Skip to main content

Metabolomics in Systems Biology

  • Chapter
  • First Online:
Omics Applications for Systems Biology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1102))

Abstract

Over the last decade, metabolomics has continued to grow rapidly and is considered a dynamic technology in envisaging and elucidating complex phenotypes in systems biology area. The advantage of metabolomics compared to other omics technologies such as transcriptomics and proteomics is that these later omics only consider the intermediate steps in the central dogma pathway (mRNA and protein expression). Meanwhile, metabolomics reveals the downstream products of gene and expression of proteins. The most frequently used tools are nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS). Some of the common MS-based analyses are gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS). These high-throughput instruments play an extremely crucial role in discovery metabolomics to generate data needed for further analysis. In this chapter, the concept of metabolomics in the context of systems biology is discussed and provides examples of its application in human disease studies, plant responses towards stress and abiotic resistance and also microbial metabolomics for biotechnology applications. Lastly, a few case studies of metabolomics analysis are also presented, for example, investigation of an aromatic herbal plant, Persicaria minor metabolome and microbial metabolomics for metabolic engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Oldiges M et al (2007) Metabolomics: current state and evolving methodologies and tools. Appl Microbiol Biotechnol 76:495–511

    Article  CAS  Google Scholar 

  2. Putri SP et al (2013) Current metabolomics: practical applications. J Biosci Bioeng 115:579–589

    Article  CAS  Google Scholar 

  3. Theodoridis G, Gika HG, Wilson ID (2008) LC-MS-based methodology for global metabolite profiling in metabonomics/metabolomics. TrAC Trends Anal Chem 27:251–260

    Article  CAS  Google Scholar 

  4. Lindon JC, Nicholson JK (2008) Analytical technologies for metabonomics and metabolomics, and multi-omic information recovery. TrAC Trends Anal Chem 27:194–204

    Article  CAS  Google Scholar 

  5. Weckwerth W, Morgenthal K (2005) Metabolomics: from pattern recognition to biological interpretation. Drug Discov Today 10:1551–1558

    Article  CAS  Google Scholar 

  6. Saito K, Matsuda F (2010) Metabolomics for functional genomics, systems biology, and biotechnology. Annu Rev Plant Biol 61:463–489 (Merchant S, Briggs WR, Ort D, eds). Annual Reviews. issn 1543–5008, Palo Alto, California, United State of America.

    Article  CAS  Google Scholar 

  7. Saito K (2013) Phytochemical genomics—a new trend. Curr Opin Plant Biol 16:373–380

    Article  CAS  Google Scholar 

  8. Fiehn O (2002) Functional genomics (Town C, ed, Ch. 11). Springer, Dordrecht, pp 155–171

    Google Scholar 

  9. Serkova NJ, Glunde K (2009) Methods Mol Biol 520:273–295

    Article  CAS  Google Scholar 

  10. Liu T et al (2011) Rapid determination of serological cytokine biomarkers for hepatitis B virus-related hepatocellular carcinoma using antibody microarrays. Acta Biochim Biophys Sin 43:45–51

    Article  CAS  Google Scholar 

  11. Patterson AD et al (2011) Aberrant lipid metabolism in hepatocellular carcinoma revealed by plasma metabolomics and lipid profiling. Cancer Res 71:6590–6600

    Article  CAS  Google Scholar 

  12. Chen J et al (2009) Metabonomics study of liver cancer based on ultra performance liquid chromatography coupled to mass spectrometry with HILIC and RPLC separations. Anal Chim Acta 650:3–9

    Article  CAS  Google Scholar 

  13. Lee JH et al (2011) P117. H+-myo-inositol transporter SLC2A13 as a potential marker for cancer stem cells in an oral squamous cell carcinoma. Oral Oncol 47(Supplement 1):S111

    Article  Google Scholar 

  14. Serkova NJ et al (2008) The metabolites citrate, myo-inositol, and spermine are potential age-independent markers of prostate cancer in human expressed prostatic secretions. Prostate 68:620–628

    Article  CAS  Google Scholar 

  15. Spratlin JL, Serkova NJ, Eckhardt SG (2009) Clinical applications of metabolomics in oncology: a review. Clin Cancer Res 15:431–440

    Article  CAS  Google Scholar 

  16. Kovac JR, Pastuszak AW, Lamb DJ (2013) The use of genomics, proteomics, and metabolomics in identifying biomarkers of male infertility. Fertil Steril 99:998–1007

    Article  CAS  Google Scholar 

  17. Hamamah S et al 1H nuclear magnetic resonance studies of seminal plasma from fertile and infertile men. Int J Gynecol Obstet 43:96–97

    Google Scholar 

  18. Rocha CM et al (2011) Metabolic signatures of lung cancer in biofluids: NMR-based metabonomics of blood plasma. J Proteome Res 10:4314–4324

    Article  CAS  Google Scholar 

  19. Xu X-H, Huang Y, Wang G, Chen S-D (2012) Metabolomics: a novel approach to identify potential diagnostic biomarkers and pathogenesis in Alzheimer’s disease. Neurosci Bull 28:641–648

    Article  CAS  Google Scholar 

  20. Trushina E, Dutta T, Persson X-MT, Mielke MM, Petersen RC (2013) Identification of altered metabolic pathways in plasma and CSF in mild cognitive impairment and Alzheimer’s disease using metabolomics. PLOS ONE 8:e63644

    Article  CAS  Google Scholar 

  21. Carraro S et al (2007) Metabolomics applied to exhaled breath condensate in childhood asthma. Am J Respir Crit Care Med 175:986–990

    Article  CAS  Google Scholar 

  22. de Laurentiis G et al (2008) Metabonomic analysis of exhaled breath condensate in adults by nuclear magnetic resonance spectroscopy. Eur Respir J 32:1175–1183

    Article  Google Scholar 

  23. Henry PG, Mochel F (2012) The search for sensitive biomarkers in presymptomatic Huntington disease. J Cereb Blood Flow Metab 32:769–770

    Article  CAS  Google Scholar 

  24. Smolinska A, Blanchet L, Buydens LMC, Wijmenga SS (2012) NMR and pattern recognition methods in metabolomics: From data acquisition to biomarker discovery: A review. Anal Chim Acta 750:82–97

    Article  CAS  Google Scholar 

  25. Wang-Sattler R et al (2012) Novel biomarkers for pre-diabetes identified by metabolomics. Mol Syst Biol 8:1–11

    Google Scholar 

  26. Liu G, Snapp HM, Ji QC, Arnold ME (2009) Strategy of accelerated method development for high-throughput bioanalytical assays using ultra high-performance liquid chromatography coupled with mass spectrometry. Anal Chem 81:9225–9232

    Article  CAS  Google Scholar 

  27. Kim K et al (2011) Urine metabolomic analysis identifies potential biomarkers and pathogenic pathways in kidney cancer. OMICS 15:293–303

    Article  CAS  Google Scholar 

  28. Gomez-Casati DF, Zanor MI, Busi MV (2013) Metabolomics in plants and humans: applications in the prevention and diagnosis of diseases. Biomed Res Int 2013:792527

    Article  Google Scholar 

  29. Herder C, Karakas M, Koenig W (2011) Biomarkers for the prediction of type 2 diabetes and cardiovascular disease. Clin Pharmacol Ther 90:52–66

    Article  CAS  Google Scholar 

  30. Brunetti C, George RM, Tattini M, Field K, Davey MP (2013) Metabolomics in plant environmental physiology. J Exp Bot 64:4011–4020

    Article  CAS  Google Scholar 

  31. Viant MR, Sommer U (2012) Mass spectrometry based environmental metabolomics: a primer and review. Metabolomics 9:144–158

    Article  Google Scholar 

  32. Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  Google Scholar 

  33. Paine JA et al (2005) Improving the nutritional value of Golden Rice through increased pro-vitamin A content. Nat Biotech 23:482–487

    Article  CAS  Google Scholar 

  34. Butelli E et al (2008) Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nat Biotech 26:1301–1308

    Article  CAS  Google Scholar 

  35. Merlo ME, Jankevics A, Takano E, Breitling R (2011) Exploring the metabolic state of microorganisms using metabolomics. Bioanalysis 3:2443–2458

    Article  CAS  Google Scholar 

  36. Gaspar P, Carvalho AL, Vinga S, Santos H, Neves AR (2013) From physiology to systems metabolic engineering for the production of biochemicals by lactic acid bacteria. Biotechnol Adv 31:764–788

    Article  CAS  Google Scholar 

  37. Toya Y, Shimizu H (2013) Flux analysis and metabolomics for systematic metabolic engineering of microorganisms. Biotechnol Adv 31:818–826

    Article  CAS  Google Scholar 

  38. Mozzi F, Ortiz ME, Bleckwedel J, De Vuyst L, Pescuma M (2013) Metabolomics as a tool for the comprehensive understanding of fermented and functional foods with lactic acid bacteria. Food Res Int 54:1152–1161

    Article  CAS  Google Scholar 

  39. Zhang W, Li F, Nie L (2010) Integrating multiple ‘omics’ analysis for microbial biology: application and methodologies. Microbiology 156:287–301

    Article  CAS  Google Scholar 

  40. Mapelli V, Olsson L, Nielsen J (2008) Metabolic footprinting in microbiology: methods and applications in functional genomics and biotechnology. Trends Biotechnol 26:490–497

    Article  CAS  Google Scholar 

  41. Liebeke M, Dörries K, Meyer H, Lalk M (2012) Functional genomics: methods and protocols (Kaufmann M, Klinger C, eds). Springer, New York, pp 377–398

    Google Scholar 

  42. Mashego MR et al (2006) Microbial metabolomics: past, present and future methodologies. Biotechnol Lett 29:1–16

    Article  Google Scholar 

  43. Rabinowitz JD (2007) Cellular metabolomics of Escherichia coli. Expert Rev Proteomics 4:187–198

    Article  CAS  Google Scholar 

  44. Winder CL et al (2008) Global metabolic profiling of Escherichia coli cultures: an evaluation of methods for quenching and extraction of intracellular metabolites. Anal Chem 80:2939–2948

    Article  CAS  Google Scholar 

  45. Ménard S et al (2004) Lactic acid bacteria secrete metabolites retaining anti-inflammatory properties after intestinal transport. Gut 53:821–828

    Article  Google Scholar 

  46. Azizan KA, Baharum SN, Mohd Noor N (2012) Metabolic profiling of Lactococcus lactis under different culture conditions. Molecules 17:8022

    Article  CAS  Google Scholar 

  47. Taibi A, Dabour N, Lamoureux M, Roy D, LaPointe G (2011) Comparative transcriptome analysis of Lactococcus lactis subsp. cremoris strains under conditions simulating Cheddar cheese manufacture. Int J Food Microbiol 146:263–275

    Article  CAS  Google Scholar 

  48. Tan-a-ram P et al (2011) Assessment of the diversity of dairy Lactococcus lactis subsp. lactis isolates by an integrated approach combining phenotypic, genomic, and transcriptomic analyses. Appl Environ Microbiol 77:739–748

    Article  CAS  Google Scholar 

  49. Ayad EHE, Verheul A, de Jong C, Wouters JTM, Smit G (1999) Flavour forming abilities and amino acid requirements of Lactococcus lactis strains isolated from artisanal and non-dairy origin. Int Dairy J 9:725–735

    Article  CAS  Google Scholar 

  50. Schneider K et al (2009) Metabolite profiling studies in Saccharomyces cerevisiae: an assisting tool to prioritize host targets for antiviral drug screening. Microb Cell Factories 8:1–14

    Article  Google Scholar 

  51. Smedsgaard J, Nielsen J (2005) Metabolite profiling of fungi and yeast: from phenotype to metabolome by MS and informatics. J Exp Bot 56:273–286

    Article  CAS  Google Scholar 

  52. Kluger B, Lehner S, Schuhmacher R (2015) Metabolomics and secondary metabolite profiling of filamentous fungi. In: Zeilinger S, Martín J-F, García-Estrada C (eds) Biosynthesis and molecular genetics of fungal secondary metabolites, vol 2. Springer, New York, pp 81–101

    Chapter  Google Scholar 

  53. Barkal LJ et al (2016) Microbial metabolomics in open microscale platforms. Nat Commun 7:1–11

    Article  CAS  Google Scholar 

  54. Thrane U, Anderson B, Frisvad JC, Smedsgaard J (2007) Metabolomics: a powerful tool in systems biology (Nielsen J, Jewett MC, eds). Springer, Berlin/Heidelberg, pp 235–252

    Google Scholar 

  55. Zurbriggen MD, Moor A, Weber W (2012) Plant and bacterial systems biology as platform for plant synthetic bio(techno)logy. J Biotechnol 160:80–90

    Article  CAS  Google Scholar 

  56. Zhao Y et al (2011) Tentative identification, quantitation, and principal component analysis of green pu-erh, green, and white teas using UPLC/DAD/MS. Food Chem 126:1269–1277

    Article  CAS  Google Scholar 

  57. Putri SP, Yamamoto S, Tsugawa H, Fukusaki E (2013) Current metabolomics: technological advances. J Biosci Bioeng 116:9–16

    Article  CAS  Google Scholar 

  58. Mouwen DJM, Hörman A, Korkeala H, Alvarez-Ordóñez A, Prieto M (2011) Applying Fourier-transform infrared spectroscopy and chemometrics to the characterization and identification of lactic acid bacteria. Vib Spectrosc 56:193–201

    Article  CAS  Google Scholar 

  59. Xia J, Wishart DS (2010) MSEA: a web-based tool to identify biologically meaningful patterns in quantitative metabolomic data. Nucleic Acids Res 38:W71–W77

    Article  CAS  Google Scholar 

  60. Zeng M et al (2010) Plasma metabolic fingerprinting of childhood obesity by GC/MS in conjunction with multivariate statistical analysis. J Pharm Biomed Anal 52:265–272

    Article  CAS  Google Scholar 

  61. Xia J, Wishart DS (2010) MSEA: web-based tool to identify biologically meaningful patterns in quantitative metabolomic data. Nucleic Acids Res 38:71–77

    Article  Google Scholar 

  62. Sticher O (2008) Natural product isolation. Nat Prod Rep 25:517–554

    Article  CAS  Google Scholar 

  63. Dixon RA, Strack D (2003) Phytochemistry meets genome analysis, and beyond. Phytochemistry 62:815–816

    Article  CAS  Google Scholar 

  64. Yamada T et al (2008) Mutation of a rice gene encoding a phenylalanine biosynthetic enzyme results in accumulation of phenylalanine and tryptophan. Plant Cell 20:1316–1329

    Article  CAS  Google Scholar 

  65. Baharum SN, Bunawan H, Ghani MA, Wan Aida Wan M, Noor NM (2010) Analysis of the chemical composition of the essential oil of Polygonum minus Huds. Using two-dimensional gas chromatography-time-of-flight mass spectrometry (GC-TOF MS). Molecules 15:7006–7015

    Article  CAS  Google Scholar 

  66. Goh HH, Khairudin K, Sukiran NA, Normah MN, Baharum SN (2016) Metabolite profiling reveals temperature effects on the VOCs and flavonoids of different plant populations. Plant Biol 18:130–139

    Article  CAS  Google Scholar 

  67. Khairudin K, Sukiran N, Goh H-H, Baharum S, Noor N (2013) Direct discrimination of different plant populations and study on temperature effects by Fourier transform infrared spectroscopy. Metabolomics 10:203–211

    Article  Google Scholar 

  68. Ahmad R et al (2014) Volatile profiling of aromatic traditional medicinal plant, Polygonum minus in different tissues and its biological activities. Molecules 19:19220

    Article  Google Scholar 

  69. Azizun Rusdi N, Goh HH, Baharum S (2016) GC-MS/Olfactometric characterisation and aroma extraction dilution analysis of aroma active compounds in Polygonum minus essential oil. Plant Omics 9:289

    Article  Google Scholar 

  70. Hassim N et al (2015) Antioxidant and antibacterial assays on Polygonum minus extracts: different extraction methods. Int J Chem Eng 2015:10

    Article  Google Scholar 

  71. Hassim N, Markom M, Anuar N, Baharum SN (2014) Solvent selection in extraction of essential oil and bioactive compounds from Polygonum minus. J Appl Sci 14:1440–1444

    Article  CAS  Google Scholar 

  72. Neves AR, Pool WA, Kok J, Kuipers OP, Santos H (2005) Overview on sugar metabolism and its control in Lactococcus lactis—the input from in vivo NMR. FEMS Microbiol Rev 29:531–554

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syarul Nataqain Baharum .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Baharum, S.N., Azizan, K.A. (2018). Metabolomics in Systems Biology. In: Aizat, W., Goh, HH., Baharum, S. (eds) Omics Applications for Systems Biology. Advances in Experimental Medicine and Biology, vol 1102. Springer, Cham. https://doi.org/10.1007/978-3-319-98758-3_4

Download citation

Publish with us

Policies and ethics