Skip to main content

In Silico Modeling and Simulation Approach for Apoptosis Caspase Pathways

  • Conference paper
  • First Online:

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 803))

Abstract

We revisit and improve in silico modeling and simulation approach of the apoptosis caspases pathways, initially developed for exploring and discovering the complex interaction patterns of apoptotic caspases and the mitochondrial role. Symbolic abstractions and algorithms of the in silico model were improved to allow dealing with crucial aspects of the cellular signal transduction such as cellular processes. Also, the particular model of extrinsic and intrinsic apoptotic signaling pathways was improved, increasing the number of reactions and using all kinetic parameters accurately calculated. Using the computational simulation tool BTSSOC-Cellulat, we were able to determine experimentally how the modulation of concentrations of proteins XIAP, cFLIPs and TRAIL/FASL, can cause the death of cancerous cells. Our results show how crucial were the improvements made in the in silico modeling approach, which in turn were reflected in the accuracy of the simulation and, therefore, in the significant value of the in silico experiments carried out.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kerr, J.F.T., Wyllie, A.H., Currie, A.R.: Apoptosis: a basic biological phenomenon with wide-ranging implication in tissue kinetics. Br. J. Cancer 26(4), 239–257 (1972)

    Article  Google Scholar 

  2. Wyllie, A.H.: Apoptosis: an overview. Br. Med. Bull. 53(3), 451–465 (1997)

    Article  Google Scholar 

  3. Poreba, M., Szalek, A., Kasperkiewicz, P., Rut, W., Salvesen, G.S., Drag, M.: Small molecule active site directed tools for studying human caspases. Chem. Rev. 115(22), 12546–12629 (2015). https://doi.org/10.1021/acs.chemrev.5b00434

    Article  Google Scholar 

  4. Danial, N.N., Korsmeyer, S.J.: Cell death: critical control points. Cell 116(2), 205–219 (2004). https://doi.org/10.1016/S0092-8674(04)00046-7

    Article  Google Scholar 

  5. Poreba, M., Strózyk, A., Salvesen, G.S., Drag, M.: Caspase substrates and inhibitors. Cold Spring Harb. Perspect. Biol. 5(8), a008680 (2013). https://doi.org/10.1101/cshperspect.a008680

    Article  Google Scholar 

  6. Songane, M., Khair, M., Saleh, M.: An update view on the function of caspases in inflammation and immunity. Semin. Cell Dev. Biol. (2018). https://doi.org/10.1016/j.semcdb.2018.01.001

  7. Alves, R., Antunes, F., Salvador, A.: Tools for kinetic modeling of biochemical networks. Nat. Biotechnol. 24(6), 667–672 (2006). https://doi.org/10.1038/nbt0606-667

    Article  Google Scholar 

  8. Ciocchetta, F., Duguid, A., Guerriero, M.L.: A compartmental model of the cAMP/PKA/MAPK pathway in bio-PEPA. In: Third Workshop on Membrane Computing and Biologically Inspired Process Calculi (MeCBIC) (2009). http://dx.doi.org/10.4204/EPTCS.11.5

  9. Kerr, R.A., Bartol, T.M., Kaminsky, B., Dittrich, M., Chang, J.C., Baden, S.B., Sejnowski, T.J., Stiles, J.R.: Fast Monte Carlo simulation methods for biological reaction-diffusion systems in solution and on surfaces. SIAM J. Sci. Comput. 30(36), 3126–3149 (2008). https://doi.org/10.1137/070692017

    Article  MathSciNet  MATH  Google Scholar 

  10. Hoops, S., et al.: COPASI: a complex pathway simulator. Bio-informatics 22(24), 3067–3074 (2006). https://doi.org/10.1093/bioinformatics/btl485

    Article  Google Scholar 

  11. Cowan, A.E., Moraru, I.I., Schaff, J.C., Slepchenko, B.M., Loew, L.M.: Spatial modeling of cell signaling networks. Methods Cell Biol. 110, 195–221 (2012). https://doi.org/10.1016/B978-0-12-388403-9.00008-4

    Article  Google Scholar 

  12. Swat, M., Thomas, G.L., Belmonte, J.M., Shirinifard, A., Hmeljak, D., Glazier, J.A.: Multi-scale modeling of tissues using CompuCell 3D. Methods Cell Biol. 110, 325–366 (2012). https://doi.org/10.1016/b978-0-12-388403-9.00013-8

    Article  Google Scholar 

  13. Martinou, J.C., Youle, R.J.: Mitochondria in apoptosis; Bcl-2 family members and mitochondrial dynamics. Dev. Cell 21(1), 92–101 (2011). https://doi.org/10.1016/j.devcel.2011.06.017

    Article  Google Scholar 

  14. González-Pérez, P.P., Omicini, A., Sbaraglia, M.: A biochemically inspired coordination-based model for simulating intracellular signalling pathway. J. Simul. 27(3), 216–226 (2013). https://doi.org/10.1057/jos.2012.28

    Article  Google Scholar 

  15. Cárdenas-García, M., González-Pérez, P.P., Montagna, S., Cortés Sánchez, O., Caballero, E.H.: Modeling intercellular communication as a survival strategy of cancer cells: an in silico approach on a flexible bioinformatics framework. Bioinf. Biol. Insights 10, 5–18 (2016). https://doi.org/10.4137/BBI.S38075

    Article  Google Scholar 

  16. Gelernter, D.: Generative communication in Linda. ACM Trans. Program. Lang. Syst. 7(1), 80–112 (1985). https://doi.org/10.1145/2363.2433

    Article  MATH  Google Scholar 

  17. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81(25), 2340–2361 (1977). https://doi.org/10.1021/j100540a008

    Article  Google Scholar 

  18. Cárdenas-García, M., González-Pérez, P.P., Montagna, S.: bioinformatics. EMBnet.journal 18(S18.B), 94–96 (2012). Special Issue NETTAB 2012 Workshop on “Integrated Bio-Search”. http://dx.doi.org/10.14806/ej.18.B.563

  19. Cárdenas-García, M., González-Pérez, P.P.: Applying the tuple space-based approach to the simulation of the caspases, an essential signalling pathway. J. Integr. Bioinf. 10(1), 225. https://doi.org/10.2390/biecoll-jib-2013-225. ISSN 1613-4516

  20. Kang, W., et al.: Structural and biochemical basis for the inhibition of cell death by APIP, a methionine salvage enzyme. Proc. Nat. Acad. Sci. 111(1), E54–E61 (2014). https://doi.org/10.1073/pnas.1308768111

    Article  Google Scholar 

  21. Karki, P., Lee, J., Shin, S.Y., Cho, B., Park, I.S.: Kinetic comparison of procaspase-3 and caspase-3. Arch. Biochem. Biophys. 442(1), 125–132 (2005). https://doi.org/10.1016/j.abb.2005.07.023

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Pablo González-Pérez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

González-Pérez, P.P., Cárdenas-García, M. (2019). In Silico Modeling and Simulation Approach for Apoptosis Caspase Pathways. In: Fdez-Riverola, F., Mohamad, M., Rocha, M., De Paz, J., González, P. (eds) Practical Applications of Computational Biology and Bioinformatics, 12th International Conference. PACBB2018 2018. Advances in Intelligent Systems and Computing, vol 803. Springer, Cham. https://doi.org/10.1007/978-3-319-98702-6_3

Download citation

Publish with us

Policies and ethics