. J Appl Microbiol 86(3):378–388CrossRefPubMedGoogle Scholar
  145. 145.
    Higgins CS, Murtough SM, Williamson E, Hiom SJ, Payne DJ, Russell AD, Walsh TR (2001) Resistance to antibiotics and biocides among non-fermenting Gram-negative bacteria. Clin Microbiol Infect 7(6):308–315CrossRefPubMedGoogle Scholar
  146. 146.
    Hijazi K, Mukhopadhya I, Abbott F, Milne K, Al-Jabri ZJ, Oggioni MR, Gould IM (2016) Susceptibility to chlorhexidine amongst multidrug-resistant clinical isolates of Staphylococcus epidermidis from bloodstream infections. Int J Antimicrob Agents 48(1):86–90.  https://doi.org/10.1016/j.ijantimicag.2016.04.015CrossRefPubMedGoogle Scholar
  147. 147.
    Ho CM, Li CY, Ho MW, Lin CY, Liu SH, Lu JJ (2012) High rate of qacA- and qacB-positive methicillin-resistant Staphylococcus aureus isolates from chlorhexidine-impregnated catheter-related bloodstream infections. Antimicrob Agents Chemother 56 (11):5693–5697. AAC.00761-12 [pii].  https://doi.org/10.1128/aac.00761-12 [doi]
  148. 148.
    Ho J, Branley J (2012) Prevalence of antiseptic resistance genes qacA/B and specific sequence types of methicillin-resistant Staphylococcus aureus in the era of hand hygiene. J Antimicrob Chemother 67(6):1549–1550.  https://doi.org/10.1093/jac/dks035CrossRefPubMedGoogle Scholar
  149. 149.
    Houari A, Di Martino P (2007) Effect of chlorhexidine and benzalkonium chloride on bacterial biofilm formation. Lett Appl Microbiol 45(6):652–656.  https://doi.org/10.1111/j.1472-765X.2007.02249.xCrossRefPubMedGoogle Scholar
  150. 150.
    Humphries RM, Wu MT, Westblade LF, Robertson AE, Burnham CA, Wallace MA, Burd EM, Lawhon S, Hindler JA (2016) In Vitro Antimicrobial Susceptibility of Staphylococcus pseudintermedius Isolates of Human and Animal Origin. J Clin Microbiol 54(5):1391–1394.  https://doi.org/10.1128/jcm.00270-16CrossRefPubMedPubMedCentralGoogle Scholar
  151. 151.
    Ignak S, Nakipoglu Y, Gurler B (2017) Frequency of antiseptic resistance genes in clinical Staphycocci and Enterococci isolates in Turkey. Antimicrob Resist Infect Control 6:88.  https://doi.org/10.1186/s13756-017-0244-6CrossRefPubMedPubMedCentralGoogle Scholar
  152. 152.
    Imbert C, Lassy E, Daniault G, Jacquemin JL, Rodier MH (2003) Treatment of plastic and extracellular matrix components with chlorhexidine or benzalkonium chloride: effect on Candida albicans adherence capacity in vitro. J Antimicrob Chemother 51(2):281–287CrossRefPubMedGoogle Scholar
  153. 153.
    Italy (2015) Alkyl (C12–16) dimethylbenzyl ammonium chloride Product-type 8 (Wood preservative)Google Scholar
  154. 154.
    Jaglic Z, Červinková D, Vlková H, Michu E, Kunová G, Babák V (2012) Bacterial biofilms resist oxidising agents due to the presence of organic matter. Czech J Food Sci 30(2):178–187CrossRefGoogle Scholar
  155. 155.
    Jechalke S, Schreiter S, Wolters B, Dealtry S, Heuer H, Smalla K (2013) Widespread dissemination of class 1 integron components in soils and related ecosystems as revealed by cultivation-independent analysis. Front Microbiol 4:420.  https://doi.org/10.3389/fmicb.2013.00420CrossRefPubMedGoogle Scholar
  156. 156.
    Jensen SO, Apisiridej S, Kwong SM, Yang YH, Skurray RA, Firth N (2010) Analysis of the prototypical Staphylococcus aureus multiresistance plasmid pSK1. Plasmid 64(3):135–142.  https://doi.org/10.1016/j.plasmid.2010.06.001CrossRefPubMedGoogle Scholar
  157. 157.
    Jiang X, Xu Y, Li Y, Zhang K, Liu L, Wang H, Tian J, Ying H, Shi L, Yu T (2017) Characterization and horizontal transfer of qacH-associated class 1 integrons in Escherichia coli isolated from retail meats. Int J Food Microbiol 258:12–17.  https://doi.org/10.1016/j.ijfoodmicro.2017.07.009CrossRefPubMedGoogle Scholar
  158. 158.
    Jiang X, Yu T, Liang Y, Ji S, Guo X, Ma J, Zhou L (2016) Efflux pump-mediated benzalkonium chloride resistance in Listeria monocytogenes isolated from retail food. Int J Food Microbiol 217:141–145.  https://doi.org/10.1016/j.ijfoodmicro.2015.10.022CrossRefPubMedGoogle Scholar
  159. 159.
    Jiang X, Yu T, Liu L, Li Y, Zhang K, Wang H, Shi L (2017) Examination of quaternary ammonium compound resistance in proteus mirabilis isolated from cooked meat products in China. Frontiers in microbiology 8:2417.  https://doi.org/10.3389/fmicb.2017.02417CrossRefPubMedPubMedCentralGoogle Scholar
  160. 160.
    Johnson JG, Saye EJ, Jimenez-Truque N, Soper N, Thomsen I, Talbot TR, Creech CB (2013) Frequency of disinfectant resistance genes in pediatric strains of methicillin-resistant Staphylococcus aureus. Infect Control Hosp Epidemiol 34(12):1326–1327.  https://doi.org/10.1086/673983CrossRefPubMedPubMedCentralGoogle Scholar
  161. 161.
    Joynson JA, Forbes B, Lambert RJ (2002) Adaptive resistance to benzalkonium chloride, amikacin and tobramycin: the effect on susceptibility to other antimicrobials. J Appl Microbiol 93(1):96–107CrossRefPubMedGoogle Scholar
  162. 162.
    Kadry AA, Serry FM, El-Ganiny AM, El-Baz AM (2017) Integron occurrence is linked to reduced biocide susceptibility in multidrug resistant Pseudomonas aeruginosa. Br J Biomed Sci 74(2):78–84.  https://doi.org/10.1080/09674845.2017.1278884CrossRefPubMedGoogle Scholar
  163. 163.
    Kalkanci A, Elli M, Adil Fouad A, Yesilyurt E, Jabban Khalil I (2015) Assessment of susceptibility of mould isolates towards biocides. J de mycologie medicale 25(4):280–286.  https://doi.org/10.1016/j.mycmed.2015.08.001CrossRefGoogle Scholar
  164. 164.
    Kampf G (2018) Adaptive microbial response to low level benzalkonium chloride exposure. J Hosp Infect.  https://doi.org/10.1016/j.jhin.2018.05.019CrossRefPubMedGoogle Scholar
  165. 165.
    Kampf G, Degenhardt S, Lackner S, Jesse K, von Baum H, Ostermeyer C (2014) Poorly processed reusable surface disinfection tissue dispensers may be a source of infection. BMC Infect Dis 14 (1):37. 1471–2334-14-37 [pii].  https://doi.org/10.1186/1471-2334-14-37 [doi]
  166. 166.
    Kampf G, Degenhardt S, Lackner S, Ostermeyer C (2014) Effective processing or reusable dispensers for surface disinfection tissues - the devil is in the details. GMS Hyg Infect Control 9(1):DOC09Google Scholar
  167. 167.
    Karatzas KA, Webber MA, Jorgensen F, Woodward MJ, Piddock LJ, Humphrey TJ (2007) Prolonged treatment of Salmonella enterica serovar Typhimurium with commercial disinfectants selects for multiple antibiotic resistance, increased efflux and reduced invasiveness. J Antimicrob Chemother 60(5):947–955.  https://doi.org/10.1093/jac/dkm314CrossRefPubMedGoogle Scholar
  168. 168.
    Kaslow RA, Mackel DC, Mallison GF (1976) Nosocomial pseudobacteremia. Positive blood cultures due to contaminated benzalkonium antiseptic. JAMA 236(21):2407–2409CrossRefPubMedGoogle Scholar
  169. 169.
    Kastbjerg VG, Larsen MH, Gram L, Ingmer H (2010) Influence of sublethal concentrations of common disinfectants on expression of virulence genes in Listeria monocytogenes. Appl Environ Microbiol 76(1):303–309.  https://doi.org/10.1128/aem.00925-09CrossRefPubMedGoogle Scholar
  170. 170.
    Katharios-Lanwermeyer S, Rakic-Martinez M, Elhanafi D, Ratani S, Tiedje JM, Kathariou S (2012) Coselection of cadmium and benzalkonium chloride resistance in conjugative transfers from nonpathogenic Listeria spp. to other Listeriae. Appl Environ Microbiol 78(21):7549–7556.  https://doi.org/10.1128/aem.02245-12CrossRefPubMedPubMedCentralGoogle Scholar
  171. 171.
    Kawamura-Sato K, Wachino J, Kondo T, Ito H, Arakawa Y (2008) Reduction of disinfectant bactericidal activities in clinically isolated Acinetobacter species in the presence of organic material. J Antimicrob Chemother 61(3):568–576.  https://doi.org/10.1093/jac/dkm498CrossRefPubMedGoogle Scholar
  172. 172.
    Kawamura-Sato K, Wachino J, Kondo T, Ito H, Arakawa Y (2010) Correlation between reduced susceptibility to disinfectants and multidrug resistance among clinical isolates of Acinetobacter species. J Antimicrob Chemother 65(9):1975–1983.  https://doi.org/10.1093/jac/dkq227CrossRefPubMedGoogle Scholar
  173. 173.
    Kazama H, Hamashima H, Sasatsu M, Arai T (1998) Distribution of the antiseptic-resistance gene qacE delta 1 in gram-positive bacteria. FEMS Microbiol Lett 165(2):295–299PubMedGoogle Scholar
  174. 174.
    Kazama H, Hamashima H, Sasatsu M, Arai T (1998) Distribution of the antiseptic-resistance genes qacE and qacE delta 1 in gram-negative bacteria. FEMS Microbiol Lett 159(2):173–178PubMedGoogle Scholar
  175. 175.
    Kazama H, Hamashima H, Sasatsu M, Arai T (1999) Characterization of the antiseptic-resistance gene qacE delta 1 isolated from clinical and environmental isolates of Vibrio parahaemolyticus and Vibrio cholerae non-O1. FEMS Microbiol Lett 174(2):379–384PubMedGoogle Scholar
  176. 176.
    Khan AH, Macfie SM, Ray MB (2017) Sorption and leaching of benzalkonium chlorides in agricultural soils. J Environ Manage 196:26–35.  https://doi.org/10.1016/j.jenvman.2017.02.065CrossRefPubMedGoogle Scholar
  177. 177.
    Khan AH, Topp E, Scott A, Sumarah M, Macfie SM, Ray MB (2015) Biodegradation of benzalkonium chlorides singly and in mixtures by a Pseudomonas sp. isolated from returned activated sludge. J Hazard Mater 299:595–602.  https://doi.org/10.1016/j.jhazmat.2015.07.073CrossRefPubMedGoogle Scholar
  178. 178.
    Kiddee A, Henghiranyawong K, Yimsabai J, Tiloklurs M, Niumsup PR (2013) Nosocomial spread of class 1 integron-carrying extensively drug-resistant Pseudomonas aeruginosa isolates in a Thai hospital. Int J Antimicrob Agents 42(4):301–306.  https://doi.org/10.1016/j.ijantimicag.2013.05.009CrossRefPubMedGoogle Scholar
  179. 179.
    Kim JS, Chung YK, Lee SS, Lee JA, Kim HS, Park EY, Shin KS, Kang BS, Lee HJ, Kang HJ (2016) Effect of daily chlorhexidine bathing on the acquisition of methicillin-resistant Staphylococcus aureus in a medical intensive care unit with methicillin-resistant S aureus endemicity. Am J Infect Control 44(12):1520–1525.  https://doi.org/10.1016/j.ajic.2016.04.252CrossRefPubMedGoogle Scholar
  180. 180.
    Knapp L, Amezquita A, McClure P, Stewart S, Maillard JY (2015) Development of a protocol for predicting bacterial resistance to microbicides. Appl Environ Microbiol 81(8):2652–2659.  https://doi.org/10.1128/aem.03843-14CrossRefPubMedPubMedCentralGoogle Scholar
  181. 181.
    Knapp L, Rushton L, Stapleton H, Sass A, Stewart S, Amezquita A, McClure P, Mahenthiralingam E, Maillard JY (2013) The effect of cationic microbicide exposure against Burkholderia cepacia complex (Bcc); the use of Burkholderia lata strain 383 as a model bacterium. J Appl Microbiol 115(5):1117–1126.  https://doi.org/10.1111/jam.12320CrossRefPubMedGoogle Scholar
  182. 182.
    Kodedova M, Sigler K, Lemire BD, Gaskova D (2011) Fluorescence method for determining the mechanism and speed of action of surface-active drugs on yeast cells. Biotechniques 50(1):58–63.  https://doi.org/10.2144/000113568CrossRefPubMedGoogle Scholar
  183. 183.
    Koopmans MM, Bijlsma MW, Brouwer MC, van de Beek D, van der Ende A (2017) Listeria monocytogenes meningitis in the Netherlands, 1985–2014: a nationwide surveillance study. J Infection 75(1):12–19.  https://doi.org/10.1016/j.jinf.2017.04.004CrossRefGoogle Scholar
  184. 184.
    Korsak D, Szuplewska M (2016) Characterization of nonpathogenic Listeria species isolated from food and food processing environment. Int J Food Microbiol 238:274–280.  https://doi.org/10.1016/j.ijfoodmicro.2016.08.032CrossRefPubMedGoogle Scholar
  185. 185.
    Korukluoglu M, Sahan Y, Yigit A (2006) The fungicidal efficacy of various commercial disinfectants used in the food industry. Ann Microbiol 56(4):325–330CrossRefGoogle Scholar
  186. 186.
    Kosmidis C, Schindler BD, Jacinto PL, Patel D, Bains K, Seo SM, Kaatz GW (2012) Expression of multidrug resistance efflux pump genes in clinical and environmental isolates of Staphylococcus aureus. Int J Antimicrob Agents 40(3):204–209.  https://doi.org/10.1016/j.ijantimicag.2012.04.014CrossRefPubMedGoogle Scholar
  187. 187.
    Kostaki M, Chorianopoulos N, Braxou E, Nychas GJ, Giaouris E (2012) Differential biofilm formation and chemical disinfection resistance of sessile cells of Listeria monocytogenes strains under monospecies and dual-species (with Salmonella enterica) conditions. Appl Environ Microbiol 78(8):2586–2595.  https://doi.org/10.1128/aem.07099-11CrossRefPubMedPubMedCentralGoogle Scholar
  188. 188.
    Kouidhi B, Zmantar T, Jrah H, Souiden Y, Chaieb K, Mahdouani K, Bakhrouf A (2011) Antibacterial and resistance-modifying activities of thymoquinone against oral pathogens. Ann Clin Microbiol Antimicrob 10:29.  https://doi.org/10.1186/1476-0711-10-29CrossRefPubMedPubMedCentralGoogle Scholar
  189. 189.
    Kovacevic J, Ziegler J, Walecka-Zacharska E, Reimer A, Kitts DD, Gilmour MW (2015) Tolerance of listeria monocytogenes to quaternary ammonium sanitizers is mediated by a Novel Efflux pump encoded by emrE. Appl Environ Microbiol 82(3):939–953.  https://doi.org/10.1128/aem.03741-15CrossRefPubMedGoogle Scholar
  190. 190.
    Kraushaar B, Ballhausen B, Leeser D, Tenhagen BA, Kasbohrer A, Fetsch A (2017) Antimicrobial resistances and virulence markers in Methicillin-resistant Staphylococcus aureus from broiler and turkey: a molecular view from farm to fork. Vet Microbiol 200:25–32.  https://doi.org/10.1016/j.vetmic.2016.05.022CrossRefPubMedGoogle Scholar
  191. 191.
    Kremer PH, Lees JA, Koopmans MM, Ferwerda B, Arends AW, Feller MM, Schipper K, Valls Seron M, van der Ende A, Brouwer MC, van de Beek D, Bentley SD (2017) Benzalkonium tolerance genes and outcome in Listeria monocytogenes meningitis. Clin Microbiol Infect 23(4):265.e261–265.e267.  https://doi.org/10.1016/j.cmi.2016.12.008
  192. 192.
    Kucken D, Feucht H, Kaulfers P (2000) Association of qacE and qacEDelta1 with multiple resistance to antibiotics and antiseptics in clinical isolates of Gram-negative bacteria. FEMS Microbiol Lett 183 (1):95–98. doi:S0378109799006369 [pii]Google Scholar
  193. 193.
    Kuda T, Iwase T, Yuphakhun C, Takahashi H, Koyanagi T, Kimura B (2011) Surfactant-disinfectant resistance of Salmonella and Staphylococcus adhered and dried on surfaces with egg compounds. Food Microbiol 28(5):920–925.  https://doi.org/10.1016/j.fm.2010.12.006CrossRefPubMedGoogle Scholar
  194. 194.
    Kuda T, Yano T, Kuda MT (2008) Resistances to benzalkonium chloride of bacteria dried with food elements on stainless steel surface. LWT Food Sci Technol 41(6):988–993.  https://doi.org/10.1016/j.lwt.2007.06.016CrossRefGoogle Scholar
  195. 195.
    Kummerer K, Eitel A, Braun U, Hubner P, Daschner F, Mascart G, Milandri M, Reinthaler F, Verhoef J (1997) Analysis of benzalkonium chloride in the effluent from European hospitals by solid-phase extraction and high-performance liquid chromatography with post-column ion-pairing and fluorescence detection. J Chromatogr A 774(1–2):281–286CrossRefPubMedGoogle Scholar
  196. 196.
    Kupfahl C, Walther M, Wendt C, von Baum H (2015) Identical achromobacter strain in reusable surface disinfection tissue dispensers and a clinical Isolate. Infect Control Hosp Epidemiol 36(11):1362–1364.  https://doi.org/10.1017/ice.2015.176CrossRefPubMedGoogle Scholar
  197. 197.
    Kurihara T, Sugita M, Motai S, Kurashige S (1993) In vitro induction of chlorhexidine- and benzalkonium-resistance in clinically isolated Pseudomonas aeruginosa. Kansenshogaku zasshi Jpn Assoc Infect Dis 67(3):202–206CrossRefGoogle Scholar
  198. 198.
    Lambert RJ, Joynson J, Forbes B (2001) The relationships and susceptibilities of some industrial, laboratory and clinical isolates of Pseudomonas aeruginosa to some antibiotics and biocides. J Appl Microbiol 91(6):972–984CrossRefPubMedGoogle Scholar
  199. 199.
    Landes NJ, Livesay HN, Schaeffer F, Terry P, Trevino E, Weissfeld AS (2016) Burkholderia cepacia: a complex problem for more than Cystic Fibrosis Patients. Clin Microbiol Newsl 38(18):147–150.  https://doi.org/10.1016/j.clinmicnews.2016.08.003CrossRefGoogle Scholar
  200. 200.
    Langsrud S, Moretro T, Sundheim G (2003) Characterization of Serratia marcescens surviving in disinfecting footbaths. J Appl Microbiol 95(1):186–195CrossRefPubMedGoogle Scholar
  201. 201.
    Langsrud S, Sundheim G, Borgmann-Strahsen R (2003) Intrinsic and acquired resistance to quaternary ammonium compounds in food-related Pseudomonas spp. J Appl Microbiol 95(4):874–882CrossRefPubMedGoogle Scholar
  202. 202.
    Langsrud S, Sundheim G, Holck AL (2004) Cross-resistance to antibiotics of Escherichia coli adapted to benzalkonium chloride or exposed to stress-inducers. J Appl Microbiol 96(1):201–208CrossRefPubMedGoogle Scholar
  203. 203.
    Lavilla Lerma L, Benomar N, Casado Munoz Mdel C, Galvez A, Abriouel H (2015) Correlation between antibiotic and biocide resistance in mesophilic and Psychrotrophic Pseudomonas spp. isolated from slaughterhouse surfaces throughout meat chain production. Food Microbiol 51:33–44.  https://doi.org/10.1016/j.fm.2015.04.010CrossRefPubMedGoogle Scholar
  204. 204.
    Lavilla Lerma L, Benomar N, Valenzuela AS, Casado Munoz Mdel C, Galvez A, Abriouel H (2014) Role of EfrAB efflux pump in biocide tolerance and antibiotic resistance of Enterococcus faecalis and Enterococcus faecium isolated from traditional fermented foods and the effect of EDTA as EfrAB inhibitor. Food Microbiol 44:249–257.  https://doi.org/10.1016/j.fm.2014.06.009CrossRefPubMedGoogle Scholar
  205. 205.
    Law CJ, Alegre KO (2017) Clamping down on drugs: the Escherichia coli multidrug efflux protein MdtM. Res Microbiol.  https://doi.org/10.1016/j.resmic.2017.09.006CrossRefPubMedGoogle Scholar
  206. 206.
    Lear JC, Maillard JY, Dettmar PW, Goddard PA, Russell AD (2006) Chloroxylenol- and triclosan-tolerant bacteria from industrial sources—susceptibility to antibiotics and other biocides. Int Biodeter Biodegr 57(1):51–56.  https://doi.org/10.1016/j.ibiod.2005.11.002CrossRefGoogle Scholar
  207. 207.
    Lee CS, Lee HB, Cho YG, Park JH, Lee HS (2008) Hospital-acquired Burkholderia cepacia infection related to contaminated benzalkonium chloride. J Hosp Infect 68(3):280–282.  https://doi.org/10.1016/j.jhin.2008.01.002CrossRefPubMedGoogle Scholar
  208. 208.
    Lee H, Lim H, Bae IK, Yong D, Jeong SH, Lee K, Chong Y (2013) Coexistence of mupirocin and antiseptic resistance in methicillin-resistant Staphylococcus aureus isolates from Korea. Diagn Microbiol Infect Dis 75(3):308–312.  https://doi.org/10.1016/j.diagmicrobio.2012.11.025CrossRefPubMedGoogle Scholar
  209. 209.
    Lee JC, Fialkow PJ (1961) Benzalkonium chloride-source of hospital infection with gram-negative bacteria. JAMA 177:708–710CrossRefPubMedGoogle Scholar
  210. 210.
    Leelaporn A, Firth N, Paulsen IT, Hettiaratchi A, Skurray RA (1995) Multidrug resistance plasmid pSK108 from coagulase-negative staphylococci; relationships to Staphylococcus aureus qacC plasmids. Plasmid 34(1):62–67.  https://doi.org/10.1006/plas.1995.1034CrossRefPubMedGoogle Scholar
  211. 211.
    Leitch CS, Leitch AE, Tidman MJ (2015) Quantitative evaluation of dermatological antiseptics. Clin Exp Dermatol 40(8):912–915.  https://doi.org/10.1111/ced.12745CrossRefPubMedGoogle Scholar
  212. 212.
    Lepainteur M, Royer G, Bourrel AS, Romain O, Duport C, Doucet-Populaire F, Decousser JW (2013) Prevalence of resistance to antiseptics and mupirocin among invasive coagulase-negative staphylococci from very preterm neonates in NICU: the creeping threat? J Hosp Infect 83(4):333–336.  https://doi.org/10.1016/j.jhin.2012.11.025CrossRefPubMedGoogle Scholar
  213. 213.
    Li R, Kuda T, Yano T (2014) Effect of food residues on efficiency of surfactant disinfectants against food related pathogens adhered on polystyrene and ceramic surfaces. LWT Food Sci Technol 57(1):200–206.  https://doi.org/10.1016/j.lwt.2013.11.018CrossRefGoogle Scholar
  214. 214.
    Li T, Song Y, Zhu Y, Du X, Li M (2013) Current status of Staphylococcus aureus infection in a central teaching hospital in Shanghai, China. BMC Microbiol 13:153.  https://doi.org/10.1186/1471-2180-13-153CrossRefPubMedPubMedCentralGoogle Scholar
  215. 215.
    Lin F, Xu Y, Chang Y, Liu C, Jia X, Ling B (2017) Molecular characterization of reduced susceptibility to biocides in clinical isolates of acinetobacter baumannii. Frontiers Microbiol 8:1836.  https://doi.org/10.3389/fmicb.2017.01836CrossRefGoogle Scholar
  216. 216.
    Lindqvist M, Isaksson B, Swanberg J, Skov R, Larsen AR, Larsen J, Petersen A, Hallgren A (2015) Long-term persistence of a multi-resistant methicillin-susceptible Staphylococcus aureus (MR-MSSA) clone at a university hospital in southeast Sweden, without further transmission within the region. Eur J Clin Microbiol Infect Dis 34(7):1415–1422.  https://doi.org/10.1007/s10096-015-2366-1CrossRefPubMedGoogle Scholar
  217. 217.
    Littlejohn TG, Paulsen IT, Gillespie MT, Tennent JM, Midgley M, Jones IG, Purewal AS, Skurray RA (1992) Substrate specificity and energetics of antiseptic and disinfectant resistance in Staphylococcus aureus. FEMS Microbiol Lett 74(2–3):259–265CrossRefPubMedGoogle Scholar
  218. 218.
    Liu J, Yu S, Han B, Chen J (2017) Effects of benzalkonium chloride and ethanol on dual-species biofilms of Serratia liquefaciens S1 and Shewanella putrefaciens S4. Food Control 78(Supplement C):196–202.  https://doi.org/10.1016/j.foodcont.2017.02.063
  219. 219.
    Liu MA, Kwong SM, Jensen SO, Brzoska AJ, Firth N (2013) Biology of the staphylococcal conjugative multiresistance plasmid pSK41. Plasmid 70(1):42–51.  https://doi.org/10.1016/j.plasmid.2013.02.001CrossRefPubMedGoogle Scholar
  220. 220.
    Liu Q, Liu M, Wu Q, Li C, Zhou T, Ni Y (2009) Sensitivities to biocides and distribution of biocide resistance genes in quaternary ammonium compound tolerant Staphylococcus aureus isolated in a teaching hospital. Scand J Infect Dis 41(6–7):403–409.  https://doi.org/10.1080/00365540902856545CrossRefPubMedGoogle Scholar
  221. 221.
    Liu Q, Zhao H, Han L, Shu W, Wu Q, Ni Y (2015) Frequency of biocide-resistant genes and susceptibility to chlorhexidine in high-level mupirocin-resistant, methicillin-resistant Staphylococcus aureus (MuH MRSA). Diagn Microbiol Infect Dis 82(4):278–283.  https://doi.org/10.1016/j.diagmicrobio.2015.03.023CrossRefPubMedGoogle Scholar
  222. 222.
    Liu WJ, Fu L, Huang M, Zhang JP, Wu Y, Zhou YS, Zeng J, Wang GX (2017) Frequency of antiseptic resistance genes and reduced susceptibility to biocides in carbapenem-resistant Acinetobacter baumannii. J Med Microbiol 66(1):13–17.  https://doi.org/10.1099/jmm.0.000403CrossRefPubMedGoogle Scholar
  223. 223.
    Long M, Lai H, Deng W, Zhou K, Li B, Liu S, Fan L, Wang H, Zou L (2016) Disinfectant susceptibility of different Salmonella serotypes isolated from chicken and egg production chains. J Appl Microbiol 121(3):672–681.  https://doi.org/10.1111/jam.13184CrossRefPubMedGoogle Scholar
  224. 224.
    Longtin J, Seah C, Siebert K, McGeer A, Simor A, Longtin Y, Low DE, Melano RG (2011) Distribution of antiseptic resistance genes qacA, qacB, and smr in methicillin-resistant Staphylococcus aureus isolated in Toronto, Canada, from 2005 to 2009. Antimicrob Agents Chemother 55(6):2999–3001.  https://doi.org/10.1128/aac.01707-10CrossRefPubMedPubMedCentralGoogle Scholar
  225. 225.
    Loughlin MF, Jones MV, Lambert PA (2002) Pseudomonas aeruginosa cells adapted to benzalkonium chloride show resistance to other membrane-active agents but not to clinically relevant antibiotics. J Antimicrob Chemother 49(4):631–639CrossRefPubMedGoogle Scholar
  226. 226.
    Lowe CF, Lloyd-Smith E, Sidhu B, Ritchie G, Sharma A, Jang W, Wong A, Bilawka J, Richards D, Kind T, Puddicombe D, Champagne S, Leung V, Romney MG (2017) Reduction in hospital-associated methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus with daily chlorhexidine gluconate bathing for medical inpatients. Am J Infect Control 45(3):255–259.  https://doi.org/10.1016/j.ajic.2016.09.019CrossRefPubMedGoogle Scholar
  227. 227.
    Lu Z, Chen Y, Chen W, Liu H, Song Q, Hu X, Zou Z, Liu Z, Duo L, Yang J, Gong Y, Wang Z, Wu X, Zhao J, Zhang C, Zhang M, Han L (2015) Characteristics of qacA/B-positive Staphylococcus aureus isolated from patients and a hospital environment in China. J Antimicrob Chemother 70(3):653–657.  https://doi.org/10.1093/jac/dku456CrossRefPubMedGoogle Scholar
  228. 228.
    Luna VA, Hall TJ, King DS, Cannons AC (2010) Susceptibility of 169 USA300 methicillin-resistant Staphylococcus aureus isolates to two copper-based biocides, CuAL42 and CuWB50. J Antimicrob Chemother 65(5):939–941.  https://doi.org/10.1093/jac/dkq092CrossRefPubMedGoogle Scholar
  229. 229.
    Lunden J, Autio T, Markkula A, Hellstrom S, Korkeala H (2003) Adaptive and cross-adaptive responses of persistent and non-persistent Listeria monocytogenes strains to disinfectants. Int J Food Microbiol 82(3):265–272CrossRefPubMedGoogle Scholar
  230. 230.
    Luppens SB, Reij MW, van der Heijden RW, Rombouts FM, Abee T (2002) Development of a standard test to assess the resistance of Staphylococcus aureus biofilm cells to disinfectants. Appl Environ Microbiol 68(9):4194–4200CrossRefPubMedPubMedCentralGoogle Scholar
  231. 231.
    Lyon TC (1973) Quaternary ammonia compounds: Should they be used for disinfection in the dental office? Oral Surg Oral Med Oral Pathol 36(5):769–775.  https://doi.org/10.1016/0030-4220(73)90154-0CrossRefGoogle Scholar
  232. 232.
    Machado I, Coquet L, Jouenne T, Pereira MO (2013) Proteomic approach to Pseudomonas aeruginosa adaptive resistance to benzalkonium chloride. J Proteomics 89:273–279.  https://doi.org/10.1016/j.jprot.2013.04.030CrossRefPubMedGoogle Scholar
  233. 233.
    Machado I, Graca J, Lopes H, Lopes S, Pereira MO (2013) Antimicrobial pressure of ciprofloxacin and gentamicin on biofilm development by an endoscope-isolated pseudomonas Aeruginosa. ISRN Biotechnol 2013:178646.  https://doi.org/10.5402/2013/178646CrossRefPubMedGoogle Scholar
  234. 234.
    Machado I, Graca J, Sousa AM, Lopes SP, Pereira MO (2011) Effect of antimicrobial residues on early adhesion and biofilm formation by wild-type and benzalkonium chloride-adapted Pseudomonas aeruginosa. Biofouling 27(10):1151–1159.  https://doi.org/10.1080/08927014.2011.636148CrossRefPubMedGoogle Scholar
  235. 235.
    Machado I, Lopes SP, Sousa AM, Pereira MO (2012) Adaptive response of single and binary Pseudomonas aeruginosa and Escherichia coli biofilms to benzalkonium chloride. J Basic Microbiol 52(1):43–52.  https://doi.org/10.1002/jobm.201100137CrossRefPubMedGoogle Scholar
  236. 236.
    Mahzounieh M, Khoshnood S, Ebrahimi A, Habibian S, Yaghoubian M (2014) Detection of Antiseptic-resistance genes in pseudomonas and Acinetobacter spp. isolated from burn patients. Jundishapur J Nat Pharm Prod 9(2):e15402Google Scholar
  237. 237.
    Maillard JY, Messager S, Veillon R (1998) Antimicrobial efficacy of biocides tested on skin using an ex-vivo test. J Hosp Infect 40(4):313–323CrossRefPubMedGoogle Scholar
  238. 238.
    Majtan V, Majtanova L (1999) The effect of new disinfectant substances on the metabolism of Enterobacter cloacae. Int J Antimicrob Agents 11(1):59–64CrossRefPubMedGoogle Scholar
  239. 239.
    Malizia WF, Gangarosa EJ, Goley AF (1960) Benzalkonium chloride as a source of infection. N Engl J Med 263:800–802.  https://doi.org/10.1056/nejm196010202631608 [doi]
  240. 240.
    Mangalappalli-Illathu AK, Korber DR (2006) Adaptive resistance and differential protein expression of Salmonella enterica serovar Enteritidis biofilms exposed to benzalkonium chloride. Antimicrob Agents Chemother 50(11):3588–3596.  https://doi.org/10.1128/aac.00573-06CrossRefPubMedPubMedCentralGoogle Scholar
  241. 241.
    Mangalappalli-Illathu AK, Vidovic S, Korber DR (2008) Differential adaptive response and survival of Salmonella enterica serovar enteritidis planktonic and biofilm cells exposed to benzalkonium chloride. Antimicrob Agents Chemother 52(10):3669–3680.  https://doi.org/10.1128/aac.00073-08CrossRefPubMedPubMedCentralGoogle Scholar
  242. 242.
    Marchi E, Furi L, Arioli S, Morrissey I, Di Lorenzo V, Mora D, Giovannetti L, Oggioni MR, Viti C (2015) Novel insight into antimicrobial resistance and sensitivity phenotypes associated to qac and norA genotypes in Staphylococcus aureus. Microbiol Res 170:184–194.  https://doi.org/10.1016/j.micres.2014.07.001CrossRefPubMedGoogle Scholar
  243. 243.
    Marti E, Balcazar JL (2012) Multidrug resistance-encoding plasmid from Aeromonas sp. strain P2G1. Clin Microbiol Infect 18(9):E366–368.  https://doi.org/10.1111/j.1469-0691.2012.03935.xCrossRefPubMedGoogle Scholar
  244. 244.
    Mattei AS, Madrid IM, Santin R, Schuch LF, Meireles MC (2013) In vitro activity of disinfectants against Aspergillus spp. Braz J Microbiol: [Publ Braz Soc Microbiol] 44(2):481–484.  https://doi.org/10.1590/s1517-83822013000200024CrossRefGoogle Scholar
  245. 245.
    Mavri A, Mozina SS (2012) Involvement of efflux mechanisms in biocide resistance of Campylobacter jejuni and Campylobacter coli. J Med Microbiol 61(Pt 6):800–808.  https://doi.org/10.1099/jmm.0.041467-0CrossRefPubMedGoogle Scholar
  246. 246.
    Mavri A, Smole Mozina S (2013) Development of antimicrobial resistance in Campylobacter jejuni and Campylobacter coli adapted to biocides. Int J Food Microbiol 160(3):304–312.  https://doi.org/10.1016/j.ijfoodmicro.2012.11.006CrossRefPubMedGoogle Scholar
  247. 247.
    Mayer S, Boos M, Beyer A, Fluit AC, Schmitz FJ (2001) Distribution of the antiseptic resistance genes qacA, qacB and qacC in 497 methicillin-resistant and -susceptible European isolates of Staphylococcus aureus. J Antimicrob Chemother 47(6):896–897CrossRefPubMedGoogle Scholar
  248. 248.
    Mc Cay PH, Ocampo-Sosa AA, Fleming GT (2010) Effect of subinhibitory concentrations of benzalkonium chloride on the competitiveness of Pseudomonas aeruginosa grown in continuous culture. Microbiology (Reading, England) 156(Pt 1):30–38.  https://doi.org/10.1099/mic.0.029751-0
  249. 249.
    Mc Gann P, Milillo M, Kwak YI, Quintero R, Waterman PE, Lesho E (2013) Rapid and simultaneous detection of the chlorhexidine and mupirocin resistance genes qacA/B and mupA in clinical isolates of methicillin-resistant Staphylococcus aureus. Diagn Microbiol Infect Dis 77(3):270–272.  https://doi.org/10.1016/j.diagmicrobio.2013.06.006CrossRefPubMedGoogle Scholar
  250. 250.
    McKay AM (2008) Antimicrobial resistance and heat sensitivity of oxacillin-resistant, mecA-positive Staphylococcus spp. from unpasteurized milk. J Food Prot 71(1):186–190CrossRefPubMedGoogle Scholar
  251. 251.
    McNeil JC, Hulten KG, Kaplan SL, Mahoney DH, Mason EO (2013) Staphylococcus aureus infections in pediatric oncology patients: high rates of antimicrobial resistance, antiseptic tolerance and complications. Pediatr Infect Dis J 32(2):124–128.  https://doi.org/10.1097/INF.0b013e318271c4e0CrossRefPubMedGoogle Scholar
  252. 252.
    McNeil JC, Hulten KG, Mason EO, Kaplan SL (2017) Impact of Health Care Exposure on Genotypic Antiseptic Tolerance in Staphylococcus aureus Infections in a Pediatric Population. Antimicrob Agents Chemother 61 (7).  https://doi.org/10.1128/aac.00223-17
  253. 253.
    McNeil JC, Kok EY, Vallejo JG, Campbell JR, Hulten KG, Mason EO, Kaplan SL (2016) Clinical and molecular features of Decreased Chlorhexidine susceptibility among nosocomial staphylococcus aureus isolates at Texas Children’s Hospital. Antimicrob Agents Chemother 60(2):1121–1128.  https://doi.org/10.1128/aac.02011-15CrossRefPubMedPubMedCentralGoogle Scholar
  254. 254.
    McNeil JC, Ligon JA, Hulten KG, Dreyer WJ, Heinle JS, Mason EO, Kaplan SL (2013) Staphylococcus aureus Infections in Children With Congenital Heart Disease. J Pediatr Infect Dis Soc 2(4):337–344.  https://doi.org/10.1093/jpids/pit037CrossRefGoogle Scholar
  255. 255.
    Meier AB, Guldimann C, Markkula A, Pontinen A, Korkeala H, Tasara T (2017) Comparative phenotypic and genotypic analysis of swiss and finnish listeria monocytogenes isolates with respect to benzalkonium chloride resistance. Front Microbiol 8:397.  https://doi.org/10.3389/fmicb.2017.00397CrossRefPubMedPubMedCentralGoogle Scholar
  256. 256.
    Menegotto F, Gonzalez-Cabrero S, Cubero A, Cuervo W, Munoz M, Gutierrez MP, Simarro M, Bratos MA, Orduna A (2012) Clonal nature and diversity of resistance, toxins and adhesins genes of meticillin-resistant Staphylococcus aureus collected in a Spanish hospital. Infect, Genet Evol: J Mol Epidemiol Evol Genet Infect Dis 12(8):1751–1758.  https://doi.org/10.1016/j.meegid.2012.07.020CrossRefGoogle Scholar
  257. 257.
    Mester P, Gundolf T, Kalb R, Wagner M, Rossmanith P (2015) Molecular mechanisms mediating tolerance to ionic liquids in Listeria monocytogenes. Sep Purif Technol 155(Supplement C):32–37.  https://doi.org/10.1016/j.seppur.2015.01.017
  258. 258.
    Metselaar KI, Saa Ibusquiza P, Ortiz Camargo AR, Krieg M, Zwietering MH, den Besten HM, Abee T (2015) Performance of stress resistant variants of Listeria monocytogenes in mixed species biofilms with Lactobacillus plantarum. Int J Food Microbiol 213:24–30.  https://doi.org/10.1016/j.ijfoodmicro.2015.04.021CrossRefPubMedGoogle Scholar
  259. 259.
    Miladi H, Zmantar T, Chaabouni Y, Fedhila K, Bakhrouf A, Mahdouani K, Chaieb K (2016) Antibacterial and efflux pump inhibitors of thymol and carvacrol against food-borne pathogens. Microb Pathog 99:95–100.  https://doi.org/10.1016/j.micpath.2016.08.008CrossRefPubMedGoogle Scholar
  260. 260.
    Minbiole KPC, Jennings MC, Ator LE, Black JW, Grenier MC, LaDow JE, Caran KL, Seifert K, Wuest WM (2016) From antimicrobial activity to mechanism of resistance: the multifaceted role of simple quaternary ammonium compounds in bacterial eradication. Tetrahedron 72(25):3559–3566.  https://doi.org/10.1016/j.tet.2016.01.014CrossRefGoogle Scholar
  261. 261.
    Miyano N, Oie S, Kamiya A (2003) Efficacy of disinfectants and hot water against biofilm cells of Burkholderia cepacia. Biol Pharm Bull 26(5):671–674CrossRefPubMedGoogle Scholar
  262. 262.
    Miyazaki NH, Abreu AO, Marin VA, Rezende CA, Moraes MT, Villas Boas MH (2007) The presence of qacA/B gene in Brazilian methicillin-resistant Staphylococcus aureus. Mem Inst Oswaldo Cruz 102(4):539–540CrossRefPubMedGoogle Scholar
  263. 263.
    Moen B, Rudi K, Bore E, Langsrud S (2012) Subminimal inhibitory concentrations of the disinfectant benzalkonium chloride select for a tolerant subpopulation of Escherichia coli with inheritable characteristics. Int J Mol Sci 13(4):4101–4123.  https://doi.org/10.3390/ijms13044101CrossRefPubMedPubMedCentralGoogle Scholar
  264. 264.
    Monecke S, Ehricht R, Slickers P, Tan HL, Coombs G (2009) The molecular epidemiology and evolution of the Panton-Valentine leukocidin-positive, methicillin-resistant Staphylococcus aureus strain USA300 in Western Australia. Clin Microbiol Infect 15(8):770–776.  https://doi.org/10.1111/j.1469-0691.2009.02792.xCrossRefPubMedGoogle Scholar
  265. 265.
    Monecke S, Ruppelt A, Wendlandt S, Schwarz S, Slickers P, Ehricht R, Jackel SC (2013) Genotyping of Staphylococcus aureus isolates from diseased poultry. Vet Microbiol 162(2–4):806–812.  https://doi.org/10.1016/j.vetmic.2012.10.018CrossRefPubMedGoogle Scholar
  266. 266.
    Moore LE, Ledder RG, Gilbert P, McBain AJ (2008) In vitro study of the effect of cationic biocides on bacterial population dynamics and susceptibility. Appl Environ Microbiol 74(15):4825–4834.  https://doi.org/10.1128/aem.00573-08CrossRefPubMedPubMedCentralGoogle Scholar
  267. 267.
    Morales-Fernandez L, Fernandez-Crehuet M, Espigares M, Moreno E, Espigares E (2014) Study of the hormetic effect of disinfectants chlorhexidine, povidone iodine and benzalkonium chloride. Eur J Clin Microbiol Infect Dis 33(1):103–109.  https://doi.org/10.1007/s10096-013-1934-5CrossRefPubMedGoogle Scholar
  268. 268.
    Moretro T, Schirmer BCT, Heir E, Fagerlund A, Hjemli P, Langsrud S (2017) Tolerance to quaternary ammonium compound disinfectants may enhance growth of Listeria monocytogenes in the food industry. Int J Food Microbiol 241:215–224.  https://doi.org/10.1016/j.ijfoodmicro.2016.10.025CrossRefPubMedGoogle Scholar
  269. 269.
    Morgan M, McGann P, Gierhart S, Chukwuma U, Richesson D, Hinkle M, Lesho E (2017) Consumption of chlorhexidine and mupirocin across the health system of the US Department of Defense (DOD) and the incidence of the qacA/B and mupA genes in the DOD Facilities of the national capital region. Clin Infect Dis: Official Publ Infect Dis Soc Am 64(12):1801–1802.  https://doi.org/10.1093/cid/cix276CrossRefGoogle Scholar
  270. 270.
    Mori M, Gomi M, Matsumune N, Niizeki K, Sakagami Y (2013) Biofilm-forming activity of bacteria isolated from toilet bowl biofilms and the bactericidal activity of disinfectants against the isolates. Biocontrol Sci 18(3):129–135CrossRefPubMedGoogle Scholar
  271. 271.
    Morrissey I, Oggioni MR, Knight D, Curiao T, Coque T, Kalkanci A, Martinez JL (2014) Evaluation of epidemiological cut-off values indicates that biocide resistant subpopulations are uncommon in natural isolates of clinically-relevant microorganisms. PLoS ONE 9(1):e86669.  https://doi.org/10.1371/journal.pone.0086669CrossRefPubMedPubMedCentralGoogle Scholar
  272. 272.
    Mosca A, Russo F, Miragliotta G (2006) In vitro antimicrobial activity of benzalkonium chloride against clinical isolates of Streptococcus agalactiae. J Antimicrob Chemother 57(3):566–568.  https://doi.org/10.1093/jac/dki474CrossRefPubMedGoogle Scholar
  273. 273.
    Mullapudi S, Siletzky RM, Kathariou S (2008) Heavy-metal and benzalkonium chloride resistance of Listeria monocytogenes isolates from the environment of turkey-processing plants. Appl Environ Microbiol 74(5):1464–1468.  https://doi.org/10.1128/aem.02426-07CrossRefPubMedPubMedCentralGoogle Scholar
  274. 274.
    Muller A, Rychli K, Muhterem-Uyar M, Zaiser A, Stessl B, Guinane CM, Cotter PD, Wagner M, Schmitz-Esser S (2013) Tn6188 - a novel transposon in Listeria monocytogenes responsible for tolerance to benzalkonium chloride. PLoS ONE 8(10):e76835.  https://doi.org/10.1371/journal.pone.0076835CrossRefPubMedPubMedCentralGoogle Scholar
  275. 275.
    Muller A, Rychli K, Zaiser A, Wieser C, Wagner M, Schmitz-Esser S (2014) The Listeria monocytogenes transposon Tn6188 provides increased tolerance to various quaternary ammonium compounds and ethidium bromide. FEMS Microbiol Lett 361(2):166–173.  https://doi.org/10.1111/1574-6968.12626CrossRefPubMedGoogle Scholar
  276. 276.
    Muller G, Kramer A (2008) Biocompatibility index of antiseptic agents by parallel assessment of antimicrobial activity and cellular cytotoxicity. J Antimicrob Chemother 61(6):1281–1287.  https://doi.org/10.1093/jac/dkn125CrossRefPubMedGoogle Scholar
  277. 277.
    Munoz-Gallego I, Infiesta L, Viedma E, Perez-Montarelo D, Chaves F (2016) Chlorhexidine and mupirocin susceptibilities in methicillin-resistant Staphylococcus aureus isolates from bacteraemia and nasal colonisation. J Glob Antimicrob Resist 4:65–69.  https://doi.org/10.1016/j.jgar.2015.11.005CrossRefPubMedGoogle Scholar
  278. 278.
    Murayama N, Nagata M, Terada Y, Okuaki M, Takemura N, Nakaminami H, Noguchi N (2013) In vitro antiseptic susceptibilities for Staphylococcus pseudintermedius isolated from canine superficial pyoderma in Japan. Vet Dermatol 24(1):126–129.e129.  https://doi.org/10.1111/j.1365-3164.2012.01103.x
  279. 279.
    Nagai I, Ogase H (1990) Absence of role for plasmids in resistance to multiple disinfectants in three strains of bacteria. J Hosp Infect 15(2):149–155CrossRefPubMedGoogle Scholar
  280. 280.
    Nagai K, Murata T, Ohta S, Zenda H, Ohnishi M, Hayashi T (2003) Two different mechanisms are involved in the extremely high-level benzalkonium chloride resistance of a Pseudomonas fluorescens strain. Microbiol Immunol 47(10):709–715CrossRefPubMedGoogle Scholar
  281. 281.
    Nagai K, Ohta S, Zenda H, Matsumoto H, Makino M (1996) Biochemical characterization of a Pseudomonas fluorescens strain isolated from a benzalkonium chloride solution. Biol Pharm Bull 19(6):873–875CrossRefPubMedGoogle Scholar
  282. 282.
    Nakaminami H, Noguchi N, Nishijima S, Kurokawa I, Sasatsu M (2008) Characterization of the pTZ2162 encoding multidrug efflux gene qacB from Staphylococcus aureus. Plasmid 60(2):108–117.  https://doi.org/10.1016/j.plasmid.2008.04.003CrossRefPubMedGoogle Scholar
  283. 283.
    Nakamura H, Takakura K, Sone Y, Itano Y, Nishikawa Y (2013) Biofilm formation and resistance to benzalkonium chloride in Listeria monocytogenes isolated from a fish processing plant. J Food Prot 76(7):1179–1186.  https://doi.org/10.4315/0362-028x.jfp-12-225CrossRefPubMedGoogle Scholar
  284. 284.
    Nakashima AK, Highsmith AK, Martone WJ (1987) Survival of Serratia marcescens in benzalkonium chloride and in multiple-dose medication vials: relationship to epidemic septic arthritis. J Clin Microbiol 25(6):1019–1021PubMedPubMedCentralGoogle Scholar
  285. 285.
    Nakashima AK, McCarthy MA, Martone WJ, Anderson RL (1987) Epidemic septic arthritis caused by Serratia marcescens and associated with a benzalkonium chloride antiseptic. J Clin Microbiol 25(6):1014–1018PubMedPubMedCentralGoogle Scholar
  286. 286.
    Narui K, Takano M, Noguchi N, Sasatsu M (2007) Susceptibilities of methicillin-resistant Staphylococcus aureus isolates to seven biocides. Biol Pharm Bull 30(3):585–587CrossRefPubMedGoogle Scholar
  287. 287.
    Nemeghaire S, Argudin MA, Haesebrouck F, Butaye P (2014) Molecular epidemiology of methicillin-resistant Staphylococcus sciuri in healthy chickens. Vet Microbiol 171(3–4):357–363.  https://doi.org/10.1016/j.vetmic.2014.01.041CrossRefPubMedGoogle Scholar
  288. 288.
    Nhung NT, Thuy CT, Trung NV, Campbell J, Baker S, Thwaites G, Hoa NT, Carrique-Mas J (2015) Induction of antimicrobial resistance in Escherichia coli and non-typhoidal Salmonella strains after adaptation to disinfectant commonly used on farms in Vietnam. Antibiotics (Basel, Switzerland) 4(4):480–494.  https://doi.org/10.3390/antibiotics4040480
  289. 289.
    Nilsson RE, Ross T, Bowman JP (2011) Variability in biofilm production by Listeria monocytogenes correlated to strain origin and growth conditions. Int J Food Microbiol 150(1):14–24.  https://doi.org/10.1016/j.ijfoodmicro.2011.07.012CrossRefPubMedGoogle Scholar
  290. 290.
    Noguchi N, Hase M, Kitta M, Sasatsu M, Deguchi K, Kono M (1999) Antiseptic susceptibility and distribution of antiseptic-resistance genes in methicillin-resistant Staphylococcus aureus. FEMS Microbiol Lett 172(2):247–253CrossRefPubMedGoogle Scholar
  291. 291.
    Noguchi N, Nakaminami H, Nishijima S, Kurokawa I, So H, Sasatsu M (2006) Antimicrobial agent of susceptibilities and antiseptic resistance gene distribution among methicillin-resistant Staphylococcus aureus isolates from patients with impetigo and staphylococcal scalded skin syndrome. J Clin Microbiol 44(6):2119–2125.  https://doi.org/10.1128/jcm.02690-05CrossRefPubMedPubMedCentralGoogle Scholar
  292. 292.
    Noguchi N, Suwa J, Narui K, Sasatsu M, Ito T, Hiramatsu K, Song JH (2005) Susceptibilities to antiseptic agents and distribution of antiseptic-resistance genes qacA/B and smr of methicillin-resistant Staphylococcus aureus isolated in Asia during 1998 and 1999. J Med Microbiol 54(Pt 6):557–565.  https://doi.org/10.1099/jmm.0.45902-0CrossRefPubMedGoogle Scholar
  293. 293.
    Ntsama-Essomba C, Bouttier S, Ramaldes M, Dubois-Brissonnet F, Fourniat J (1997) Resistance of Escherichia coli growing as biofilms to disinfectants. Vet Res 28(4):353–363PubMedGoogle Scholar
  294. 294.
    Oggioni MR, Coelho JR, Furi L, Knight DR, Viti C, Orefici G, Martinez JL, Freitas AT, Coque TM, Morrissey I (2015) Significant differences characterise the correlation coefficients between biocide and antibiotic susceptibility profiles in Staphylococcus aureus. Curr Pharm Des 21(16):2054–2057CrossRefPubMedPubMedCentralGoogle Scholar
  295. 295.
    Ohta S, Makino M, Nagai K, Zenda H (1996) Comparative fungicidal activity of a new quaternary ammonium salt, N-alkyl-N-2-hydroxyethyl-N, N-dimethylammonium butyl phosphate and commonly used disinfectants. Biol Pharm Bull 19(2):308–310CrossRefPubMedGoogle Scholar
  296. 296.
    Oie S, Huang Y, Kamiya A, Konishi H, Nakazawa T (1996) Efficacy of disinfectants against biofilm cells of methicillin-resistant Staphylococcus aureus. Microbios 85:223–230PubMedGoogle Scholar
  297. 297.
    Oliveira AR, Domingues FC, Ferreira S (2017) The influence of resveratrol adaptation on resistance to antibiotics, benzalkonium chloride, heat and acid stresses of Staphylococcus aureus and Listeria monocytogenes. Food Control 73:1420–1425.  https://doi.org/10.1016/j.foodcont.2016.11.011CrossRefGoogle Scholar
  298. 298.
    Olson RK, Voorhees RE, Eitzen HE, Rolka H, Sewell CM (1999) Cluster of postinjection abscesses related to corticosteroid injections and use of benzalkonium chloride. West J Med 170(3):143–147PubMedPubMedCentralGoogle Scholar
  299. 299.
    Oosterik LH, Tuntufye HN, Butaye P, Goddeeris BM (2014) Effect of serogroup, surface material and disinfectant on biofilm formation by avian pathogenic Escherichia coli. Vet J (London, England: 1997) 202(3):561–565.  https://doi.org/10.1016/j.tvjl.2014.10.001
  300. 300.
    Opacic D, Lepsanovic Z, Sbutega-Milosevic G (2010) Distribution of disinfectant resistance genes qacA/B in clinical isolates of meticillin-resistant and -susceptible Staphylococcus aureus in one Belgrade hospital. J Hosp Infect 76(3):266–267.  https://doi.org/10.1016/j.jhin.2010.04.019CrossRefPubMedGoogle Scholar
  301. 301.
    Orsi GB, Tomao P, Visca P (1995) In vitro activity of commercially manufactured disinfectants against Pseudomonas aeruginosa. Eur J Epidemiol 11(4):453–457CrossRefPubMedGoogle Scholar
  302. 302.
    Ortiz S, Lopez-Alonso V, Rodriguez P, Martinez-Suarez JV (2015) The connection between persistent, disinfectant-resistant listeria monocytogenes strains from two geographically separate Iberian pork processing plants: evidence from comparative genome analysis. Appl Environ Microbiol 82(1):308–317.  https://doi.org/10.1128/aem.02824-15CrossRefPubMedPubMedCentralGoogle Scholar
  303. 303.
    Ortiz S, Lopez V, Martinez-Suarez JV (2014) Control of Listeria monocytogenes contamination in an Iberian pork processing plant and selection of benzalkonium chloride-resistant strains. Food Microbiol 39:81–88.  https://doi.org/10.1016/j.fm.2013.11.007CrossRefPubMedGoogle Scholar
  304. 304.
    Ortiz S, Lopez V, Martinez-Suarez JV (2014) The influence of subminimal inhibitory concentrations of benzalkonium chloride on biofilm formation by Listeria monocytogenes. Int J Food Microbiol 189:106–112.  https://doi.org/10.1016/j.ijfoodmicro.2014.08.007CrossRefPubMedGoogle Scholar
  305. 305.
    Ostman M, Lindberg RH, Fick J, Bjorn E, Tysklind M (2017) Screening of biocides, metals and antibiotics in Swedish sewage sludge and wastewater. Water Res 115:318–328.  https://doi.org/10.1016/j.watres.2017.03.011CrossRefPubMedGoogle Scholar
  306. 306.
    Pagedar A, Singh J (2015) Evaluation of antibiofilm effect of benzalkonium chloride, iodophore and sodium hypochlorite against biofilm of Pseudomonas aeruginosa of dairy origin. J Food Sci Technol 52(8):5317–5322.  https://doi.org/10.1007/s13197-014-1575-4CrossRefPubMedGoogle Scholar
  307. 307.
    Pagedar A, Singh J, Batish VK (2011) Efflux mediated adaptive and cross resistance to ciprofloxacin and benzalkonium chloride in Pseudomonas aeruginosa of dairy origin. J Basic Microbiol 51(3):289–295.  https://doi.org/10.1002/jobm.201000292CrossRefPubMedGoogle Scholar
  308. 308.
    Pagedar A, Singh J, Batish VK (2012) Adaptation to benzalkonium chloride and ciprofloxacin affects biofilm formation potential, efflux pump and haemolysin activity of Escherichia coli of dairy origin. J Dairy Res 79 (4):383–389. S0022029912000295 [pii].  https://doi.org/10.1017/s0022029912000295 [doi]
  309. 309.
    Paniagua-Contreras GL, Monroy-Perez E, Vaca-Paniagua F, Rodriguez-Moctezuma JR, Negrete-Abascal E, Vaca S (2014) Implementation of a novel in vitro model of infection of reconstituted human epithelium for expression of virulence genes in methicillin-resistant Staphylococcus aureus strains isolated from catheter-related infections in Mexico. Ann Clin Microbiol Antimicrob 13:6.  https://doi.org/10.1186/1476-0711-13-6CrossRefPubMedPubMedCentralGoogle Scholar
  310. 310.
    Paulsen IT, Brown MH, Littlejohn TG, Mitchell BA, Skurray RA (1996) Multidrug resistance proteins QacA and QacB from Staphylococcus aureus: membrane topology and identification of residues involved in substrate specificity. Proc Natl Acad Sci USA 93(8):3630–3635CrossRefPubMedGoogle Scholar
  311. 311.
    Peirano G, Lascols C, Hackel M, Hoban DJ, Pitout JD (2014) Molecular epidemiology of Enterobacteriaceae that produce VIMs and IMPs from the SMART surveillance program. Diagn Microbiol Infect Dis 78(3):277–281.  https://doi.org/10.1016/j.diagmicrobio.2013.11.024CrossRefPubMedGoogle Scholar
  312. 312.
    Peyrat MB, Soumet C, Maris P, Sanders P (2008) Recovery of Campylobacter jejuni from surfaces of poultry slaughterhouses after cleaning and disinfection procedures: analysis of a potential source of carcass contamination. Int J Food Microbiol 124(2):188–194.  https://doi.org/10.1016/j.ijfoodmicro.2008.03.030CrossRefPubMedGoogle Scholar
  313. 313.
    Piercey MJ, Ells TC, Macintosh AJ, Truelstrup Hansen L (2017) Variations in biofilm formation, desiccation resistance and Benzalkonium chloride susceptibility among Listeria monocytogenes strains isolated in Canada. Int J Food Microbiol 257:254–261.  https://doi.org/10.1016/j.ijfoodmicro.2017.06.025CrossRefPubMedGoogle Scholar
  314. 314.
    Plotkin SA, Austrian R (1958) Bacteremia caused by Pseudomonas sp. following the use of materials stored in solutions of a cationic surface-active agent. Am J Med Sci 235(6):621–627CrossRefPubMedGoogle Scholar
  315. 315.
    Popowska M, Olszak M, Markiewicz Z (2006) Susceptibility of Listeria monocytogenes strains isolated from dairy products and frozen vegetables to antibiotics inhibiting murein synthesis and to disinfectants. Pol J Microbiol 55(4):279–288PubMedGoogle Scholar
  316. 316.
    Prag G, Falk-Brynhildsen K, Jacobsson S, Hellmark B, Unemo M, Soderquist B (2014) Decreased susceptibility to chlorhexidine and prevalence of disinfectant resistance genes among clinical isolates of Staphylococcus epidermidis. APMIS: acta pathologica, microbiologica, et immunologica Scandinavica 122(10):961–967.  https://doi.org/10.1111/apm.12239CrossRefPubMedGoogle Scholar
  317. 317.
    Pricope L, Nicolau A, Wagner M, Rychli K (2013) The effect of sublethal concentrations of benzalkonium chloride on invasiveness and intracellular proliferation of Listeria monocytogenes. Food Control 31(1):230–235.  https://doi.org/10.1016/j.foodcont.2012.09.031CrossRefGoogle Scholar
  318. 318.
    Ratani SS, Siletzky RM, Dutta V, Yildirim S, Osborne JA, Lin W, Hitchins AD, Ward TJ, Kathariou S (2012) Heavy metal and disinfectant resistance of Listeria monocytogenes from foods and food processing plants. Appl Environ Microbiol 78(19):6938–6945.  https://doi.org/10.1128/aem.01553-12CrossRefPubMedPubMedCentralGoogle Scholar
  319. 319.
    Reich PJ, Boyle MG, Hogan PG, Johnson AJ, Wallace MA, Elward AM, Warner BB, Burnham CD, Fritz SA (2016) Emergence of community-associated methicillin-resistant Staphylococcus aureus strains in the neonatal intensive care unit: an infection prevention and patient safety challenge. Clin Microbiol Infect 22(7):645.e641–645.e648.  https://doi.org/10.1016/j.cmi.2016.04.013
  320. 320.
    Reichel M, Schlicht A, Ostermeyer C, Kampf G (2014) Efficacy of surface disinfectant cleaners against emerging highly resistant gram-negative bacteria. BMC Infect Dis 14:292.  https://doi.org/10.1186/1471-2334-14-292CrossRefPubMedPubMedCentralGoogle Scholar
  321. 321.
    Rensch U, Klein G, Schwarz S, Kaspar H, de Jong A, Kehrenberg C (2013) Comparative analysis of the susceptibility to triclosan and three other biocides of avian Salmonella enterica isolates collected 1979 through 1994 and 2004 through 2010. J Food Prot 76(4):653–656.  https://doi.org/10.4315/0362-028x.jfp-12-420CrossRefPubMedGoogle Scholar
  322. 322.
    Riazi S, Matthews KR (2011) Failure of foodborne pathogens to develop resistance to sanitizers following repeated exposure to common sanitizers. Int Biodeter Biodegr 65(2):374–378.  https://doi.org/10.1016/j.ibiod.2010.12.001CrossRefGoogle Scholar
  323. 323.
    Ribic U, Klancnik A, Jersek B (2017) Characterization of Staphylococcus epidermidis strains isolated from industrial cleanrooms under regular routine disinfection. J Appl Microbiol 122(5):1186–1196.  https://doi.org/10.1111/jam.13424CrossRefPubMedGoogle Scholar
  324. 324.
    Rikimaru T, Kondo M, Kondo S, Oizumi K (2000) Efficacy of common antiseptics against mycobacteria. Int J Tuberc Lung Dis: Official J Int Union Against Tuberc Lung Dis 4(6):570–576Google Scholar
  325. 325.
    Rizzotti L, Rossi F, Torriani S (2016) Biocide and antibiotic resistance of Enterococcus faecalis and Enterococcus faecium isolated from the swine meat chain. Food Microbiol 60:160–164.  https://doi.org/10.1016/j.fm.2016.07.009CrossRefPubMedGoogle Scholar
  326. 326.
    Rodriguez Ferri EF, Martinez S, Frandoloso R, Yubero S, Gutierrez Martin CB (2010) Comparative efficacy of several disinfectants in suspension and carrier tests against Haemophilus parasuis serovars 1 and 5. Res Vet Sci 88(3):385–389.  https://doi.org/10.1016/j.rvsc.2009.12.001CrossRefPubMedGoogle Scholar
  327. 327.
    Romanova NA, Gawande PV, Brovko LY, Griffiths MW (2007) Rapid methods to assess sanitizing efficacy of benzalkonium chloride to Listeria monocytogenes biofilms. J Microbiol Methods 71(3):231–237.  https://doi.org/10.1016/j.mimet.2007.09.002CrossRefPubMedGoogle Scholar
  328. 328.
    Romanova NA, Wolffs PF, Brovko LY, Griffiths MW (2006) Role of efflux pumps in adaptation and resistance of Listeria monocytogenes to benzalkonium chloride. Appl Environ Microbiol 72(5):3498–3503.  https://doi.org/10.1128/aem.72.5.3498-3503.2006CrossRefPubMedPubMedCentralGoogle Scholar
  329. 329.
    Rondeau C, Chevet G, Blanc DS, Gbaguidi-Haore H, Decalonne M, Dos Santos S, Quentin R, van der Mee-Marquet N (2016) Current molecular epidemiology of methicillin-resistant staphylococcus aureus in elderly French people: troublesome clones on the horizon. Frontiers Microbiol 7:31.  https://doi.org/10.3389/fmicb.2016.00031CrossRefGoogle Scholar
  330. 330.
    Rose H, Baldwin A, Dowson CG, Mahenthiralingam E (2009) Biocide susceptibility of the Burkholderia cepacia complex. J Antimicrob Chemother 63(3):502–510.  https://doi.org/10.1093/jac/dkn540CrossRefPubMedPubMedCentralGoogle Scholar
  331. 331.
    Ruckerl I, Muhterem-Uyar M, Muri-Klinger S, Wagner KH, Wagner M, Stessl B (2014) L. monocytogenes in a cheese processing facility: learning from contamination scenarios over three years of sampling. Int J Food Microbiol 189:98–105.  https://doi.org/10.1016/j.ijfoodmicro.2014.08.001CrossRefPubMedGoogle Scholar
  332. 332.
    Russell AD (2002) Introduction of biocides into clinical practice and the impact on antibiotic-resistant bacteria. Symp Ser (Soc Appl Microbiol) 31:121s–135sCrossRefGoogle Scholar
  333. 333.
    Russell AD, Furr JR (1986) Susceptibility of porin- and liposaccharide-deficient strains of Escherichia coli to some antiseptics and disinfectants. J Hosp Infect 8:47–56CrossRefPubMedGoogle Scholar
  334. 334.
    Rutala WA, Cole EC, Wannamaker NS, Weber DJ (1991) Inactivation of Mycobacterium tuberculosis and Mycobacterium bovis by 14 hospital disinfectants. Am J Med 91(3b):267s–271sCrossRefPubMedGoogle Scholar
  335. 335.
    Saa Ibusquiza P, Herrera JJ, Cabo ML (2011) Resistance to benzalkonium chloride, peracetic acid and nisin during formation of mature biofilms by Listeria monocytogenes. Food Microbiol 28(3):418–425.  https://doi.org/10.1016/j.fm.2010.09.014CrossRefPubMedGoogle Scholar
  336. 336.
    Saa Ibusquiza P, Herrera JJ, Vazquez-Sanchez D, Parada A, Cabo ML (2012) A new and efficient method to obtain benzalkonium chloride adapted cells of Listeria monocytogenes. J Microbiol Methods 91(1):57–61.  https://doi.org/10.1016/j.mimet.2012.07.009CrossRefPubMedGoogle Scholar
  337. 337.
    Saá Ibusquiza P, Herrera JJR, Vázquez-Sánchez D, Cabo ML (2012) Adherence kinetics, resistance to benzalkonium chloride and microscopic analysis of mixed biofilms formed by Listeria monocytogenes and Pseudomonas putida. Food Control 25(1):202–210.  https://doi.org/10.1016/j.foodcont.2011.10.002CrossRefGoogle Scholar
  338. 338.
    Sandle T, Vijayakumar R, Saleh Al Aboody M, Saravanakumar S (2014) In vitro fungicidal activity of biocides against pharmaceutical environmental fungal isolates. J Appl Microbiol 117(5):1267–1273.  https://doi.org/10.1111/jam.12628CrossRefPubMedGoogle Scholar
  339. 339.
    Sattar SA, Bradley C, Kibbee R, Wesgate R, Wilkinson MA, Sharpe T, Maillard JY (2015) Disinfectant wipes are appropriate to control microbial bioburden from surfaces: use of a new ASTM standard test protocol to demonstrate efficacy. J Hosp Infect 91(4):319–325.  https://doi.org/10.1016/j.jhin.2015.08.026CrossRefPubMedGoogle Scholar
  340. 340.
    Sautter RL, Mattman LH, Legaspi RC (1984) Serratia marcescens meningitis associated with a contaminated benzalkonium chloride solution. Infect Control: IC 5(5):223–225CrossRefPubMedGoogle Scholar
  341. 341.
    Schlett CD, Millar EV, Crawford KB, Cui T, Lanier JB, Tribble DR, Ellis MW (2014) Prevalence of chlorhexidine-resistant methicillin-resistant Staphylococcus aureus following prolonged exposure. Antimicrob Agents Chemother 58(8):4404–4410.  https://doi.org/10.1128/aac.02419-14CrossRefPubMedPubMedCentralGoogle Scholar
  342. 342.
    Seier-Petersen MA, Nielsen LN, Ingmer H, Aarestrup FM, Agerso Y (2015) Biocide Susceptibility of Staphylococcus aureus CC398 and CC30 Isolates from pigs and identification of the biocide resistance genes, qacG and qacC. Microb Drug Res (Larchmont, NY) 21(5):527–536.  https://doi.org/10.1089/mdr.2014.0215
  343. 343.
    Sekiguchi J, Hama T, Fujino T, Araake M, Irie A, Saruta K, Konosaki H, Nishimura H, Kawano A, Kudo K, Kondo T, Sasazuki T, Kuratsuji T, Yoshikura H, Kirikae T (2004) Detection of the antiseptic- and disinfectant-resistance genes qacA, qacB, and qacC in methicillin-resistant Staphylococcus aureus isolated in a Tokyo hospital. Jpn J Infect Dis 57(6):288–291PubMedGoogle Scholar
  344. 344.
    Seng R, Leungtongkam U, Thummeepak R, Chatdumrong W, Sitthisak S (2017) High prevalence of methicillin-resistant coagulase-negative staphylococci isolated from a university environment in Thailand. Int Microbiol: Official J Span Soc Microbiol 20(2):65–73.  https://doi.org/10.2436/20.1501.01.286CrossRefGoogle Scholar
  345. 345.
    Senok A, Ehricht R, Monecke S, Al-Saedan R, Somily A (2016) Molecular characterization of methicillin-resistant Staphylococcus aureus in nosocomial infections in a tertiary-care facility: emergence of new clonal complexes in Saudi Arabia. New Microbes New Infect 14:13–18.  https://doi.org/10.1016/j.nmni.2016.07.009CrossRefPubMedPubMedCentralGoogle Scholar
  346. 346.
    Shamsudin MN, Alreshidi MA, Hamat RA, Alshrari AS, Atshan SS, Neela V (2012) High prevalence of qacA/B carriage among clinical isolates of meticillin-resistant Staphylococcus aureus in Malaysia. J Hosp Infect 81(3):206–208.  https://doi.org/10.1016/j.jhin.2012.04.015CrossRefPubMedGoogle Scholar
  347. 347.
    Sheng WH, Wang JT, Lauderdale TL, Weng CM, Chen D, Chang SC (2009) Epidemiology and susceptibilities of methicillin-resistant Staphylococcus aureus in Taiwan: emphasis on chlorhexidine susceptibility. Diagn Microbiol Infect Dis 63(3):309–313.  https://doi.org/10.1016/j.diagmicrobio.2008.11.014CrossRefPubMedGoogle Scholar
  348. 348.
    Sheridan A, Lenahan M, Duffy G, Fanning S, Burgess C (2012) The potential for biocide tolerance in Escherichia coli and its impact on the response to food processing stresses. Food Control 26(1):98–106CrossRefGoogle Scholar
  349. 349.
    Shi GS, Boost M, Cho P (2015) Prevalence of antiseptic-resistance genes in staphylococci isolated from orthokeratology lens and spectacle wearers in Hong Kong. Invest Ophthalmol Vis Sci 56(5):3069–3074.  https://doi.org/10.1167/iovs.15-16550CrossRefPubMedGoogle Scholar
  350. 350.
    Shi GS, Boost MV, Cho P (2016) Does the presence of QAC genes in staphylococci affect the efficacy of disinfecting solutions used by orthokeratology lens wearers? Brit J Ophthalmol 100(5):708–712.  https://doi.org/10.1136/bjophthalmol-2015-307811CrossRefGoogle Scholar
  351. 351.
    Shikano A, Kuda T, Takahashi H, Kimura B (2017) Effect of quantity of food residues on resistance to desiccation, disinfectants, and UV-C irradiation of spoilage yeasts adhered to a stainless steel surface. LWT Food Sci Technol 80(Supplement C):169–177.  https://doi.org/10.1016/j.lwt.2017.02.020
  352. 352.
    Sidhu MS, Heir E, Leegaard T, Wiger K, Holck A (2002) Frequency of disinfectant resistance genes and genetic linkage with beta-lactamase transposon Tn552 among clinical staphylococci. Antimicrob Agents Chemother 46(9):2797–2803CrossRefPubMedPubMedCentralGoogle Scholar
  353. 353.
    Sidhu MS, Sorum H, Holck A (2002) Resistance to quaternary ammonium compounds in food-related bacteria. Microb Drug Res (Larchmont, NY) 8(4):393–399.  https://doi.org/10.1089/10766290260469679
  354. 354.
    Simoes M, Pereira MO, Vieira MJ (2005) Effect of mechanical stress on biofilms challenged by different chemicals. Water Res 39(20):5142–5152.  https://doi.org/10.1016/j.watres.2005.09.028CrossRefPubMedGoogle Scholar
  355. 355.
    Skovgaard S, Larsen MH, Nielsen LN, Skov RL, Wong C, Westh H, Ingmer H (2013) Recently introduced qacA/B genes in Staphylococcus epidermidis do not increase chlorhexidine MIC/MBC. J Antimicrob Chemother 68(10):2226–2233.  https://doi.org/10.1093/jac/dkt182CrossRefPubMedGoogle Scholar
  356. 356.
    Slifierz MJ, Friendship RM, Weese JS (2015) Methicillin-resistant Staphylococcus aureus in commercial swine herds is associated with disinfectant and zinc usage. Appl Environ Microbiol 81(8):2690–2695.  https://doi.org/10.1128/aem.00036-15CrossRefPubMedPubMedCentralGoogle Scholar
  357. 357.
    Smith K, Gemmell CG, Hunter IS (2008) The association between biocide tolerance and the presence or absence of qac genes among hospital-acquired and community-acquired MRSA isolates. J Antimicrob Chemother 61(1):78–84.  https://doi.org/10.1093/jac/dkm395CrossRefPubMedGoogle Scholar
  358. 358.
    Smith K, Hunter IS (2008) Efficacy of common hospital biocides with biofilms of multi-drug resistant clinical isolates. J Med Microbiol 57(Pt 8):966–973.  https://doi.org/10.1099/jmm.0.47668-0CrossRefPubMedGoogle Scholar
  359. 359.
    Sommerstein R, Fuhrer U, Lo Priore E, Casanova C, Meinel DM, Seth-Smith HM, Kronenberg A, On Behalf Of A, Koch D, Senn L, Widmer AF, Egli A, Marschall J, On Behalf Of S (2017) Burkholderia stabilis outbreak associated with contaminated commercially-available washing gloves, Switzerland, May 2015 to August 2016. Euro Surveill 22(49).  https://doi.org/10.2807/1560-7917.es.2017.22.49.17-00213
  360. 360.
    Soumet C, Fourreau E, Legrandois P, Maris P (2012) Resistance to phenicol compounds following adaptation to quaternary ammonium compounds in Escherichia coli. Vet Microbiol 158(1–2):147–152.  https://doi.org/10.1016/j.vetmic.2012.01.030CrossRefPubMedGoogle Scholar
  361. 361.
    Soumet C, Ragimbeau C, Maris P (2005) Screening of benzalkonium chloride resistance in Listeria monocytogenes strains isolated during cold smoked fish production. Lett Appl Microbiol 41(3):291–296.  https://doi.org/10.1111/j.1472-765X.2005.01763.xCrossRefPubMedGoogle Scholar
  362. 362.
    Srinivasan VB, Singh BB, Priyadarshi N, Chauhan NK, Rajamohan G (2014) Role of novel multidrug efflux pump involved in drug resistance in Klebsiella pneumoniae. PLoS ONE 9(5):e96288.  https://doi.org/10.1371/journal.pone.0096288CrossRefPubMedPubMedCentralGoogle Scholar
  363. 363.
    Stewart PS, Grab L, Diemer JA (1998) Analysis of biocide transport limitation in an artificial biofilm system. J Appl Microbiol 85(3):495–500CrossRefPubMedGoogle Scholar
  364. 364.
    Stickler DJ (1974) Chlorhexidine resistance in Proteus mirabilis. J Clin Pathol 27(4):284–287CrossRefPubMedPubMedCentralGoogle Scholar
  365. 365.
    Stupar M, Grbić ML, Džamić A, Unković N, Ristić M, Jelikić A, Vukojević J (2014) Antifungal activity of selected essential oils and biocide benzalkonium chloride against the fungi isolated from cultural heritage objects. S Afr J Bot 93 (Supplement C):118–124.  https://doi.org/10.1016/j.sajb.2014.03.016
  366. 366.
    Suller MTE, Russell AD (1999) Antibiotic and biocide resistance in methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococcus. J Hosp Infect 43:281–291CrossRefPubMedGoogle Scholar
  367. 367.
    Sundheim G, Hagtvedt T, Dainty R (1992) Resistance of meat associated staphylococci to a quaternary ammonium compound. Food Microbiol 9(2):161–167.  https://doi.org/10.1016/0740-0020(92)80023-WCrossRefGoogle Scholar
  368. 368.
    Sundheim G, Langsrud S, Heir E, Holck AL (1998) Bacterial resistance to disinfectants containing quaternary ammonium compounds. Int Biodeter Biodegr 41(3):235–239.  https://doi.org/10.1016/S0964-8305(98)00027-4CrossRefGoogle Scholar
  369. 369.
    Tabata A, Nagamune H, Maeda T, Murakami K, Miyake Y, Kourai H (2003) Correlation between resistance of Pseudomonas aeruginosa to quaternary ammonium compounds and expression of outer membrane protein OprR. Antimicrob Agents Chemother 47(7):2093–2099CrossRefPubMedPubMedCentralGoogle Scholar
  370. 370.
    Taheri N, Ardebili A, Amouzandeh-Nobaveh A, Ghaznavi-Rad E (2016) Frequency of antiseptic resistance among Staphylococcus aureus and coagulase-negative Staphylococci isolated from a University Hospital in Central Iran. Oman Med J 31(6):426–432.  https://doi.org/10.5001/omj.2016.86CrossRefPubMedPubMedCentralGoogle Scholar
  371. 371.
    Taitt CR, Leski TA, Stockelman MG, Craft DW, Zurawski DV, Kirkup BC, Vora GJ (2014) Antimicrobial resistance determinants in Acinetobacter baumannii isolates taken from military treatment facilities. Antimicrob Agents Chemother 58(2):767–781.  https://doi.org/10.1128/aac.01897-13CrossRefPubMedPubMedCentralGoogle Scholar
  372. 372.
    Tajkarimi M, Harrison SH, Hung AM, Graves JL Jr (2016) Mechanobiology of antimicrobial resistant Escherichia coli and Listeria innocua. PLoS ONE 11(2):e0149769.  https://doi.org/10.1371/journal.pone.0149769CrossRefPubMedPubMedCentralGoogle Scholar
  373. 373.
    Takeo Y, Oie S, Kamiya A, Konishi H, Nakazawa T (1994) Efficacy of disinfectants against biofilm cells of Pseudomonas aeruginosa. Microbios 79(318):19–26PubMedGoogle Scholar
  374. 374.
    Tamburro M, Ripabelli G, Vitullo M, Dallman TJ, Pontello M, Amar CF, Sammarco ML (2015) Gene expression in Listeria monocytogenes exposed to sublethal concentration of benzalkonium chloride. Comp Immunol Microbiol Infect Dis 40:31–39.  https://doi.org/10.1016/j.cimid.2015.03.004CrossRefPubMedGoogle Scholar
  375. 375.
    Teixeira CF, Pereira TB, Miyazaki NH, Villas Boas MH (2010) Widespread distribution of qacA/B gene among coagulase-negative Staphylococcus spp. in Rio de Janeiro, Brazil. J Hosp Infect 75(4):333–334.  https://doi.org/10.1016/j.jhin.2010.01.011CrossRefPubMedGoogle Scholar
  376. 376.
    Tezel U, Pavlostathis SG (2015) Quaternary ammonium disinfectants: microbial adaptation, degradation and ecology. Curr Opin Biotechnol 33:296–304.  https://doi.org/10.1016/j.copbio.2015.03.018CrossRefPubMedGoogle Scholar
  377. 377.
    Thomas L, Russell AD, Maillard JY (2005) Antimicrobial activity of chlorhexidine diacetate and benzalkonium chloride against Pseudomonas aeruginosa and its response to biocide residues. J Appl Microbiol 98(3):533–543.  https://doi.org/10.1111/j.1365-2672.2004.02402.xCrossRefPubMedGoogle Scholar
  378. 378.
    Tiwari TS, Ray B, Jost KC Jr, Rathod MK, Zhang Y, Brown-Elliott BA, Hendricks K, Wallace RJ Jr (2003) Forty years of disinfectant failure: outbreak of postinjection Mycobacterium abscessus infection caused by contamination of benzalkonium chloride. Clin infect Dis: Official Publ Infect Dis Soc Am 36(8):954–962.  https://doi.org/10.1086/368192CrossRefGoogle Scholar
  379. 379.
    Tluczkiewicz I, Bitsch A, Hahn S, Hahn T (2010) Emission of biocides from hospitals: comparing current survey results with European Union default values. Integr Environ Assess Manage 6(2):273–280.  https://doi.org/10.1897/ieam_2009-046.1CrossRefGoogle Scholar
  380. 380.
    To MS, Favrin S, Romanova N, Griffiths MW (2002) Postadaptational resistance to benzalkonium chloride and subsequent physicochemical modifications of Listeria monocytogenes. Appl Environ Microbiol 68(11):5258–5264CrossRefPubMedPubMedCentralGoogle Scholar
  381. 381.
    Torlak E, Sert D (2013) Combined effect of benzalkonium chloride and ultrasound against Listeria monocytogenes biofilm on plastic surface. Lett Appl Microbiol 57(3):220–226.  https://doi.org/10.1111/lam.12100CrossRefPubMedGoogle Scholar
  382. 382.
    Tortorano AM, Viviani MA, Biraghi E, Rigoni AL, Prigitano A, Grillot R (2005) In vitro testing of fungicidal activity of biocides against Aspergillus fumigatus. J Med Microbiol 54(Pt 10):955–957.  https://doi.org/10.1099/jmm.0.45997-0CrossRefPubMedGoogle Scholar
  383. 383.
    Tote K, Horemans T, Vanden Berghe D, Maes L, Cos P (2010) Inhibitory effect of biocides on the viable masses and matrices of Staphylococcus aureus and Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 76(10):3135–3142.  https://doi.org/10.1128/aem.02095-09CrossRefPubMedPubMedCentralGoogle Scholar
  384. 384.
    Toval F, Guzman-Marte A, Madriz V, Somogyi T, Rodriguez C, Garcia F (2015) Predominance of carbapenem-resistant Pseudomonas aeruginosa isolates carrying blaIMP and blaVIM metallo-beta-lactamases in a major hospital in Costa Rica. J Med Microbiol 64(Pt 1):37–43.  https://doi.org/10.1099/jmm.0.081802-0CrossRefPubMedGoogle Scholar
  385. 385.
    Traglia GM, Almuzara M, Merkier AK, Adams C, Galanternik L, Vay C, Centron D, Ramirez MS (2012) Achromobacter xylosoxidans: an emerging pathogen carrying different elements involved in horizontal genetic transfer. Curr Microbiol 65(6):673–678.  https://doi.org/10.1007/s00284-012-0213-5 [doi]
  386. 386.
    Trauth E, Lemaı̂tre J-P, Rojas C, Diviès C, Cachon R (2001) Resistance of immobilized lactic acid bacteria to the inhibitory effect of quaternary ammonium sanitizers. LWT Food Sci Technol 34(4):239–243.  https://doi.org/10.1006/fstl.2001.0759
  387. 387.
    Ueda S, Kuwabara Y (2007) Susceptibility of biofilm Escherichia coli, Salmonella enteritidis and Staphylococcus aureus to detergents and sanitizers. Biocontrol Sci 12(4):149–153CrossRefPubMedGoogle Scholar
  388. 388.
    United States Environmental Protection Agency (2006) Reregistration eligibility decision for alkyl dimethyl benzyl ammonium chloride (ADBAC) https://archive.epa.gov/pesticides/reregistration/web/pdf/adbac_red.pdf
  389. 389.
    Unkovic N, Ljaljevic Grbic M, Stupar M, Vukojevic J, Jankovic V, Jovic D, Djordjevic A (2015) Aspergilli response to Benzalkonium Chloride and Novel-Synthesized Fullerenol/Benzalkonium Chloride Nanocomposite. Sci World J 2015:109262.  https://doi.org/10.1155/2015/109262CrossRefGoogle Scholar
  390. 390.
    Valentine BK, Dew W, Yu A, Weese JS (2012) In vitro evaluation of topical biocide and antimicrobial susceptibility of Staphylococcus pseudintermedius from dogs. Vet Dermatol 23(6):493–e495.  https://doi.org/10.1111/j.1365-3164.2012.01095.xCrossRefPubMedGoogle Scholar
  391. 391.
    Valenzuela AS, Benomar N, Abriouel H, Canamero MM, Lopez RL, Galvez A (2013) Biocide and copper tolerance in enterococci from different sources. J Food Prot 76(10):1806–1809.  https://doi.org/10.4315/0362-028x.jfp-13-124CrossRefPubMedGoogle Scholar
  392. 392.
    Vali L, Dashti AA, Mathew F, Udo EE (2017) Characterization of Heterogeneous MRSA and MSSA with reduced Susceptibility to Chlorhexidine in Kuwaiti Hospitals. Front Microbiol 8:1359.  https://doi.org/10.3389/fmicb.2017.01359CrossRefPubMedPubMedCentralGoogle Scholar
  393. 393.
    Vali L, Davies SE, Lai LL, Dave J, Amyes SG (2008) Frequency of biocide resistance genes, antibiotic resistance and the effect of chlorhexidine exposure on clinical methicillin-resistant Staphylococcus aureus isolates. J Antimicrob Chemother 61(3):524–532.  https://doi.org/10.1093/jac/dkm520CrossRefPubMedGoogle Scholar
  394. 394.
    van der Veen S, Abee T (2010) HrcA and DnaK are important for static and continuous-flow biofilm formation and disinfectant resistance in Listeria monocytogenes. Microbiology (Reading, England) 156(Pt 12):3782–3790.  https://doi.org/10.1099/mic.0.043000-0
  395. 395.
    van der Veen S, Abee T (2010) Importance of SigB for Listeria monocytogenes static and continuous-flow biofilm formation and disinfectant resistance. Appl Environ Microbiol 76(23):7854–7860.  https://doi.org/10.1128/aem.01519-10CrossRefPubMedPubMedCentralGoogle Scholar
  396. 396.
    van der Veen S, Abee T (2011) Mixed species biofilms of Listeria monocytogenes and Lactobacillus plantarum show enhanced resistance to benzalkonium chloride and peracetic acid. Int J Food Microbiol 144(3):421–431.  https://doi.org/10.1016/j.ijfoodmicro.2010.10.029CrossRefPubMedGoogle Scholar
  397. 397.
    van Klingeren B (1995) Disinfectant testing on surfaces. J Hosp Infect 30(Suppl):397–408CrossRefPubMedGoogle Scholar
  398. 398.
    Vázquez-Sánchez D, Cabo ML, Ibusquiza PS, Rodríguez-Herrera JJ (2014) Biofilm-forming ability and resistance to industrial disinfectants of Staphylococcus aureus isolated from fishery products. Food Control 39(Supplement C):8–16.  https://doi.org/10.1016/j.foodcont.2013.09.029
  399. 399.
    Vijayakumar R, Kannan VV, Sandle T, Manoharan C (2012) In vitro antifungal efficacy of Biguanides and quaternary Ammonium Compounds against Cleanroom Fungal Isolates. PDA J Pharm Sci Technol 66(3):236–242.  https://doi.org/10.5731/pdajpst.2012.00866CrossRefPubMedGoogle Scholar
  400. 400.
    Wagnild JP, McDonald P, Craig WA, Johnson C, Hanley M, Uman SJ, Ramgopal V, Beirne GJ (1977) Pseudomonas aeruginosa bacteremia in a dialysis unit. 11. Relationship to reuse of coils. Am J Med 62(5):672–676CrossRefPubMedGoogle Scholar
  401. 401.
    Wand ME, Baker KS, Benthall G, McGregor H, McCowen JW, Deheer-Graham A, Sutton JM (2015) Characterization of pre-antibiotic era Klebsiella pneumoniae isolates with respect to antibiotic/disinfectant susceptibility and virulence in Galleria mellonella. Antimicrob Agents Chemother 59(7):3966–3972.  https://doi.org/10.1128/aac.05009-14CrossRefPubMedPubMedCentralGoogle Scholar
  402. 402.
    Wang C, Cai P, Zhan Q, Mi Z, Huang Z, Chen G (2008) Distribution of antiseptic-resistance genes qacA/B in clinical isolates of meticillin-resistant Staphylococcus aureus in China. J Hosp Infect 69(4):393–394.  https://doi.org/10.1016/j.jhin.2008.05.009CrossRefPubMedGoogle Scholar
  403. 403.
    Wang JT, Sheng WH, Wang JL, Chen D, Chen ML, Chen YC, Chang SC (2008) Longitudinal analysis of chlorhexidine susceptibilities of nosocomial methicillin-resistant Staphylococcus aureus isolates at a teaching hospital in Taiwan. J Antimicrob Chemother 62(3):514–517.  https://doi.org/10.1093/jac/dkn208CrossRefPubMedGoogle Scholar
  404. 404.
    Warren DK, Prager M, Munigala S, Wallace MA, Kennedy CR, Bommarito KM, Mazuski JE, Burnham CA (2016) Prevalence of qacA/B Genes and Mupirocin Resistance Among Methicillin-Resistant Staphylococcus aureus (MRSA) Isolates in the Setting of Chlorhexidine Bathing Without Mupirocin. Infect Control Hosp Epidemiol 37(5):590–597.  https://doi.org/10.1017/ice.2016.1CrossRefPubMedPubMedCentralGoogle Scholar
  405. 405.
    Wassenaar TM, Cabal A (2017) The mobile dso-gene-sso element in rolling-circle plasmids of staphylococci reflects the evolutionary history of its resistance gene. Lett Appl Microbiol 65(3):192–198.  https://doi.org/10.1111/lam.12767CrossRefPubMedGoogle Scholar
  406. 406.
    Wassenaar TM, Ussery D, Nielsen LN, Ingmer H (2015) Review and phylogenetic analysis of qac genes that reduce susceptibility to quaternary ammonium compounds in Staphylococcus species. Eur J Microbiol Immunol 5(1):44–61.  https://doi.org/10.1556/eujmi-d-14-00038CrossRefGoogle Scholar
  407. 407.
    Wassenaar TM, Ussery DW, Ingmer H (2016) The qacC Gene Has Recently Spread between Rolling Circle Plasmids of Staphylococcus, Indicative of a Novel Gene Transfer Mechanism. Front Microbiol 7:1528.  https://doi.org/10.3389/fmicb.2016.01528CrossRefPubMedPubMedCentralGoogle Scholar
  408. 408.
    Weigel LM, Clewell DB, Gill SR, Clark NC, McDougal LK, Flannagan SE, Kolonay JF, Shetty J, Killgore GE, Tenover FC (2003) Genetic analysis of a high-level vancomycin-resistant isolate of Staphylococcus aureus. Science (New York, NY) 302(5650):1569–1571.  https://doi.org/10.1126/science.1090956CrossRefGoogle Scholar
  409. 409.
    Wendlandt S, Kadlec K, Fessler AT, Mevius D, van Essen-Zandbergen A, Hengeveld PD, Bosch T, Schouls L, Schwarz S, van Duijkeren E (2013) Transmission of methicillin-resistant Staphylococcus aureus isolates on broiler farms. Vet Microbiol 167(3–4):632–637.  https://doi.org/10.1016/j.vetmic.2013.09.019CrossRefPubMedGoogle Scholar
  410. 410.
    Wessels S, Ingmer H (2013) Modes of action of three disinfectant active substances: a review. Regul Toxicol Pharmacol: RTP 67(3):456–467.  https://doi.org/10.1016/j.yrtph.2013.09.006CrossRefPubMedGoogle Scholar
  411. 411.
    Wong HS, Townsend KM, Fenwick SG, Trengove RD, O’Handley RM (2010) Comparative susceptibility of planktonic and 3-day-old Salmonella Typhimurium biofilms to disinfectants. J Appl Microbiol 108(6):2222–2228.  https://doi.org/10.1111/j.1365-2672.2009.04630.xCrossRefPubMedGoogle Scholar
  412. 412.
    Wong TZ, Zhang M, O’Donoghue M, Boost M (2013) Presence of antiseptic resistance genes in porcine methicillin-resistant Staphylococcus aureus. Vet Microbiol 162(2–4):977–979.  https://doi.org/10.1016/j.vetmic.2012.10.017CrossRefPubMedGoogle Scholar
  413. 413.
    Wright ES, Mundy RA (1961) Studies on disinfection of clinical thermometers. II. Oral thermometers from a tuberculosis sanatorium. Appl Microbiol 9:508–510PubMedPubMedCentralGoogle Scholar
  414. 414.
    Xu D, Li Y, Zahid MS, Yamasaki S, Shi L, Li JR, Yan H (2014) Benzalkonium chloride and heavy-metal tolerance in Listeria monocytogenes from retail foods. Int J Food Microbiol 190:24–30.  https://doi.org/10.1016/j.ijfoodmicro.2014.08.017CrossRefPubMedGoogle Scholar
  415. 415.
    Xu D, Nie Q, Wang W, Shi L, Yan H (2016) Characterization of a transferable bcrABC and cadAC genes-harboring plasmid in Listeria monocytogenes strain isolated from food products of animal origin. Int J Food Microbiol 217:117–122.  https://doi.org/10.1016/j.ijfoodmicro.2015.10.021CrossRefPubMedGoogle Scholar
  416. 416.
    Xu Y, He Y, Li X, Gao C, Zhou L, Sun S, Pang G (2013) Antifungal effect of ophthalmic preservatives phenylmercuric nitrate and benzalkonium chloride on ocular pathogenic filamentous fungi. Diagn Microbiol Infect Dis 75(1):64–67.  https://doi.org/10.1016/j.diagmicrobio.2012.09.008CrossRefPubMedGoogle Scholar
  417. 417.
    Yamamoto M, Takami T, Matsumura R, Dorofeev A, Hirata Y, Nagamune H (2016) In vitro evaluation of the biocompatibility of newly synthesized Bis-Quaternary Ammonium Compounds with spacer structures derived from Pentaerythritol or Hydroquinone. Biocontrol Cci 21(4):231–241.  https://doi.org/10.4265/bio.21.231CrossRefGoogle Scholar
  418. 418.
    Yanai R, Yamada N, Ueda K, Tajiri M, Matsumoto T, Kido K, Nakamura S, Saito F, Nishida T (2006) Evaluation of povidone-iodine as a disinfectant solution for contact lenses: antimicrobial activity and cytotoxicity for corneal epithelial cells. Cont Lens Anterior Eye 29(2):85–91.  https://doi.org/10.1016/j.clae.2006.02.006CrossRefPubMedGoogle Scholar
  419. 419.
    Yano T, Kubota H, Hanai J, Hitomi J, Tokuda H (2013) Stress tolerance of Methylobacterium biofilms in bathrooms. Microbes Environ 28(1):87–95PubMedGoogle Scholar
  420. 420.
    Ye JZ, Yu X, Li XS, Sun Y, Li MM, Zhang W, Fan H, Cao JM, Zhou TL (2014) [Antimicrobial resistance characteristics of and disinfectant-resistant gene distribution in Staphylococcus aureus isolates from male urogenital tract infection]. Zhonghua nan ke xue = Nat J Androl 20(7):630–636Google Scholar
  421. 421.
    Yoshimatsu T, Hiyama K (2007) Mechanism of the action of didecyldimethylammonium chloride (DDAC) against Escherichia coil and morphological changes of the cells. Biocontrol Sci 12(3):93–99CrossRefPubMedGoogle Scholar
  422. 422.
    Yousfi K, Touati A, Lefebvre B, Fournier E, Cote JC, Soualhine H, Walker M, Bougdour D, Tremblay C, Bekal S (2017) A novel plasmid, pSx1, harboring a new Tn1696 derivative from extensively drug-resistant Shewanella xiamenensis encoding OXA-416. Microb Drug Res (Larchmont, NY) 23(4):429–436.  https://doi.org/10.1089/mdr.2016.0025
  423. 423.
    Zhang H, Zhou Y, Bao H, Zhang L, Wang R, Zhou X (2015) Plasmid-borne cadmium resistant determinants are associated with the susceptibility of Listeria monocytogenes to bacteriophage. Microbiol res 172(Supplement C):1–6.  https://doi.org/10.1016/j.micres.2015.01.008
  424. 424.
    Zhang M, O’Donoghue MM, Ito T, Hiramatsu K, Boost MV (2011) Prevalence of antiseptic-resistance genes in Staphylococcus aureus and coagulase-negative staphylococci colonising nurses and the general population in Hong Kong. J Hosp Infect 78(2):113–117.  https://doi.org/10.1016/j.jhin.2011.02.018CrossRefPubMedGoogle Scholar
  425. 425.
    Zhang M, O’Dononghue M, Boost MV (2012) Characterization of staphylococci contaminating automated teller machines in Hong Kong. Epidemiol Infect 140(8):1366–1371.  https://doi.org/10.1017/s095026881100207xCrossRefPubMedGoogle Scholar
  426. 426.
    Zheng R, Wang M, He B, Li X, Cao H, Liang H, Qing Z, Tang A (2009) [Identification of active efflux system gene qacA/B in methicillin-resistant Staphylococcus aureus and its significance]. Zhong nan da xue xue bao Yi xue ban = J Central S Univ Med sci 34(6):537–542Google Scholar
  427. 427.
    Zmantar T, Ben Slama R, Fdhila K, Kouidhi B, Bakhrouf A, Chaieb K (2017) Modulation of drug resistance and biofilm formation of Staphylococcus aureus isolated from the oral cavity of Tunisian children. Braz J Infect Dis: Official Publ Braz Soc Infect Dis 21(1):27–34.  https://doi.org/10.1016/j.bjid.2016.10.009CrossRefGoogle Scholar
  428. 428.
    Zmantar T, Kouidhi B, Miladi H, Bakhrouf A (2011) Detection of macrolide and disinfectant resistance genes in clinical Staphylococcus aureus and coagulase-negative staphylococci. BMC Res Notes 4:453.  https://doi.org/10.1186/1756-0500-4-453CrossRefPubMedPubMedCentralGoogle Scholar
  429. 429.
    Zou L, Meng J, McDermott PF, Wang F, Yang Q, Cao G, Hoffmann M, Zhao S (2014) Presence of disinfectant resistance genes in Escherichia coli isolated from retail meats in the USA. J Antimicrob Chemother 69(10):2644–2649.  https://doi.org/10.1093/jac/dku197CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Institute of Hygiene and Environmental MedicineUniversity of GreifswaldGreifswaldGermany

Personalised recommendations