Skip to main content

Improving the Use of Deep Convolutional Neural Networks for the Prediction of Molecular Properties

  • Conference paper
  • First Online:
Practical Applications of Computational Biology and Bioinformatics, 12th International Conference (PACBB2018 2018)

Abstract

We present a flexible deep convolutional neural network method for the analyse of arbitrary sized graph structures representing molecules. The method makes use of RDKit, an open-source cheminformatics software, allowing the incorporation of any global molecular (such as molecular charge) and local (such as atom type) information. We evaluate the method on the Side Effect Resource (SIDER) v4.1 dataset and show that it significantly outperforms another recently proposed method based on deep convolutional neural networks. We also reflect on how different types of information and input data affect the predictive power of our model. This reflection highlights several open problems that should be solved to further improve the use of deep learning within cheminformatics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/deepchem/deepchem/blob/master/examples/sider.

References

  1. Dahl, G.E., Jaitly, N., Salakhutdinov, R.: Multi-task neural networks for QSAR predictions. ArXiv e-prints, June 2014

    Google Scholar 

  2. Duvenaud, D.K., Maclaurin, D., Iparraguirre, J., Bombarell, R., Hirzel, T., Aspuru-Guzik, A., Adams, R.P.: Convolutional networks on graphs for learning molecular fingerprints. In: Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information Processing Systems 28, pp. 2224–2232. Curran Associates Inc., Red Hook (2015)

    Google Scholar 

  3. Gawehn, E., Hiss, J.A., Schneider, G.: Deep learning in drug discovery. Mol. Inform. 35(1), 3–14 (2016)

    Article  Google Scholar 

  4. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  5. Huuskonen, J., Salo, M., Taskinen, J.: Aqueous solubility prediction of drugs based on molecular topology and neural network modeling. J. Chem. Inf. Comput. Sci. 38(3), 450–456 (1998)

    Article  Google Scholar 

  6. Kearnes, S., McCloskey, K., Berndl, M., Pande, V., Riley, P.: Molecular graph convolutions: moving beyond fingerprints. J. Comput. Aided Mol. Des. 30(8), 595–608 (2016)

    Article  Google Scholar 

  7. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. ArXiv e-prints, December 2014

    Google Scholar 

  8. Kuhn, M., Letunic, I., Jensen, L.J., Bork, P.: The sider database of drugs and side effects. Nucleic Acids Res. 44(D1), D1075–D1079 (2016)

    Article  Google Scholar 

  9. Landrum, G.: Rdkit: open-source cheminformatics (2006). http://www.rdkit.org. Accessed 3 Apr 2017

  10. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  11. Lusci, A., Pollastri, G., Baldi, P.: Deep architectures and deep learning in chemoinformatics: the prediction of aqueous solubility for drug-like molecules. J. Chem. Inf. Model. 53(7), 1563 (2013)

    Article  Google Scholar 

  12. Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural network acoustic models. In: Proceedings of ICML, vol. 30 (2013)

    Google Scholar 

  13. Mayr, A., Klambauer, G., Unterthiner, T., Hochreiter, S.: Deeptox: toxicity prediction using deep learning. Front. Environ. Sci. 3, 80 (2016)

    Article  Google Scholar 

  14. Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  15. Theano Development Team: Theano: a Python framework for fast computation of mathematical expressions. arXiv e-prints, abs/1605.02688, May 2016

    Google Scholar 

  16. Varnek, A., Baskin, I.: Machine learning methods for property prediction in chemoinformatics: quo vadis? J. Chem. Inf. Model. 52(6), 1413–1437 (2012)

    Article  Google Scholar 

  17. Wallach, I., Dzamba, M., Heifets, A.: AtomNet: a deep convolutional neural network for bioactivity prediction in structure-based drug discovery. ArXiv e-prints, October 2015

    Google Scholar 

  18. Weininger, D.: Smiles, a chemical language and information system. 1. Introduction to methodology and encoding rules. In: Proceedings Edinburgh Math. SOC, vol. 17, pp. 1–14 (1970)

    Google Scholar 

  19. Wu, Z., Ramsundar, B., Feinberg, E.N., Gomes, J., Geniesse, C., Pappu, A.S., Leswing, K., Pande, V.: MoleculeNet: a benchmark for molecular machine learning. ArXiv e-prints, March 2017

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niclas Ståhl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ståhl, N., Falkman, G., Karlsson, A., Mathiason, G., Boström, J. (2019). Improving the Use of Deep Convolutional Neural Networks for the Prediction of Molecular Properties. In: Fdez-Riverola, F., Mohamad, M., Rocha, M., De Paz, J., González, P. (eds) Practical Applications of Computational Biology and Bioinformatics, 12th International Conference. PACBB2018 2018. Advances in Intelligent Systems and Computing, vol 803. Springer, Cham. https://doi.org/10.1007/978-3-319-98702-6_9

Download citation

Publish with us

Policies and ethics