Skip to main content

Data Quality in Clinical Research

  • Chapter
  • First Online:
Clinical Research Informatics

Abstract

Every scientist knows that research results are only as good as the data upon which the conclusions were formed. However, most scientists receive no training in methods for achieving, assessing, or controlling the quality of research data—topics central to clinical research informatics. This chapter covers the basics of acquiring or collecting and processing data for research given the available data sources, systems, and people. Data quality dimensions specific to the clinical research context are used, and a framework for data quality practice and planning is developed. Available research is summarized, providing estimates of data quality capability for common clinical research data collection and processing methods. This chapter provides researchers, informaticists, and clinical research data managers basic tools to assure, assess, and control the quality of data for research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Davis JR, Nolan VP, Woodcock J, Estabrook EW, editors. Assuring data quality and validity in clinical trials for regulatory decision making, Institute of Medicine Workshop report. Roundtable on research and development of drugs, biologics, and medical devices. Washington, DC: National Academy Press; 1999. http://books.nap.edu/openbook.php?record_id=9623&page=R1. Accessed 6 July 2009.

    Google Scholar 

  2. Deming WE, Geoffrey L. On sample inspection in the processing of census returns. J Am Stat Assoc. 1941;36:351–60.

    Article  Google Scholar 

  3. Deming WE, Tepping BJ, Geoffrey L. Errors in card punching. J Am Stat Assoc. 1942;37:525–36.

    Article  Google Scholar 

  4. Donabedian A. A guide to medical care administration, Medical care appraisal – quality and utilization, vol. 2. New York: American Public Health Association; 1969. p. 176.

    Google Scholar 

  5. Arndt S, Tyrell G, Woolson RF, Flaum M, Andreasen NC. Effects of errors in a multicenter medical study: preventing misinterpreted data. J Psychiatr Res. 1994;28:447–59.

    Article  CAS  PubMed  Google Scholar 

  6. Lee YW, Pipino LL, Wang RY, Funk JD. Journey to data quality. Reprint ed. Cambridge, MA: MIT Press; 2009.

    Google Scholar 

  7. Weber GM, Mandl KD, Kohane IS. Finding the missing link for big biomedical data. JAMA. 2014;311(24):2479–80.

    CAS  PubMed  Google Scholar 

  8. Steinhubl SR, Muse ED, Topol EJ. The emerging field of mobile health. Sci Transl Med. 2015;7(283):283rv3.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Friedman CP. A “fundamental theorem” of biomedical informatics. J Am Med Inform Assoc. 2009;16(2):169–70. https://doi.org/10.1197/jamia.M3092. Epub 2008 Dec 11.

    Article  PubMed  PubMed Central  Google Scholar 

  10. United States Department of Health and Human Services (HHS), E6(R2) Good Clinical Practice: Integrated Addendum to ICH E6(R1) Guidance for Industry, OMB Control No. 0910-0843 March 2018. Available from:. https://www.fda.gov/downloads/Drugs/Guidances/UCM464506.pdf.

  11. International Organization for Standardization (ISO). Data quality – Part 2: Vocabulary ISO 8000-2:2017.

    Google Scholar 

  12. Reprinted with permission from Data Gone Awry, DataBasics, vol 13, no 3, Fall. 2007. Society for Clinical Data Management. Available from http://www.scdm.org.

  13. Nagurney JT, Brown DF, Sane S, Weiner JB, Wang AC, Chang Y. The accuracy and completeness of data collected by prospective and retrospective methods. Acad Emerg Med. 2005;12:884–95.

    Article  PubMed  Google Scholar 

  14. Feinstein AR, Pritchett JA, Schimpff CR. The epidemiology of cancer therapy. 3. The management of imperfect data. Arch Intern Med. 1969;123:448–61.

    Article  CAS  PubMed  Google Scholar 

  15. Reason J. Human error. Cambridge, UK: Cambridge University Press; 1990.

    Book  Google Scholar 

  16. Nahm M, Dziem G, Fendt K, Freeman L, Masi J, Ponce Z. Data quality survey results. Data Basics. 2004;10:7.

    Google Scholar 

  17. Schuyl ML, Engel T. A review of the source document verification process in clinical trials. Drug Info J. 1999;33:789–97.

    Article  Google Scholar 

  18. Batini C, Catarci T, Scannapieco M. A survey of data quality issues in cooperative information systems. In: 23rd international conference on conceptual modeling (ER 2004), Shanghai; 2004.

    Google Scholar 

  19. Tayi GK, Ballou DP. Examining data quality. Commun ACM. 1998;41:4.

    Article  Google Scholar 

  20. Redman TC. Data quality for the information age. Boston: Artech House; 1996.

    Google Scholar 

  21. Wand Y, Wang R. Anchoring data quality dimensions in ontological foundations. Commun ACM. 1996;39:10.

    Article  Google Scholar 

  22. Wang R, Strong D. Beyond accuracy: what data quality means to data consumers. J Manag Inf Syst. 1996;12:30.

    Google Scholar 

  23. Batini C, Scannapieco M. Data quality concepts, methodologies and techniques. Berlin: Springer; 2006.

    Google Scholar 

  24. Wyatt J. Acquisition and use of clinical data for audit and research. J Eval Clin Pract. 1995;1:15–27.

    Article  CAS  PubMed  Google Scholar 

  25. U.S. Food and Drug Administration. In: Services DoHaH, editor. Guidance for industry. Computerized systems used in clinical trials. Rockville: U.S. Food and Drug Administration; 2007.

    Google Scholar 

  26. Arts DG, De Keizer NF, Scheffer GJ. Defining and improving data quality in medical registries: a literature review, case study, and generic framework. J Am Med Inform Assoc. 2002;9:600–11.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Weiskopf NG, Weng C. Methods and dimensions of electronic health record data quality assessment: enabling reuse for clinical research. J Am Med Inform Assoc. 2013;20:144–51. https://doi.org/10.1136/amiajnl-2011-000681.

    Article  PubMed  PubMed Central  Google Scholar 

  28. GCP Inspectors Working Group European Medicines Agency (EMA). Reflection paper on expectations for electronic source data and data transcribed to electronic data collection tools in clinical trials. EMA/INS/GCP 454280/2010, 9 June 2010.

    Google Scholar 

  29. Kahn MG, Callahan TJ, Barnard J, Bauck AE, Brown J, Davidson BN, Estiri H, Goerg C, Holve E, Johnson SG, Liaw S-T, Hamilton-Lopez M, Meeker D, Ong TC, Ryan P, Shang N, Weiskopf NG, Weng C, Zozus MN, Schilling L. A harmonized data quality assessment terminology and framework for the secondary use of electronic health record data. eGEMs (Generating Evid Methods Improve Patient Outcomes) [Internet]. 2016;4(1):1244. Sep 11 [cited 2016 Sep 12]. Available from: http://repository.edm-forum.org/egems/vol4/iss1/18.

    Google Scholar 

  30. Callahan TJ, Bauck AE, Bertoch D, Brown J, Khare R, Ryan PB, Staab J, Zozus MN, Kahn MG. A comparison of data quality assessment checks in six data sharing networks. eGEMs (Generating Evid Methods Improve Patient Outcomes) [Internet]. 2017;5(1):8. Jun 12 [cited 2017 Jun 15]. Available from: http://repository.edm-forum.org/egems/vol5/iss1/8.

    Article  Google Scholar 

  31. Estiri H, Stephens K. DQe-v: a database-agnostic framework for exploring variability in electronic health record data across time and site location. eGEMs (Generating Evid Methods Improve Patient Outcomes) [Internet]. 2017;5(1):3. May 10 [cited 2017 Jul 30]. Available from: http://repository.edm-forum.org/egems/vol5/iss1/3.

    Article  Google Scholar 

  32. Kahn MG, Brown JS, Chun AT, Davidson BN, Meeker D, Ryan PB, Schilling LM, Weiskopf NG, Williams AE, Zozus MN. Transparent reporting of data quality in distributed data networks. eGEMs (Generating Evid Methods Improve Patient Outcomes). 2015;3(1):7. https://doi.org/10.13063/2327-9214.1052. Available at: http://repository.academyhealth.org/egems/vol3/iss1/7.

    Article  Google Scholar 

  33. Zozus MN, Lazarov A, Smith L, Breen T, Krikorian S, Zbyszewski P, Knoll K, Jendrasek D, Perrin D, Zambas D, Williams T, Pieper C. Analysis of professional competencies for the clinical research data management profession: implications for training and professional certification. JAMIA. 2017;24:737–45.

    PubMed  PubMed Central  Google Scholar 

  34. (CDISC) CDISC. The protocol representation model version 1.0 draft for public comment: CDISC; 2009. p. 96. Available from http://www.cdisc.org.

  35. Jacobs M, Studer L. Forms design II: the course for paper and electronic forms. Cleveland: Ameritype & Art; 1991.

    Google Scholar 

  36. Eisenstein EL, Lemons PW, Tardiff BE, Schulman KA, Jolly MK, Califf RM. Reducing the costs of phase III cardiovascular clinical trials. Am Heart J. 2005;9:482–8.

    Article  Google Scholar 

  37. Eisenstein EL, Collins R, Cracknell BS, et al. Sensible approaches for reducing clinical trial costs. Clin Trials. 2008;5:75–84.

    Article  PubMed  Google Scholar 

  38. Galešic M. Effects of questionnaire length on response rates: review of findings and guidelines for future research. 2002. http://mrav.ffzg.hr/mirta/Galesic_handout_GOR2002.pdf. Accessed 29 Dec 2009.

  39. Roszkowski MJ, Bean AG. Believe it or not! Longer questionnaires have lower response rates. J Bus Psychol. 1990;4:495–509.

    Article  Google Scholar 

  40. Edwards P, Roberts I, Clarke M, DiGuiseppi C, Pratap S, Wentz R, Kwan I. Increasing response rates to postal questionnaires systematic review. Br Med J. 2002;324:1183.

    Article  Google Scholar 

  41. Wickens CD, Hollands JG, Parasuraman R. Engineering psychology and human performance. 4th ed. New York: Routledge; 2016.

    Google Scholar 

  42. Stevens SS. On the theory of scales of measurement. Science. 1946;103:677–80.

    Article  PubMed  Google Scholar 

  43. Allison JJ, Wall TC, Spettell CM, et al. The art and science of chart review. Jt Comm J Qual Improv. 2000;26:115–36.

    CAS  PubMed  Google Scholar 

  44. Banks NJ. Designing medical record abstraction forms. Int J Qual Health Care. 1998;10:163–7.

    Article  CAS  PubMed  Google Scholar 

  45. Engel L, Henderson C, Fergenbaum J, Interrater A. Reliability of abstracting medical-related information medical record review conduction model for improving. Eval Health Prof. 2009;32:281.

    Article  PubMed  Google Scholar 

  46. Cunningham R, Sarfati D, Hill S, Kenwright D. An audit of colon cancer data on the New Zealand cancer registry. N Z Med J. 2008;121(1279):46–56.

    PubMed  Google Scholar 

  47. Fritz A. The SEER program’s commitment to data quality. J Registry Manag. 2001;28(1):35–40.

    Google Scholar 

  48. German RR, Wike JM, Wolf HJ, et al. Quality of cancer registry data: findings from CDC-NPCR’s breast, colon, and prostate cancer data quality and patterns of care study. J Registry Manag. 2008;35(2):67–74.

    Google Scholar 

  49. Herrmann N, Cayten CG, Senior J, Staroscik R, Walsh S, Woll M. Interobserver and intraobserver reliability in the collection of emergency medical services data. Health Serv Res. 1980;15(2):127–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Pan L, Fergusson D, Schweitzer I, Hebert PC. Ensuring high accuracy of data abstracted from patient charts: the use of a standardized medical record as a training tool. J Clin Epidemiol. 2005;58(9):918–23.

    Article  PubMed  Google Scholar 

  51. Reeves MJ, Mullard AJ, Wehner S. Inter-rater reliability of data elements from a prototype of the Paul Coverdell National Acute Stroke Registry. BMC Neurol. 2008;8:19.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Scherer R, Zhu Q, Langenberg P, Feldon S, Kelman S, Dickersin K. Comparison of information obtained by operative note abstraction with that recorded on a standardized data collection form. Surgery. 2003;133(3):324–30.

    Article  PubMed  Google Scholar 

  53. Stange KC, Zyzanski SJ, Smith TF, et al. How valid are medical records and patient questionnaires for physician profiling and health services research? A comparison with direct observation of patients visits. Med Care. 1998;36(6):851–67.

    Article  CAS  PubMed  Google Scholar 

  54. Thoburn KK, German RR, Lewis M, Nichols PJ, Ahmed F, Jackson-Thompson J. Case completeness and data accuracy in the centers for disease control and prevention’s national program of cancer registries. Cancer. 2007;109(8):1607–16.

    Article  PubMed  Google Scholar 

  55. To T, Estrabillo E, Wang C, Cicutto L. Examining intra-rater and inter-rater response agreement: a medical chart abstraction study of a community-based asthma care program. BMC Med Res Methodol. 2008;8:29.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Yawn BP, Wollan P. Interrater reliability: completing the methods description in medical records review studies. Am J Epidemiol. 2005;161(10):974–7.

    Article  PubMed  Google Scholar 

  57. La France BH, Heisel AD, Beatty MJ. A test of the cognitive load hypothesis: investigating the impact of number of nonverbal cues coded and length of coding session on observer accuracy. Commun Rep. 2007;20:11–23.

    Article  Google Scholar 

  58. Zozus MN. The data book: collection and management of research data. Taylor & Francis/CRC Press Catalog #: K26788, ISBN: 978-1-4987-4224-5.

    Google Scholar 

  59. Helms R. Redundancy: an important data forms/design data collection principle. In: Proceedings Stat computing section, Alexandria; 1981. p. 233–7.

    Google Scholar 

  60. Helms R. Data quality issues in electronic data capture. Drug Inf J. 2001;35:827–37.

    Article  Google Scholar 

  61. U.S. Food and Drug Administration regulations. Title 21 CFR Part 58. 2011. Available from http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm?cfrpart=58. Accessed Aug 2011.

  62. Nahm ML, Pieper CF, Cunningham MM. Quantifying data quality for clinical trials using electronic data capture. PLoS One. 2008;3(8):e3049.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Winchell T. The mystery of source documentation. SOCRA Source 62. 2009. Available from http://www.socra.org/.

  64. Nahm M. Data accuracy in medical record abstraction. Doctoral Dissertation, University of Texas at Houston, School of Biomedical Informatics, Houston, May 6, 2010.

    Google Scholar 

  65. Zozus MN, Pieper C, Johnson CM, Johnson TR, Franklin A, Smith J, et al. Factors affecting accuracy of data abstracted from medical records. PLoS One. 2015;10(10):e0138649.

    Article  PubMed  PubMed Central  Google Scholar 

  66. SCDM. Good clinical data management practices. http://www.scdm.org. Society for Clinical Data Management; 2010. Available from http://www.scdm.org.

  67. Rostami R, Nahm M, Pieper CF. What can we learn from a decade of database audits? The Duke Clinical Research Institute experience, 1997–2006. Clin Trials. 2009;6(2):141–50.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Stellman SD. The case of the missing eights an object lesson in data quality assurance. Am J Epidemiol. 1989;129(4):857–60. https://doi.org/10.1093/oxfordjournals.aje.a115200.

    Article  CAS  PubMed  Google Scholar 

  69. Hogan WR1, Wagner MM. Accuracy of data in computer-based patient records. J Am Med Inform Assoc. 1997;4(5):342–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Thiru K, Hassey A, Sullivan F. Systematic review of scope and quality of electronic patient record data in primary care. BMJ. 2003;326(7398):1070. Review.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Chan KS, Fowles JB, Weiner JP. Review: electronic health records and the reliability and validity of quality measures: a review of the literature. Med Care Res Rev. 2010;67(5):503–27. https://doi.org/10.1177/1077558709359007.

    Article  PubMed  Google Scholar 

  72. Observational Health Data Sciences and Informatics. OHDSI Observational Medical Outcomes Partnership (OMOP) Common Data Model. https://www.ohdsi.org/. Accessed 29 May 2018.

  73. The National Patient-Centered Clinical Research Network (PCORnet). Common data model v3.0. https://pcornetcommons.org/resource_item/pcornet-common-data-model-cdm-specification-version-3-0/. Accessed 1 Feb 2016.

  74. Kahn MG, Raebel MA, Glanz JM, Riedlinger K, Steiner JF. A pragmatic framework for single-site and multisite data quality assessment in electronic health record-based clinical research. Med Care. 2012;50(suppl):S21–9. https://doi.org/10.1097/MLR.0b013e318257dd67.

    Article  PubMed  Google Scholar 

  75. Weiskopf NG, Hripcsak G, Swaminathan S, Weng C. Defining and measuring completeness of electronic health records for secondary use. J Biomed Inform. 2013;46:830–6. https://doi.org/10.1016/j.jbi.2013.06.010.

    Article  PubMed  Google Scholar 

  76. Svolba G, Bauer P. Statistical quality control in clinical trials. Control Clin Trials. 1999;20(6):519–30.

    Article  CAS  PubMed  Google Scholar 

  77. Chilappagari S, Kulkarni A, Bolick-Aldrich S, Huang Y, Aldrich TE. A statistical process control method to monitor completeness of central cancer registry reporting data. J Registry Manag. 2002;29(4):121–7.

    Google Scholar 

  78. Chiu D, Guillaud M, Cox D, Follen M, MacAulay C. Quality assurance system using statistical process control: an implementation for image cytometry. Cell Oncol. 2004;26(3):101–17.

    PubMed  PubMed Central  Google Scholar 

  79. McNees P, Dow KH, Loerzel VW. Application of the CuSum technique to evaluate changes in recruitment strategies. Nurs Res. 2005;54(6):399–405.

    Article  PubMed  Google Scholar 

  80. Baigent C, Harrell FE, Buyse M, Emberson JR, Altman DG. Ensuring trial validity by data quality assurance and diversification of monitoring methods. Clin Trials. 2008;5(1):49–55.

    Article  PubMed  Google Scholar 

  81. Matheny ME, Morrow DA, Ohno-Machado L, Cannon CP, Sabatine MS, Resnic FS. Validation of an automated safety surveillance system with prospective, randomized trial data. Med Decis Mak. 2009;29(2):247–56.

    Article  Google Scholar 

  82. McGilvray D. Executing data quality projects: ten steps to quality data and trusted information. 1st ed. Amsterdam: Morgan Kaufmann; 2008. 352 p.

    Google Scholar 

  83. Ladley J. Data governance: how to design, deploy and sustain an effective data governance program. 1st ed. Waltham: Morgan Kaufmann; 2012. 264 p.

    Google Scholar 

  84. Loshin D. The practitioner’s guide to data quality improvement. 1st ed. Burlington: Morgan Kaufmann; 2010. 432 p.

    Google Scholar 

  85. Baskarada S. IQM-CMM: information quality management capability maturity model. Germany: Vieweg and Teubner; 2010.

    Google Scholar 

  86. Capability Maturity Model Integration (CMMITM) Institute, Data Management maturity model, CMMI Institute 2014.

    Google Scholar 

  87. Stanford University. Stanford data governance maturity model. Accessed 12 May 2018. Available from http://web.stanford.edu/dept/pres-provost/irds/dg/files/StanfordDataGovernanceMaturityModel.pdf.

  88. Williams M, Bagwell J, Zozus M. Data management plans, the missing perspective. J Biomed Inform. 2017;71:130–42.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Freedman LS, Schatzkin A, Wax Y. The impact of dietary measurement error on planning sample size required in a cohort study. Am J Epidemiol. 1990;132:1185–95.

    Article  CAS  PubMed  Google Scholar 

  90. Perkins DO, Wyatt RJ, Bartko JJ. Penny-wise and pound-foolish: the impact of measurement error on sample size requirements in clinical trials. Biol Psychiatry. 2007;47:762–6.

    Article  Google Scholar 

  91. Mullooly JP. The effects of data entry error: an analysis of partial verification. Comput Biomed Res. 1990;23:259–67.

    Article  CAS  PubMed  Google Scholar 

  92. Liu K. Measurement error and its impact on partial correlation and multiple linear regression analyses. Am J Epidemiol. 1988;127:864–74.

    Article  CAS  PubMed  Google Scholar 

  93. Stepnowsky CJ Jr, Berry C, Dimsdale JE. The effect of measurement unreliability on sleep and respiratory variables. Sleep. 2004;27:990–5.

    Article  PubMed  Google Scholar 

  94. Myer L, Morroni C, Link BG. Impact of measurement error in the study of sexually transmitted infections. Sex Transm Infect. 2004;80(318–323):328.

    Google Scholar 

  95. Williams SC, Watt A, Schmaltz SP, Koss RG, Loeb JM. Assessing the reliability of standardized performance indicators. Int J Qual Health Care. 2006;18:246–55.

    Article  PubMed  Google Scholar 

  96. Watt A, Williams S, Lee K, Robertson J, Koss RG, Loeb JM. Keen eye on core measures. Joint commission data quality study offers insights into data collection, abstracting processes. J AHIMA. 2003;74:20–5; quiz 27–8.

    PubMed  Google Scholar 

  97. US Government Accountability Office. Hospital quality data: CMS needs more rigorous methods to ensure reliability of publicly released data. In: Office UGA, editor. Washington, DC; 2006. www.gao.gov/new.items/d0654.pdf.

  98. Braun BI, Kritchevsky SB, Kusek L, et al. Comparing bloodstream infection rates: the effect of indicator specifications in the evaluation of processes and indicators in infection control (EPIC) study. Infect Control Hosp Epidemiol. 2006;27:14–22.

    Article  PubMed  Google Scholar 

  99. Jacobs R, Goddard M, Smith PC. How robust are hospital ranks based on composite performance measures? Med Care. 2005;43:1177–84.

    Article  PubMed  Google Scholar 

  100. Pagel C, Gallivan S. Exploring consequences on mortality estimates of errors in clinical databases. IMA J Manag Math. 2008;20(4):385–93. http://imaman.oxfordjournals.org/content/20/4/385.abstract.

    Article  Google Scholar 

  101. Goldhill DR, Sumner A. APACHE II, data accuracy and outcome prediction. Anaesthesia. 1998;53:937–43.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meredith Nahm Zozus PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zozus, M.N., Kahn, M.G., Weiskopf, N.G. (2019). Data Quality in Clinical Research. In: Richesson, R., Andrews, J. (eds) Clinical Research Informatics. Health Informatics. Springer, Cham. https://doi.org/10.1007/978-3-319-98779-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98779-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98778-1

  • Online ISBN: 978-3-319-98779-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics