Advertisement

Parallel Cellular Automaton Tumor Growth Model

  • Alberto G. Salguero
  • Manuel I. Capel
  • Antonio J. Tomeu
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 803)

Abstract

“In silico” experimentation allows us to simulate the effect of different therapies by handling model parameters. Although the computational simulation of tumors is currently a well-known technique, it is however possible to contribute to its improvement by parallelizing simulations on computer systems of many and multi-cores. This work presents a proposal to parallelize a tumor growth simulation that is based on cellular automata by partitioning of the data domain and by dynamic load balancing. The initial results of this new approach show that it is possible to successfully accelerate the calculations of a known algorithm for tumor-growth.

Keywords

Cellular automaton High performance computing Mathematical oncology Tumoral growth simulation Parallel programming Speedup 

References

  1. 1.
    Adamaztky, A., De Lacy, B., Tetsuya, A.: Reaction-Diffusion Computers. Elsevier (2005)Google Scholar
  2. 2.
    Alarcón, T., Byrne, H.M., Maini, P.K.: A cellular automaton model for tumor growth in inhomogeneous environments. J. Theor. Biol. 225(2), 257–274 (2003)CrossRefGoogle Scholar
  3. 3.
    Aubert, M., Badoual, M., Fereol, S., Christov, C., Grammaticos, B.: A cellular automaton model for the migration of glioma cells 3(2), 93–100 (2006)Google Scholar
  4. 4.
    Bandman, O.: Implementation of large-scale cellular automata models on multi-core computers and clusters. In: International Conference on High Performance and Simulation (HPCS), 1–5 July 2013.  https://doi.org/10.1109/HPCSim.2013.6641431
  5. 5.
    Blecic, I., Cecchini, A., Trunfio, G.A.: Cellular automata simulation of urban dynamics through GPGPU. J. Supercomputing 65, 614–629 (2013).  https://doi.org/10.1007/s11227-013-0913-zCrossRefGoogle Scholar
  6. 6.
    Capel-Tuñon, M.I., et al.: Towards modal modelling of biological systems. Technical report: Michigan State University, pp. 1–12 (2008)Google Scholar
  7. 7.
    Chopard, B., Droz, M.: Cellular Automata in Modeling of Physical Systems. Cambridge University Press, Cambridge (1998)CrossRefGoogle Scholar
  8. 8.
    D’ambrosio, D., Filippone, G., Rongo, R., Spataro, W., Trunfio, G.A.: Cellular automata and GPGPU: an application to lava flow modeling. Int. J. Grid High Perform. Comput. (IJGHPC) 4(3), 18 (2012)Google Scholar
  9. 9.
    Deutsch, A., Dorman, S.: Cellular Automata Model of Biological Patterns. Characterization, Applications and Analysis. Birkhuser (2005)Google Scholar
  10. 10.
    Enderling, H., Anderson, A., Chaplain, M., Beheshti, A., Hlatky, L., Hahnfeldt, P.: Paradoxical dependencies of tumor dormancy and progression on basic cell kinetics. Cancer Res. 69, 8814–8821 (2009)CrossRefGoogle Scholar
  11. 11.
    Gibson, M.J., Keedwell, E.C., Savic, D.A.: An investigation of the efficient implementation of cellular automata on multi-core CPU and GPU hardware. J. Parallel Distrib. Comput. 77, 1125 (2015)CrossRefGoogle Scholar
  12. 12.
    Jiao, Y., Torquato, S.: Emergent behaviors from a cellular automaton model for invasive tumor growth in heterogeneous microenvironments. PLOS Comput. Biol. 7, Article ID: e1002314.  https://doi.org/10.1371/journal.pcbi.1002314
  13. 13.
    Khan, M.A., Shefeeq, T., Kumar, A.: Mathematical modeling and computer simulation in cancer dynamics. Int. J. Math. Model. Simul. Appl. 4(3), 239–254 (2011)Google Scholar
  14. 14.
    Patel, A.A., Gawlinski, E.T., Lemieux, S.K., Gatenby, R.A.: A cellular automaton model of early tumor growth and invasion: the effects of native tissue vascularity and increased anaerobic tumor metabolism. J. Theor. Biol. 213(3), 315–331 (2001)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Piotrowska, M.J., Angus, S.D.: A quantitative cellular automaton model of in vitro multicellular spheroid tumour growth. J. Theor. Biol. 258(2), 165–178 (2009)CrossRefGoogle Scholar
  16. 16.
    Polesczuk, J., Enderling, H.: A high-performance cellular automaton model of tumor growth with dynamically growing domains. Appl. Math. 5, 144–152 (2014)CrossRefGoogle Scholar
  17. 17.
    Ribba, B., Alarcón, T., Marron, K., Maini, K., Agur, Z.: The use of hybrid cellular automaton models for improving cancer therapy, pp. 444–453 (2004)Google Scholar
  18. 18.
    Rybacki, S., Himmelspach, J., Uhrmacher, A.: Experiments with Single Core, Multi Core, and GPU-based computation of cellular automata. In: 2009 First International Conference on Advances in System Simulation, pp. 62–69 (2009)Google Scholar
  19. 19.
    Tomeu, A.J., Salguero, A.G., Capel, M.I.: A parallelisation tale of two languages. Ann. Multicore GPU Program. 2(1), 81–94 (2015)Google Scholar
  20. 20.
    Trisilowati, Mallet, D.G.: Experimental modeling of cancer treatment. ISRN Oncology, 2012, Article ID 828701 (2012).  https://doi.org/10.5402/2012/828701

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Alberto G. Salguero
    • 1
  • Manuel I. Capel
    • 2
  • Antonio J. Tomeu
    • 1
  1. 1.University of CádizCádizSpain
  2. 2.University of GranadaGranadaSpain

Personalised recommendations