Skip to main content

Integrative Multi-Omics Through Bioinformatics

  • Chapter
  • First Online:
Omics Applications for Systems Biology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1102))

Abstract

This chapter introduces different aspects of bioinformatics with a brief discussion in the systems biology context. Example applications in network pharmacology of traditional Chinese medicine, systems metabolic engineering, and plant genome-scale modelling are described. Lastly, this chapter concludes on how bioinformatics helps to integrate omics data derived from various studies described in previous chapters for a holistic understanding of secondary metabolite production in P. minus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hogeweg P (2011) The roots of bioinformatics in theoretical biology. PLOS Comput Biol 7:e1002021

    Article  CAS  Google Scholar 

  2. Henry CS et al (2010) High-throughput generation, optimization and analysis of genome-scale metabolic models. Nat Biotechnol 28:977–982

    Article  CAS  Google Scholar 

  3. Oberhardt MA, Palsson BØ, Papin JA (2009) Applications of genome-scale metabolic reconstructions. Mol Syst Biol 5:320

    Article  Google Scholar 

  4. Prasad TV, Ahson SI (2007) Bioinformatics: applications in life and environmental sciences. Springer Netherlands Capital Publishing Company, New Delhi, India. pp 145–172

    Chapter  Google Scholar 

  5. Tao Y, Liu Y, Friedman C, Lussier YA (2004) Information visualization techniques in bioinformatics during the postgenomic era. Drug Discov Today BIOSILICO 2:237–245

    Article  CAS  Google Scholar 

  6. Shen-Orr SS, Milo R, Mangan S, Alon U (2002) Network motifs in the transcriptional regulation network of Escherichia coli. Nat Genet 31:64–68

    Article  CAS  Google Scholar 

  7. Feist AM et al (2007) A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol Syst Biol 3:121

    Article  Google Scholar 

  8. Duarte NC, Herrgård MJ, Palsson BØ (2004) Reconstruction and validation of Saccharomyces cerevisiae iND750, a fully compartmentalized genome-scale metabolic model. Genome Res 14:1298–1309

    Article  CAS  Google Scholar 

  9. Lee TI et al (2002) Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298:799–804

    Article  CAS  Google Scholar 

  10. Schwikowski B, Uetz P, Fields S (2000) A network of protein-protein interactions in yeast. Nat Biotechnol 18:1257–1261

    Article  CAS  Google Scholar 

  11. Krawetz S (2009) Bioinformatics for systems biology. Humana Press, Totowa

    Book  Google Scholar 

  12. Likić VA, McConville MJ, Lithgow T, Bacic A (2010) Systems biology: the next frontier for bioinformatics. Adv Bioinforma 2010:1

    Article  Google Scholar 

  13. Tran QN, Arabnia HR (2016) Emerging trends in applications and infrastructures for computational biology, bioinformatics, and systems biology: systems and applications. Elsevier/Morgan Kaufmann, Amsterdam/Boston

    Google Scholar 

  14. Tang J, Aittokallio T (2014) Network pharmacology strategies toward multi-target anticancer therapies: from computational models to experimental design principles. Curr Pharm Des 20:23–36

    Article  CAS  Google Scholar 

  15. Valencia A (2002) Bioinformatics and computational biology at the crossroads of post-genomic technology. Phytochem Rev 1:209–214

    Article  CAS  Google Scholar 

  16. Ostrowski J (2008) Integrative genomics – a basic and essential tool for the development of molecular medicine. Acta Pol Pharm Drug Res 65:621–624

    Google Scholar 

  17. Yan Q (2013) Handbook of personalized medicine: advances in nanotechnology, drug delivery and therapy. Pan Stanford, New York, pp 191–220

    Google Scholar 

  18. Hao DC, Xiao PG (2014) Network pharmacology: A Rosetta stone for traditional Chinese medicine. Drug Dev Res 75:299–312

    Article  CAS  Google Scholar 

  19. Li S, Zhang B (2013) Traditional Chinese medicine network pharmacology: theory, methodology and application. Chin J Nat Med 11:110–120

    Article  Google Scholar 

  20. Tao WY, Wang LY, Huang GQ, Luo M (2013) Applied mechanics and materials, vol 411–414. Trans Tech Publications Ltd., Durnten-Zurich, pp 3141–3145

    Google Scholar 

  21. Wang J-B et al (2018) A systems pharmacology-oriented discovery of a new therapeutic use of the TCM formula Liuweiwuling for liver failure. Sci Rep 8:5645

    Article  Google Scholar 

  22. Li JWH, Vederas JC (2009) Drug discovery and natural products: end of an era or an endless frontier? Science 325:161–165

    Article  Google Scholar 

  23. Ro DK et al (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440:940–943

    Article  CAS  Google Scholar 

  24. Carbonell P et al (2016) Bioinformatics for the synthetic biology of natural products: integrating across the Design-Build-Test cycle. Nat Prod Rep 33:925–932

    Article  CAS  Google Scholar 

  25. Blazeck J, Alper H (2010) Systems metabolic engineering: genome-scale models and beyond. Biotechnol J 5:647–659

    Article  CAS  Google Scholar 

  26. Caspi R et al (2009) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res 38:D473–D479

    Article  Google Scholar 

  27. Martin VJJ, Piteral DJ, Withers ST, Newman JD, Keasling JD (2003) Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol 21:796–802

    Article  CAS  Google Scholar 

  28. Yim H et al (2011) Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol. Nat Chem Biol 7:445–452

    Article  CAS  Google Scholar 

  29. Chae TU, Choi SY, Kim JW, Ko Y-S, Lee SY (2017) Recent advances in systems metabolic engineering tools and strategies. Curr Opin Biotechnol 47:67–82

    Article  CAS  Google Scholar 

  30. Fondi M, Liò P (2015) Multi -omics and metabolic modelling pipelines: challenges and tools for systems microbiology. Microbiol Res 171:52–64

    Article  CAS  Google Scholar 

  31. Collakova E, Yen JY, Senger RS (2012) Are we ready for genome-scale modeling in plants? Plant Sci 191–192:53–70

    Article  Google Scholar 

  32. Poolman MG, Miguet L, Sweetlove LJ, Fell DA (2009) A genome-scale metabolic model of Arabidopsis and some of its properties. Plant Physiol 151:1570–1581

    Article  CAS  Google Scholar 

  33. Rai A, Saito K, Yamazaki M (2017) Integrated omics analysis of specialized metabolism in medicinal plants. Plant J 90:764–787

    Article  CAS  Google Scholar 

  34. Dal’Molin CGO, Quek LE, Palfreyman RW, Brumbley SM, Nielsen LK (2010) AraGEM, a genome-scale reconstruction of the primary metabolic network in Arabidopsis. Plant Physiol 152:579–589

    Article  Google Scholar 

  35. Pilalis E, Chatziioannou A, Thomasset B, Kolisis F (2011) An in silico compartmentalized metabolic model of Brassica napus enables the systemic study of regulatory aspects of plant central metabolism. Biotechnol Bioeng 108:1673–1682

    Article  CAS  Google Scholar 

  36. Hay J, Schwender J (2011) Computational analysis of storage synthesis in developing Brassica napus L. (oilseed rape) embryos: flux variability analysis in relation to 13C metabolic flux analysis. Plant J 67:513–525

    Article  CAS  Google Scholar 

  37. Hay J, Schwender J (2011) Metabolic network reconstruction and flux variability analysis of storage synthesis in developing oilseed rape (Brassica napus L.) embryos. Plant J 67:526–541

    Article  CAS  Google Scholar 

  38. Grafahrend-Belau E, Schreiber F, Koschützki D, Junker BH (2009) Flux balance analysis of barley seeds: a computational approach to study systemic properties of central metabolism. Plant Physiol 149:585–598

    Article  CAS  Google Scholar 

  39. Rolletschek H et al (2011) Combined noninvasive imaging and modeling approaches reveal metabolic compartmentation in the barley endosperm. Plant Cell 23:3041–3054

    Article  CAS  Google Scholar 

  40. Dal’Molin CGO, Quek LE, Palfreyman RW, Brumbley SM, Nielsen LK (2010) C4GEM, a genome-scale metabolic model to study C4 plant metabolism. Plant Physiol 154:1871–1885

    Article  Google Scholar 

  41. Saha R, Suthers PF, Maranas CD (2011) Zea mays irs1563: a comprehensive genome-scale metabolic reconstruction of maize metabolism. PLOS ONE 6:e21784

    Article  CAS  Google Scholar 

  42. Poolman MG, Kundu S, Shaw R, Fell DA (2013) Responses to light intensity in a genome-scale model of rice metabolism. Plant Physiol 162:1060

    Article  CAS  Google Scholar 

  43. Lakshmanan M et al (2015) Unraveling the light-specific metabolic and regulatory signatures of rice through combined in silico modeling and multiomics analysis. Plant Physiol 169:3002

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Yuan H, Cheung CYM, Poolman Mark G, Hilbers Peter AJ, Riel Natal AW (2015) A genome-scale metabolic network reconstruction of tomato (Solanum lycopersicum L.) and its application to photorespiratory metabolism. Plant J 85:289–304

    Article  Google Scholar 

  45. Soubeyrand E et al (2018) Constraint-based modeling highlights cell energy, redox status and α-ketoglutarate availability as metabolic drivers for anthocyanin accumulation in grape cells under nitrogen limitation. Front Plant Sci 9:421

    Article  Google Scholar 

  46. Gomes de Oliveira Dal’Molin C, Quek L-E, Saa PA, Nielsen LK (2015) A multi-tissue genome-scale metabolic modeling framework for the analysis of whole plant systems. Front Plant Sci 6:4

    PubMed  PubMed Central  Google Scholar 

  47. Roslan ND et al (2012) Flavonoid biosynthesis genes putatively identified in the aromatic plant Polygonum minus via expressed sequences tag (EST) analysis. Int J Mol Sci 13:2692–2706

    Article  CAS  Google Scholar 

  48. Loke K-K et al (2016) RNA-seq analysis for secondary metabolite pathway gene discovery in Polygonum minus. Genomics Data 7:12–13

    Article  Google Scholar 

  49. Loke KK et al (2017) Transcriptome analysis of Polygonum minus reveals candidate genes involved in important secondary metabolic pathways of phenylpropanoids and flavonoids. Peer J 5:e2938

    Article  Google Scholar 

  50. Ahmad R et al (2014) Volatile profiling of aromatic traditional medicinal plant, polygonum minus in different tissues and its biological activities. Molecules 19:19220–19242

    Article  Google Scholar 

  51. Goh HH, Khairudin K, Sukiran NA, Normah MN, Baharum SN (2016) Metabolite profiling reveals temperature effects on the VOCs and flavonoids of different plant populations. Plant Biol 18:130–139

    Article  CAS  Google Scholar 

  52. Hassim N et al (2015) Antioxidant and antibacterial assays on polygonum minus extracts: different extraction methods. Int J Chem Eng 2015:1–10

    Article  Google Scholar 

  53. Ee SF et al (2013) Transcriptome profiling of genes induced by salicylic acid and methyl jasmonate in Polygonum minus. Mol Biol Rep 40:2231–2241

    Article  CAS  Google Scholar 

  54. Rahnamaie-Tajadod R, Loke KK, Goh HH, Noor NM (2017) Differential gene expression analysis in Polygonum minus leaf upon 24h of methyl jasmonate elicitation. Front Plant Sci 8:109

    Article  Google Scholar 

  55. Nazaruddin N et al (2017) Small RNA-seq analysis in response to methyl jasmonate and abscisic acid treatment in Persicaria minor. Genomics Data 12:157–158

    Article  Google Scholar 

  56. Mehrotra B, Mendes P (2006) Biotechnology in agriculture and forestry, vol 57. Springer, Berlin/Heidelberg, pp 105–115

    Google Scholar 

  57. Aizat WM et al (2018) Extensive mass spectrometry proteomics data of Persicaria minor herb upon methyl jasmonate treatment. Data Brief 16:1091–1094

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hoe-Han Goh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Goh, HH. (2018). Integrative Multi-Omics Through Bioinformatics. In: Aizat, W., Goh, HH., Baharum, S. (eds) Omics Applications for Systems Biology. Advances in Experimental Medicine and Biology, vol 1102. Springer, Cham. https://doi.org/10.1007/978-3-319-98758-3_5

Download citation

Publish with us

Policies and ethics