Skip to main content

What Processes Underlie the Relation Between Spatial Skill and Mathematics?

  • Chapter
  • First Online:
Visualizing Mathematics

Part of the book series: Research in Mathematics Education ((RME))

Abstract

In this chapter, we review approaches to modeling a connection between spatial and mathematical thinking across development. We critically evaluate the strengths and weaknesses of factor analyses, meta-analyses, and experimental literatures. We examine those studies that set out to describe the nature and number of spatial and mathematical abilities and specific connections among these abilities, especially those that include children as participants. We also find evidence of strong spatial-mathematical connections and transfer from spatial interventions to mathematical understanding. Finally, we map out the kinds of studies that could enhance our understanding of the mechanism by which spatial and mathematical processing are connected and the principles by which mathematical outcomes could be enhanced through spatial training in educational settings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aiken, L. R., Jr. (1970). Attitudes toward mathematics. Review of Educational Research, 40(4), 551–596.

    Google Scholar 

  • Armstrong, J. S., & Soelberg, P. (1968). On the interpretation of factor analysis. Psychological Bulletin, 70(5), 361.

    Google Scholar 

  • Ashcraft, M. H. (1987). Children’s knowledge of simple arithmetic: A developmental model and simulation. In Formal methods in developmental psychology (pp. 302–338). New York: Springer.

    Google Scholar 

  • Atit, K., Shipley, T. F., & Tikoff, B. (2013). Twisting space: Are rigid and non-rigid mental transformations separate spatial skills? Cognitive Processing, 14(2), 163–173.

    Article  Google Scholar 

  • Baddeley, A. D., & Hitch, G. (1974). Working memory. Psychology of Learning and Motivation, 8, 47–89.

    Google Scholar 

  • Baroody, A. J. (2003). The development of adaptive expertise and flexibility: The integration of conceptual and procedural knowledge. Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Barth, H., Beckmann, L., & Spelke, E. S. (2008). Nonsymbolic, approximate arithmetic in children: Abstract addition prior to instruction. Developmental Psychology, 44(5), 1466.

    Google Scholar 

  • Battista, M. T. (1990). Spatial visualization and gender differences in high school geometry. Journal for Research in Mathematics Education, 21, 47–60.

    Google Scholar 

  • Beery, K. E., & Beery, N. A. (2004). The Beery-Buktenica developmental test of visual-motor integration: Administration, scoring, and teaching manual (5th ed.). Minneapolis, MN: NCS Pearson.

    Google Scholar 

  • Bethell-Fox, C. E., & Shepard, R. N. (1988). Mental rotation: Effects of stimulus complexity and familiarity. Journal of Experimental Psychology: Human Perception and Performance, 14(1), 12.

    Google Scholar 

  • Bollen, K. A. (1989). A new incremental fit index for general structural equation models. Sociological Methods & Research, 17(3), 303–316.

    Google Scholar 

  • Booth, J. L., & Siegler, R. S. (2006). Developmental and individual differences in pure numerical estimation. Developmental Psychology, 42(1), 189.

    Google Scholar 

  • Boyer, T. W., & Levine, S. C. (2012). Child proportional scaling: Is 1/3= 2/6= 3/9= 4/12? Journal of Experimental Child Psychology, 111(3), 516–533.

    Google Scholar 

  • Broadbent, D. E. (2018). Successive responses to simultaneous stimuli. Quarterly Journal of Experimental Psychology, 8(4), 145–152.

    Google Scholar 

  • Browne, M. W. (2010). An overview of analytic rotation in exploratory factor analysis. Multivariate Behavioral Research, 36(1), 111–150.

    Google Scholar 

  • Bruce, C. D., & Hawes, Z. (2015). The role of 2D and 3D mental rotation in mathematics for young children: What is it? Why does it matter? And what can we do about it? ZDM, 47(3), 331–343.

    Google Scholar 

  • Bull, R., Espy, K. A., & Wiebe, S. A. (2008). Short-term memory, working memory, and executive functioning in preschoolers: Longitudinal predictors of mathematical achievement at age 7 years. Developmental Neuropsychology, 33(3), 205–228.

    Google Scholar 

  • Carriedo, N., Corral, A., Montoro, P. R., Herrero, L., & Rucián, M. (2016). Development of the updating executive function: From 7-year-olds to young adults. Developmental Psychology, 52(4), 666.

    Google Scholar 

  • Carr, M., Steiner, H. H., Kyser, B., & Biddlecomb, B. (2008). A comparison of predictors of early emerging gender differences in mathematics competency. Learning and Individual Differences, 18(1), 61–75.

    Google Scholar 

  • Carroll, J. B. (1993). Human cognitive abilities: A survey of factor-analytic studies. Cambridge University Press.

    Google Scholar 

  • Casey, M. B., Nuttall, R., Pezaris, E., & Benbow, C. P. (1995). The influence of spatial ability on gender differences in mathematics college entrance test scores across diverse samples. Developmental Psychology, 31(4), 697.

    Google Scholar 

  • Casey, M. B., Nuttall, R. L., & Pezaris, E. (2001). Spatial-mechanical reasoning skills versus mathematics self-confidence as mediators of gender differences on mathematics subtests using cross-national gender-based items. Journal for Research in Mathematics Education, 32, 28–57.

    Google Scholar 

  • Casey, B. M., Andrews, N., Schindler, H., Kersh, J. E., Samper, A., & Copley, J. (2008). The development of spatial skills through interventions involving block building activities. Cognition and Instruction, 26(3), 269–309.

    Google Scholar 

  • Chatterjee, A. (2008, August). The neural organization of spatial thought and language. In Seminars in speech and language (Vol. 29, No. 3, pp. 226–238). Thieme Medical Publishers.

    Google Scholar 

  • Cheng, Y. L., & Mix, K. S. (2014). Spatial training improves children’s mathematics ability. Journal of Cognition and Development, 15(1), 2–11.

    Google Scholar 

  • Cheng, Y.-L., Mix, K. S., Reckase, M. D., Levine, S. C., & Freer, D. (under review). The Dimensionality of Visuo- Spatial Working Memory and Arithmetic Computation in Third Grade Students. Cognitive Science.

    Google Scholar 

  • Clark III, H. T. (1988). Cognitive Style and Competence in Mathematics Problem Solving.

    Google Scholar 

  • Cliff, N., & Pennell, R. (1967). The influence of communality, factor strength, and loading size on the sampling characteristics of factor loadings. Psychometrika, 32(3), 309–326.

    Google Scholar 

  • Coleman, R.H. (1960) An analysis of certain components of mathematical ability and an attempt to predict mathematical achievement in a specific situation. Doctoral dissertation, Indiana University, University Microfilms, Ann Arbor, MI (1956), p. 945 No. 17.

    Google Scholar 

  • Common Core State Standards Initiative. (2010). Common Core State Standards for Mathematics (CCSSM). Washington, DC: National Governors Association Center for Best Practices and the Council of Chief State School Officers.

    Google Scholar 

  • Congdon, E. L., Novack, M. A., Brooks, N., Hemani-Lopez, N., O’Keefe, L., & Goldin-Meadow, S. (2017). Better together: Simultaneous presentation of speech and gesture in math instruction supports generalization and retention. Learning and instruction, 50, 65–74.

    Google Scholar 

  • Cooper, L. A., & Shepard, R. N. (1973). Chronometric studies of the rotation of mental images. In Visual information processing (pp. 75–176).

    Google Scholar 

  • Corballis, M. C. (1988). Recognition of disoriented shapes. Psychological Review, 95(1), 115.

    Google Scholar 

  • Davidson, P. M. (1987). Early function concepts: Their development and relation to certain mathematical and logical abilities. Child Development, 58, 1542–1555.

    Google Scholar 

  • Delgado, A. R., & Prieto, G. (2004). Cognitive mediators and sex-related differences in mathematics. Intelligence, 32(1), 25–32.

    Google Scholar 

  • DeLoache, J. S., Uttal, D. H., & Pierroutsakos, S. L. (1998). The development of early symbolization: Educational implications. Learning and Instruction, 8(4), 325–339.

    Google Scholar 

  • Doumas, L. A., Hummel, J. E., & Sandhofer, C. M. (2008). A theory of the discovery and predication of relational concepts. Psychological Review, 115(1), 1.

    Google Scholar 

  • Dulaney, A., Vasilyeva, M., & O'Dwyer, L. (2015). Individual differences in cognitive resources and elementary school mathematics achievement: Examining the roles of storage and attention. Learning and Individual Differences, 37, 55–63.

    Google Scholar 

  • Ecker, U. K., Lewandowsky, S., & Oberauer, K. (2014). Removal of information from working memory: A specific updating process. Journal of Memory and Language, 74, 77–90.

    Google Scholar 

  • Edens, K. M., & Potter, E. F. (2013). An exploratory look at the relationships among math skills, motivational factors and activity choice. Early Childhood Education Journal, 41(3), 235–243.

    Google Scholar 

  • Feigenson, L., Dehaene, S., & Spelke, E. (2004). Core systems of number. Trends in Cognitive Sciences, 8(7), 307–314.

    Google Scholar 

  • Foley, A. E., Vasilyeva, M., & Laski, E. V. (2017). Children’s use of decomposition strategies mediates the visuospatial memory and arithmetic accuracy relation. British Journal of Developmental Psychology, 35(2), 303–309.

    Google Scholar 

  • Frick, A., Möhring, W., & Newcombe, N. S. (2014). Picturing perspectives: Development of perspective-taking abilities in 4-to 8-year-olds. Frontiers in Psychology, 5, 386.

    Google Scholar 

  • Gerbing, D. W., & Hamilton, J. G. (1996). Viability of exploratory factor analysis as a precursor to confirmatory factor analysis. Structural Equation Modeling: A Multidisciplinary Journal, 3(1), 62–72.

    Google Scholar 

  • Ginsburg, H. P., & Baroody, A. J. (2003). Test of early mathematics ability. Austin, TX: PRO-ED.

    Google Scholar 

  • Goldin-Meadow, S., Cook, S. W., & Mitchell, Z. A. (2009). Gesturing gives children new ideas about math. Psychological Science, 20(3), 267–272.

    Google Scholar 

  • Guilford, J. P. (1967). The nature of human intelligence. New York, NY, US: McGraw-Hill.

    Google Scholar 

  • Gunderson, E. A., Ramirez, G., Levine, S. C., & Beilock, S. L. (2012). The role of parents and teachers in the development of gender-related math attitudes. Sex Roles, 66(3–4), 153–166.

    Google Scholar 

  • Hair, J. F., Jr., Anderson, R. E., Tatham, R. L., & Black, W. C. (1995). Multivariate data analysis with readings. Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  • Hawes, Z., Moss, J., Caswell, B., & Poliszczuk, D. (2015). Effects of mental rotation training on children’s spatial and mathematics performance: A randomized controlled study. Trends in Neuroscience and Education, 4(3), 60–68.

    Google Scholar 

  • Hegarty, M., & Kozhevnikov, M. (1999). Types of visual–spatial representations and mathematical problem solving. Journal of Educational Psychology, 91(4), 684.

    Google Scholar 

  • Hegarty, M., Montello, D. R., Richardson, A. E., Ishikawa, T., & Lovelace, K. (2006). Spatial abilities at different scales: Individual differences in aptitude-test performance and spatial-layout learning. Intelligence, 34(2), 151–176.

    Google Scholar 

  • Hegarty, M., & Waller, D. (2004). A dissociation between mental rotation and perspective-taking spatial abilities. Intelligence, 32(2), 175–191.

    Google Scholar 

  • Hegarty, M., & Waller, D. (2005). Individual differences in spatial abilities. In P. Shah & A. Miyake (Eds.), The Cambridge handbook of visuospatial thinking (pp. 121–169). Cambridge: Cambridge University Press.

    Google Scholar 

  • Henson, R. N. (1998). Short-term memory for serial order: The start-end model. Cognitive Psychology, 36(2), 73–137.

    Google Scholar 

  • Hresko, W. P., Schlieve, P. L., Herron, S. R., Swain, C., & Sherbenou, R. J. (2003). Comprehensive mathematical abilities test. Austin, TX: PRO-ED.

    Google Scholar 

  • Huttenlocher, J., Newcombe, N., & Vasilyeva, M. (1999). Spatial scaling in young children. Psychological Science, 10(5), 393–398.

    Google Scholar 

  • Huttenlocher, J., & Presson, C. C. (1973). Mental rotation and the perspective problem. Cognitive Psychology, 4(2), 277–299.

    Google Scholar 

  • Johnson, M. K., Raye, C. L., Mitchell, K. J., Greene, E. J., Cunningham, W. A., & Sanislow, C. A. (2005). Using fMRI to investigate. Cognitive, Affective, & Behavioral Neuroscience, 5(3), 339–361.

    Google Scholar 

  • Kaiser, H. F. (2016). The application of electronic computers to factor analysis. Educational and Psychological Measurement, 20(1), 141–151.

    Google Scholar 

  • Kaminski, J. A., Sloutsky, V. M., & Heckler, A. F. (2009). Concrete instantiations of mathematics: A double-edged sword. Journal for Research in Mathematics Education, 40(2), 90–93.

    Google Scholar 

  • Kaufman, A. S., & Kaufman, N. L. (1983). Kaufman Assessment Battery for Children (K-ABC) administration and scoring manual. Circle Pines, MN: American Guidance Service.

    Google Scholar 

  • Kelley, T. D., Lee, F. J., & Wiley, P. (2000). Developing an ACT-R model of spatial manipulation (ARL Tech. Rep. No. 2179). Aberdeen, MD: Aberdeen Proving Ground.

    Google Scholar 

  • Kline, W. E. (1960). A synthesis of two factor analyses of intermediate algebra. Doctoral dissertation, Princeton University, University Microfilms, Ann Arbor, MI.

    Google Scholar 

  • Kozhevnikov, M., & Hegarty, M. (2001). A dissociation between object manipulation spatial ability and spatial orientation ability. Memory & Cognition, 29(5), 745–756.

    Google Scholar 

  • Kozhevnikov, M., Kozhevnikov, M., Yu, C. J., & Blazhenkova, O. (2013). Creativity, visualization abilities, and visual cognitive style. British Journal of Educational Psychology, 83(2), 196–209.

    Google Scholar 

  • Krakowski, M., Ratliff, K., Gomez, L. M., & Levine, S. (2010, June). Spatial intelligence and the research: Practice challenge. In Proceedings of the 9th International Conference of the Learning Sciences (Vol. 1, pp. 556–563). International Society of the Learning Sciences.

    Google Scholar 

  • Kung, E., & Hamm, J. P. (2010). A model of rotated mirror/normal letter discriminations. Memory & Cognition, 38(2), 206–220.

    Google Scholar 

  • Kyttälä, M., Aunio, P., Lehto, J. E., Van Luit, J., & Hautamäki, J. (2003). Visuospatial working memory and early numeracy. Educational and Child Psychology, 20(3), 65–76.

    Google Scholar 

  • Kyttälä, M., & Lehto, J. E. (2008). Some factors underlying mathematical performance: The role of visuospatial working memory and non-verbal intelligence. European Journal of Psychology of Education, 23(1), 77–94.

    Google Scholar 

  • Landy, D., & Goldstone, R. L. (2010). Proximity and precedence in arithmetic. The Quarterly Journal of Experimental Psychology, 63(10), 1953–1968.

    Google Scholar 

  • Landy, D., Brookes, D., & Smout, R. (2011, January). Modeling abstract numeric relations using concrete notations. In Proceedings of the Annual Meeting of the Cognitive Science Society, (Vol. 33, No. 33).

    Google Scholar 

  • Lendínez, C., Pelegrina, S., & Lechuga, M. T. (2015). Age differences in working memory updating: The role of interference, focus switching and substituting information. Acta Psychologica, 157, 106–113.

    Google Scholar 

  • Levine, S. C., Ratliff, K. R., Huttenlocher, J., & Cannon, J. (2012). Early puzzle play: a predictor of preschoolers’ spatial transformation skill. Developmental Psychology, 48(2), 530.

    Google Scholar 

  • Levine, S. C., Foley, A., Lourenco, S., Ehrlich, S., & Ratliff, K. (2016). Sex differences in spatial cognition: Advancing the conversation. Wiley Interdisciplinary Reviews: Cognitive Science, 7(2), 127–155.

    Google Scholar 

  • Levine, S. C., Goldin-Meadow, S., Carlson, M. T., & Hemani-Lopez, N. (2018). Mental transformation skill in young children: the role of concrete and abstract motor training. Cognitive Science, 42(4), 1207–1228.

    Google Scholar 

  • Libertus, M. E., Feigenson, L., & Halberda, J. (2013). Numerical approximation abilities correlate with and predict informal but not formal mathematics abilities. Journal of Experimental Child Psychology, 116(4), 829–838.

    Google Scholar 

  • Li, Y., & Geary, D. C. (2013). Developmental gains in visuospatial memory predict gains in mathematics achievement. PLoS One, 8(7), e70160.

    Google Scholar 

  • Liben, L. S., & Downs, R. M. (1989). Understanding maps as symbols: The development of map concepts in children. Advances in Child Development and Behavior, 22, 145–201.

    Google Scholar 

  • Linn, M. C., & Petersen, A. C. (1985). Emergence and characterization of sex differences in spatial ability: A meta-analysis. Child Development, 56, 1479–1498.

    Google Scholar 

  • Little, R. J., & Rubin, D. B. (1989). The analysis of social science data with missing values. Sociological Methods & Research, 18(2–3), 292–326.

    Google Scholar 

  • Lohman, D. F. (1988). Spatial abilities as traits, processes, and knowledge. In R. J. Sternberg (Ed.), Advances in the psychology of human intelligence (Vol. 4, pp. 181–248). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Lohman, D. F. (1994). Spatially gifted, verbally inconvenienced. In Talent development (Vol. 2, pp. 251–264).

    Google Scholar 

  • Lovett, A., & Schultheis, H. (2014, January). Modeling spatial abstraction during mental rotation. In Proceedings of the Annual Meeting of the Cognitive Science Society (Vol. 36, No. 36).

    Google Scholar 

  • Lowrie, T., Logan, T., & Ramful, A. (2017). Visuospatial training improves elementary students’ mathematics performance. British Journal of Educational Psychology, 87(2), 170–186.

    Google Scholar 

  • Lyons, I. M., Price, G. R., Vaessen, A., Blomert, L., & Ansari, D. (2014). Numerical predictors of arithmetic success in grades 1–6. Developmental Science, 17(5), 714–726.

    Google Scholar 

  • MacCallum, R. C., Widaman, K. F., Zhang, S., & Hong, S. (1999). Sample size in factor analysis. Psychological Methods, 4, 84–99.

    Google Scholar 

  • Markey, S. M. (2009). The relationship between visual-spatial reasoning ability and math and geometry problem-solving. American International College.

    Google Scholar 

  • Marmor, G. S. (1977). Mental rotation and number conservation: Are they related? Developmental Psychology, 13(4), 320.

    Google Scholar 

  • Matthews, P. G., Lewis, M. R., & Hubbard, E. M. (2016). Individual differences in nonsymbolic ratio processing predict symbolic math performance. Psychological Science, 27(2), 191–202.

    Google Scholar 

  • Maul, A. (2013). Method effects and the meaning of measurement. Frontiers in Psychology, 4, 169.

    Google Scholar 

  • Mazzocco, M. M., Feigenson, L., & Halberda, J. (2011). Preschoolers’ precision of the approximate number system predicts later school mathematics performance. PLoS One, 6(9), e23749.

    Google Scholar 

  • McGee, M. G. (1979). Human spatial abilities: Psychometric studies and environmental, genetic, hormonal, and neurological influences. Psychological Bulletin, 86(5), 889.

    Google Scholar 

  • Michael, W. B., Guilford, J. P., Fruchter, B., & Zimmerman, W. S. (1957). The description of spatial-visualization abilities. Educational and Psychological Measurement, 17(2), 185–199.

    Google Scholar 

  • Miller, D. I., & Halpern, D. F. (2013). Can spatial training improve long-term outcomes for gifted STEM undergraduates? Learning and Individual Differences, 26, 141–152.

    Google Scholar 

  • Miura, I. T., Okamoto, Y., Vlahovic-Stetic, V., Kim, C. C., & Han, J. H. (1999). Language supports for children’s understanding of numerical fractions: Cross-national comparisons. Journal of Experimental Child Psychology, 74(4), 356–365.

    Google Scholar 

  • Mix, K. S. (2010). Spatial tools for mathematical thought. Space and Language, 41–66.

    Google Scholar 

  • Mix, K. S., & Cheng, Y. L. (2011). The relation between space and math: Developmental and educational implications. Advances in Child Development and Behavior, 42, 197–243.

    Google Scholar 

  • Mix, K. S., & Cheng, Y. L. (2012). The relation between space and math: Developmental and educational implications. In Advances in child development and behavior (Vol. 42, pp. 197–243). JAI.

    Google Scholar 

  • Mix, K. S., Levine, S. C., Cheng, Y. L., Young, C., Hambrick, D. Z., Ping, R., & Konstantopoulos, S. (2016). Separate but correlated: The latent structure of space and mathematics across development. Journal of Experimental Psychology: General, 145(9), 1206.

    Google Scholar 

  • Mix, K. S., Levine, S. C., Cheng, Y. L., Young, C. J., Hambrick, D. Z., & Konstantopoulos, S. (2017). The latent structure of spatial skills and mathematics: A replication of the two-factor model. Journal of Cognition and Development, 18(4), 465–492.

    Google Scholar 

  • Mix, K. S., Hambrick, D. Z., Satyam, V. R., Burgoyne, A. P., & Levine, S. C. (2018). The latent structure of spatial skill: A test of the 2× 2 typology. Cognition, 180, 268–278.

    Google Scholar 

  • Mix, K. S., Levine, S. C., Cheng, Y.-L. & Stockton, J. D. (under review). Does Spatial Training Improve Mathematics Performance? A Comparison of Training Type, Age, and Mathematics Outcome. Child Development

    Google Scholar 

  • Miyake, A., Friedman, N. P., Rettinger, D. A., Shah, P., & Hegarty, M. (2001). How are visuospatial working memory, executive functioning, and spatial abilities related? A latent-variable analysis. Journal of Experimental Psychology: General, 130(4), 621.

    Google Scholar 

  • Möhring, W., Newcombe, N. S., & Frick, A. (2015). The relation between spatial thinking and proportional reasoning in preschoolers. Journal of experimental child psychology, 132, 213–220.

    Google Scholar 

  • Mundy, E., & Gilmore, C. K. (2009). Children’s mapping between symbolic and nonsymbolic representations of number. Journal of Experimental Child Psychology, 103(4), 490–502.

    Google Scholar 

  • Nath, S., & Szücs, D. (2014). Construction play and cognitive skills associated with the development of mathematical abilities in 7-year-old children. Learning and Instruction, 32, 73–80.

    Google Scholar 

  • National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. Reston, VA: National Council of Teachers of Mathematics.

    Google Scholar 

  • National Research Council, and Geographical Sciences Committee. (2005). Learning to think spatially. National Academies Press.

    Google Scholar 

  • Nee, D. E., Brown, J. W., Askren, M. K., Berman, M. G., Demiralp, E., Krawitz, A., & Jonides, J. (2013). A meta-analysis of executive components of working memory. Cerebral Cortex, 23(2), 264–282.

    Google Scholar 

  • Neubauer, A. C., Bergner, S., & Schatz, M. (2010). Two-vs. three-dimensional presentation of mental rotation tasks: Sex differences and effects of training on performance and brain activation. Intelligence, 38(5), 529–539.

    Google Scholar 

  • Neuburger, S., Jansen, P., Heil, M., & Quaiser-Pohl, C. (2011). Gender differences in pre-adolescents’ mental-rotation performance: Do they depend on grade and stimulus type? Personality and Individual Differences, 50(8), 1238–1242.

    Google Scholar 

  • Newcombe, N. S. (2010). Picture this: Increasing math and science learning by improving spatial thinking. American Educator, 34(2), 29.

    Google Scholar 

  • Newcombe, N. S., & Shipley, T. F. (2015). Thinking about spatial thinking: New typology, new assessments. In J. S. Gero (Ed.), Studying visual and spatial reasoning for design creativity (pp. 179–192). Amsterdam, The Netherlands: Springer.

    Google Scholar 

  • Overton, W. F., & Reese, H. W. (1973). Models of development: Methodological implications. In J. R. Nesselroade & H. W. Reese (Eds.), Life-span developmental psychology: Methodological issues (pp. 65–86). New York: Academic Press.

    Google Scholar 

  • Paik, J. H., & Mix, K. S. (2003). US and Korean Children’s Comprehension of Fraction Names: A reexamination of cross–national differences. Child Development, 74(1), 144–154.

    Google Scholar 

  • Passolunghi, M. C., & Mammarella, I. C. (2010). Spatial and visual working memory ability in children with difficulties in arithmetic word problem solving. European Journal of Cognitive Psychology, 22(6), 944–963.

    Google Scholar 

  • Peters, M., Laeng, B., Latham, K., Jackson, M., Zaiyouna, R., & Richardson, C. (1995). A redrawn Vandenberg and Kuse mental rotations test-different versions and factors that affect performance. Brain and Cognition, 28(1), 39–58.

    Google Scholar 

  • Preacher, K. J., & MacCallum, R. C. (2002). Exploratory factor analysis in behavior genetics research: Factor recovery with small sample sizes. Behavior Genetics, 32, 153–161.

    Google Scholar 

  • Primi, R., Ferrão, M. E., & Almeida, L. S. (2010). Fluid intelligence as a predictor of learning: A longitudinal multilevel approach applied to math. Learning and Individual Differences, 20(5), 446–451.

    Google Scholar 

  • Provost, A., & Heathcote, A. (2015). Titrating decision processes in the mental rotation task. Psychological Review, 122(4), 735.

    Google Scholar 

  • Raghubar, K. P., Barnes, M. A., & Hecht, S. A. (2010). Working memory and mathematics: A review of developmental, individual difference, and cognitive approaches. Learning and Individual Differences, 20(2), 110–122.

    Google Scholar 

  • Reuhkala, M. (2001). Mathematical skills in ninth-graders: Relationship with visuo-spatial abilities and working memory. Educational Psychology, 21(4), 387–399.

    Google Scholar 

  • Richland, L. E., Stigler, J. W., & Holyoak, K. J. (2012). Teaching the conceptual structure of mathematics. Educational Psychologist, 47(3), 189–203.

    Google Scholar 

  • Rips, L. J., Bloomfield, A., & Asmuth, J. (2008). From numerical concepts to concepts of number. Behavioral and brain sciences, 31(6), 623–642.

    Google Scholar 

  • Rittle-Johnson, B., Siegler, R. S., & Alibali, M. W. (2001). Developing conceptual understanding and procedural skill in mathematics: An iterative process. Journal of Educational Psychology, 93, 346–362. https://doi.org/10.1037//0022-0663.93.2.346

    Article  Google Scholar 

  • Rittle-Johnson, B., Fyfe, E. R., Hofer, K. G., & Farran, D. C. (2016). Early Math Trajectories: Low-Income Children's Mathematics Knowledge From Ages 4 to 11. Child Development, 88(5), 1727–1742.

    Google Scholar 

  • Rousselle, L., & Noël, M. P. (2007). Basic numerical skills in children with mathematics learning disabilities: A comparison of symbolic vs non-symbolic number magnitude processing. Cognition, 102(3), 361–395.

    Google Scholar 

  • Rummel, R. J. (1970). Applied factor Analysis. Evanston, IL: Northwestern University Press.

    Google Scholar 

  • Rusch, C. E. (1957). An analysis of arithmetic achievement in grades four, six, and eight. Doctoral dissertation, University of Wisconsin, University Microfilms, Ann Arbor, MI.

    Google Scholar 

  • Sarnecka, B. W., & Carey, S. (2008). How counting represents number: What children must learn and when they learn it. Cognition, 108(3), 662–674.

    Google Scholar 

  • Searle, J. A., & Hamm, J. P. (2012). Individual differences in the mixture ratio of rotation and nonrotation trials during rotated mirror/normal letter discriminations. Memory & Cognition, 40(4), 594–613.

    Google Scholar 

  • Searle, J. A., & Hamm, J. P. (2017). Mental rotation: An examination of assumptions. Wiley Interdisciplinary Reviews: Cognitive Science, 8(6). https://doi.org/10.1002/wcs.1443

    Google Scholar 

  • Schneider, M., Beeres, K., Coban, L., Merz, S., Susan Schmidt, S., Stricker, J., & De Smedt, B. (2016). Associations of non-symbolic and symbolic numerical magnitude processing with mathematical competence: A meta-analysis. Developmental Science, 20(3).

    Google Scholar 

  • Schoenfeld, A. H. (2014). Mathematical problem solving. Elsevier.

    Google Scholar 

  • Shepard, R. N. (1978). The mental image. American Psychologist, 33(2), 125.

    Google Scholar 

  • Shepard, R. N., & Metzler, J. (1971). Mental rotation of three-dimensional objects. Science, 171(3972), 701–703.

    Google Scholar 

  • Shepard, S., & Metzler, D. (1988). Mental rotation: Effects of dimensionality of objects and type of task. Journal of Experimental Psychology: Human Perception and Performance, 14(1), 3.

    Google Scholar 

  • Shipstead, Z., Harrison, T. L., & Engle, R. W. (2016). Working memory capacity and fluid intelligence maintenance and disengagement. Perspectives on Psychological Science, 11(6), 771–799.

    Google Scholar 

  • Siegler, R. S. (1999). Strategic development. Trends in Cognitive Sciences, 3(11), 430–435.

    Google Scholar 

  • Siegler, R. S., & Opfer, J. E. (2003). The development of numerical estimation: Evidence for multiple representations of numerical quantity. Psychological Science, 14(3), 237–250.

    Article  Google Scholar 

  • Simons, D. J., Boot, W. R., Charness, N., Gathercole, S. E., Chabris, C. F., Hambrick, D. Z., & Stine-Morrow, E. A. (2016). Do “brain-training” programs work? Psychological Science in the Public Interest, 17(3), 103–186.

    Google Scholar 

  • Skemp, R. R. (1961). Reflective intelligence and mathematics. British Journal of Educational Psychology, 31(P1), 45–55.

    Google Scholar 

  • Slusser, E. B., Santiago, R. T., & Barth, H. C. (2013). Developmental change in numerical estimation. Journal of Experimental Psychology: General, 142(1), 193.

    Google Scholar 

  • Smith, E. E., & Jonides, J. (1999). Storage and executive processes in the frontal lobes. Science, 283(5408), 1657–1661.

    Google Scholar 

  • Sorby, S. A. (2009). Educational research in developing 3-D spatial skills for engineering students. International Journal of Science Education, 31(3), 459–480.

    Google Scholar 

  • Sorby, S., Casey, B., Veurink, N., & Dulaney, A. (2013). The role of spatial training in improving spatial and calculus performance in engineering students. Learning and Individual Differences, 26, 20–29.

    Google Scholar 

  • Spearman, C. (1927). The abilities of man. Oxford: Macmillan.

    Google Scholar 

  • Star, J. R. (2005). Reconceptualizing procedural knowledge. Journal for Research in Mathematics Education, 36(5), 404–411.

    Google Scholar 

  • Stieff, M. (2012). Sex differences in the mental rotation of chemistry representations. Journal of Chemical Education, 90(2), 165–170.

    Google Scholar 

  • Szűcs, D., Devine, A., Soltesz, F., Nobes, A., & Gabriel, F. (2014). Cognitive components of a mathematical processing network in 9-year-old children. Developmental Science, 17(4), 506–524.

    Google Scholar 

  • Thayer, Z. C., & Johnson, B. W. (2006). Cerebral processes during visuo-motor imagery of hands. Psychophysiology, 43(4), 401–412.

    Google Scholar 

  • Thompson, J. M., Nuerk, H. C., Moeller, K., & Kadosh, R. C. (2013). The link between mental rotation ability and basic numerical representations. Acta Psychologica, 144(2), 324–331.

    Google Scholar 

  • Thompson, C. A., & Opfer, J. E. (2010). How 15 hundred is like 15 cherries: Effect of progressive alignment on representational changes in numerical cognition. Child Development, 81(6), 1768–1786.

    Google Scholar 

  • Thompson, C. A., Ratcliff, R., & Mckoon, G. (2016). Individual differences in the components of children’s and adults’ information processing for simple symbolic and non-symbolic numeric decisions. Journal of Experimental Child Psychology, 150, 48–71.

    Google Scholar 

  • Thurstone, L. L. (1933). A simplified multiple factor method and an outline of the computations. Chicago: University of Chicago Bookstore.

    Google Scholar 

  • Thurstone, L. L. (1938). Primary mental abilities. Chicago: University of Chicago Press.

    Google Scholar 

  • Tomarken, A. J., & Waller, N. G. (2005). Structural equation modeling: Strengths, limitations, and misconceptions. Annual Review of Clinical Psychology, 1(1), 31–65.

    Google Scholar 

  • Tucker, L. R., & Lewis, C. (1973). A reliability coefficient for maximum likelihood factor analysis. Psychometrika, 38(1), 1–10.

    Google Scholar 

  • Uttal, D. H., Meadow, N. G., Tipton, E., Hand, L. L., Alden, A. R., Warren, C., & Newcombe, N. S. (2013). The malleability of spatial skills: A meta-analysis of training studies. Psychological Bulletin, 139(2), 352–402.

    Google Scholar 

  • Verdine, B. N., Irwin, C. M., Golinkoff, R. M., & Hirsh-Pasek, K. (2014). Contributions of executive function and spatial skills to preschool mathematics achievement. Journal of Experimental Child Psychology, 126, 37–51.

    Google Scholar 

  • Voyer, D., Voyer, S., & Bryden, M. P. (1995). Magnitude of sex differences in spatial abilities: a meta-analysis and consideration of critical variables. Psychological bulletin, 117(2), 250.

    Google Scholar 

  • Wai, J., Lubinski, D., & Benbow, C. P. (2009). Spatial ability for STEM domains: Aligning over 50 years of cumulative psychological knowledge solidifies its importance. Journal of Educational Psychology, 101(4), 817.

    Google Scholar 

  • Wechsler D, Kaplan E, Fein D, Kramer J, Morris R, Delis D, Maerlender A. (2004). WISC-IV Technical and Interpretative Manual. San Antonio, TX: NCS Pearson.

    Google Scholar 

  • Werdelin, I. (1966). A synthesis of two factor analyses of problem solving in mathematics. Didakometry, 8, 14.

    Google Scholar 

  • Wingfield, A. (2016). Evolution of models of working memory and cognitive resources. Ear and Hearing, 37, 35S–43S.

    Google Scholar 

  • Witt, M. (2011). School based working memory training: Preliminary finding of improvement in children’s mathematical performance. Advances in Cognitive Psychology, 7, 7–15.

    Google Scholar 

  • Xu, C., & LeFevre, J. A. (2016). Training young children on sequential relations among numbers and spatial decomposition: Differential transfer to number line and mental transformation tasks. Developmental Psychology, 52(6), 854.

    Google Scholar 

  • Young, C., Raudenbush, S., Fraumeni, B., & Levine, S. (August, 2017). The Structure of Young Children’s Numerical and Spatial Abilities. Poster presented at the Annual Meeting of the Cognitive Science Society, London, UK.

    Google Scholar 

  • Zacks, J. M. (2008). Neuroimaging studies of mental rotation: A meta-analysis and review. Journal of Cognitive Neuroscience, 20(1), 1–19.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Young, C., Levine, S.C., Mix, K.S. (2018). What Processes Underlie the Relation Between Spatial Skill and Mathematics?. In: Mix, K., Battista, M. (eds) Visualizing Mathematics. Research in Mathematics Education. Springer, Cham. https://doi.org/10.1007/978-3-319-98767-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98767-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98766-8

  • Online ISBN: 978-3-319-98767-5

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics