Skip to main content

Part II Commentary 3: Linking Spatial and Mathematical Thinking: The Search for Mechanism

  • Chapter
  • First Online:
Visualizing Mathematics

Part of the book series: Research in Mathematics Education ((RME))

Abstract

A multitude of factors affect mathematics learning: motivation, anxiety, gender stereotypes, working memory, teacher practices, teacher knowledge, and many more. Recently, spatial thinking has emerged as one of these factors. This conclusion was based initially on concurrent correlations but is now also supported by longitudinal studies with controls for other determinants, such as verbal intelligence and executive function (e.g., Frick, 2018; Verdine, Golinkoff, Hirsh-Pasek, & Newcombe, 2017; Zhang & Lin, 2017). Even stronger evidence is beginning to emerge from randomized control experiments that can evaluate true causal relations, i.e., whether interventions to support spatial thinking have downstream effects on mathematical achievement in comparison with an appropriate control group. Not all randomized-control studies show positive results, but enough of them do to encourage optimism (see review in Newcombe, 2017).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ainsworth, S., Prain, V., & Tytler, R. (2011). Drawing to learn in science. Science, 333(6046), 1096–1097.

    Article  Google Scholar 

  • Amalric, M., & Dehaene, S. (2016). Origins of the brain networks for advanced mathematics in expert mathematicians. Proceedings of the National Academy of Sciences, 113(18), 4909–4917.

    Article  Google Scholar 

  • Atit, K., Shipley, T. F., & Tikoff, B. (2013). Twisting space: Are rigid and non-rigid mental transformations separate spatial skills? Cognitive Processing, 14(2), 163–173.

    Article  Google Scholar 

  • Begolli, K. N., & Richland, L. E. (2016). Teaching mathematics by comparison: Analog visibility as a double-edged sword. Journal of Educational Psychology, 108(2), 194.

    Article  Google Scholar 

  • Frick, A. (2018). Spatial transformation abilities and their relation to later mathematics performance. Psychological Research Psychologische Forschung. https://doi.org/10.1007/s00426-018-1008-5

  • Gibson, D. J., Congdon, E. L., & Levine, S. C. (2015). The effects of word-learning biases on children’s concept of angle. Child Development, 86(1), 319–326.

    Article  Google Scholar 

  • Gunderson, E. A., Ramirez, G., Beilock, S. L., & Levine, S. C. (2012). The relation between spatial skill and early number knowledge: The role of the linear number line. Developmental Psychology, 48(5), 1229.

    Article  Google Scholar 

  • Holmes, C., Newcombe, N. S., & Shipley, T. F. (in press). Move to learn: Integrating spatial information from multiple viewpoints. Cognition.

    Google Scholar 

  • Huttenlocher, J., & Presson, C. C. (1973). Mental rotation and the perspective problem. Cognitive Psychology, 4(2), 277–299.

    Article  Google Scholar 

  • Lambrey, S., Doeller, C., Berthoz, A., & Burgess, N. (2011). Imagining being somewhere else: Neural basis of changing perspective in space. Cerebral Cortex, 22(1), 166–174.

    Article  Google Scholar 

  • Miller-Cotto, D., Booth, J. L., Chang, B. L., Cromley, J., Newcombe, N. S., & Williams, T. A. (under review). Sketching and verbal self-explanation: Do they help middle school children solve mathematics and science problems?

    Google Scholar 

  • Mix, K. S., Levine, S. C., Cheng, Y. L., Young, C., Hambrick, D. Z., Ping, R., & Konstantopoulos, S. (2016). Separate but correlated: The latent structure of space and mathematics across development. Journal of Experimental Psychology: General, 145(9), 1206.

    Article  Google Scholar 

  • Nazareth, A., Newcombe, N. S., Shipley, T. F., Velazquez, M. & Weisberg, S. M. (under review). Beyond wayfinding: Navigation skills and geoscience education.

    Google Scholar 

  • Nazareth, A., Weisberg, S. M., Margulis, K., & Newcombe, N. S. (2018). Charting the development of cognitive mapping. Journal of Experimental Child Psychology, 170, 86–106.

    Article  Google Scholar 

  • Newcombe, N. S. (2017). Harnessing spatial thinking to support STEM learning (OECD Education Working Papers, No. 161). OECD Publishing, Paris. https://doi.org/10.1787/7d5dcae6-en

  • Newcombe, N. S. (2018). Three kinds of spatial cognition. In J. Wixted (Ed.), Stevens’ handbook of experimental psychology and cognitive neuroscience (4th Ed.), Wiley.

    Google Scholar 

  • Novack, M., & Goldin-Meadow, S. (2015). Learning from gesture: How our hands change our minds. Educational Psychology Review, 27(3), 405–412.

    Article  Google Scholar 

  • Resnick, I., & Shipley, T. F. (2013). Breaking new ground in the mind: An initial study of mental brittle transformation and mental rigid rotation in science experts. Cognitive Processing, 14(2), 143–152.

    Article  Google Scholar 

  • Sinclair, N., Moss, J., Hawes, Z., & Stephenson, C. (this volume). Learning through and from drawing in early years geometry. In K. S. Mix & M. T. Battista (Eds.), Visualizing mathematics: The role of spatial reasoning in mathematical thought. New York: Springer.

    Google Scholar 

  • Uttal, D. H., Meadow, N. G., Tipton, E., Hand, L. L., Alden, A. R., Warren, C., & Newcombe, N. S. (2013). The malleability of spatial skills: A meta-analysis of training studies. Psychological Bulletin, 139, 352–402.

    Article  Google Scholar 

  • Verdine, B. N., Golinkoff, R. M., Hirsh-Pasek, K., & Newcombe, N. S. (2017). Links between spatial and mathematical skills across the preschool years. Monographs of the Society for Research in Child Development, 82(1), 1–150.

    Article  Google Scholar 

  • Verdine, B. N., Zimmermann, L., Foster, L., Marzouk, M. A., Michnick, R., Golinkoff, K. H. P., & Newcombe, N. (in press). Effects of geometric toy design on parent-child interactions and spatial language. Early Childhood Research Quarterly. https://doi.org/10.1016/j.ecresq.2018.03.015

    Article  Google Scholar 

  • Zhang, X., & Lin, D. (2017). Does growth rate in spatial ability matter in predicting early arithmetic competence? Learning and Instruction, 49, 232–241.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nora S. Newcombe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Newcombe, N.S. (2018). Part II Commentary 3: Linking Spatial and Mathematical Thinking: The Search for Mechanism. In: Mix, K., Battista, M. (eds) Visualizing Mathematics. Research in Mathematics Education. Springer, Cham. https://doi.org/10.1007/978-3-319-98767-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98767-5_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98766-8

  • Online ISBN: 978-3-319-98767-5

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics