Skip to main content

Abstract

Amino acid sequences are known to be very hard to compress. In this paper, we propose a lossless compressor for efficient compression of amino acid sequences (AC). The compressor uses a cooperation between multiple context and substitutional tolerant context models. The cooperation between models is balanced with weights that benefit the models with better performance, according to a forgetting function specific for each model. We have shown consistently better compression results than other approaches, using low computational resources. The compressor implementation is freely available, under license GPLv3, at https://github.com/pratas/ac.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nalbantoglu, Ö.U., Russell, D.J., Sayood, K.: Data compression concepts and algorithms and their applications to bioinformatics. Entropy 12(1), 34–52 (2009)

    Article  Google Scholar 

  2. Nevill-Manning, C.G., Witten, I.H.: Protein is incompressible. In: Data Compression Conference, pp. 257–266 (1999)

    Google Scholar 

  3. Benedetto, D., Caglioti, E., Chica, C.: Compressing proteomes: the relevance of medium range correlations. EURASIP J. Bioinf. Syst. Biol. 2007, 5 (2007)

    Article  Google Scholar 

  4. Hategan, A., Tabus, I.: Protein is compressible. In: Proceedings of the 6th Nordic Signal Processing Symposium, NORSIG-2004, Espoo, Finland, pp. 192–195, June 2004

    Google Scholar 

  5. Cleary, J.G., Witten, I.H.: Data compression using adaptive coding and partial string matching. IEEE Trans. Commun. 32(4), 396–402 (1984)

    Article  Google Scholar 

  6. Willems, F.M.J., Shtarkov, Y.M., Tjalkens, T.J.: The context-tree weighting method: basic principles. IEEE Trans. Inf. Theor. 41(3), 653–664 (1995)

    Article  Google Scholar 

  7. Matsumoto, T., Sadakane, K., Imai, H.: Biological sequence compression algorithms. In: Dunker, A.K., Konagaya, A., Miyano, S., Takagi, T. (eds.) Genome Informatics 2000: Proceedings of the 11th Workshop, Tokyo, Japan, pp. 43–52 (2000)

    Google Scholar 

  8. Cao, M.D., Dix, T.I., Allison, L., Mears, C.: A simple statistical algorithm for biological sequence compression. In: Proceedings of the Data Compression Conference, DCC 2007, Snowbird, Utah, pp. 43–52, March 2007

    Google Scholar 

  9. Adjeroh, D., Nan, F.: On compressibility of protein sequences. In: Proceedings of Data Compression Conference, DCC 2006. IEEE (2006). 10 p

    Google Scholar 

  10. Nag, A., Karforma, S.: Adaptive dictionary-based compression of protein sequences. Int. J. Educ. Manag. Eng. 5, 1–6 (2017)

    Google Scholar 

  11. Ferragina, P., Manzini, G.: Burrows-Wheeler transform. In: Kao, M.Y. (ed.) Encyclopedia of Algorithms, pp. 1–99. Springer, Boston (2008)

    Google Scholar 

  12. Adjeroh, D., Feng, J.: The SCP and compressed domain analysis of biological sequences. In: Proceedings of the 2003 IEEE Bioinformatics Conference, CSB 2003, pp. 587–592. IEEE (2003)

    Google Scholar 

  13. Hosseini, M., Pratas, D., Pinho, A.J.: A survey on data compression methods for biological sequences. Information 7(4), 56 (2016)

    Article  Google Scholar 

  14. Korber, B., Farber, R.M., Wolpert, D.H., Lapedes, A.S.: Covariation of mutations in the V3 loop of human immunodeficiency virus type 1 envelope protein: an information theoretic analysis. Proc. Natl. Acad. Sci. 90(15), 7176–7180 (1993)

    Article  Google Scholar 

  15. Hayashida, M., Ruan, P., Akutsu, T.: Proteome compression via protein domain compositions. Methods 67(3), 380–385 (2014)

    Article  Google Scholar 

  16. Pelta, D.A., Gonzalez, J.R., Krasnogor, N.: Protein structure comparison through fuzzy contact maps and the universal similarity metric. In: EUSFLAT Conference, pp. 1124–1129 (2005)

    Google Scholar 

  17. Rocha, J., Rosselló, F., Segura, J.: Compression ratios based on the Universal Similarity Metric still yield protein distances far from CATH distances. arXiv preprint q-bio/0603007 (2006)

    Google Scholar 

  18. Sayood, K.: Introduction to Data Compression, 3rd edn. Morgan Kaufmann, San Francisco (2006)

    MATH  Google Scholar 

  19. Pratas, D., Pinho, A.J., Ferreira, P.J.S.G.: Efficient compression of genomic sequences. In: Proceedings of the Data Compression Conference, DCC 2016, Snowbird, Utah, pp. 231–240, March 2016

    Google Scholar 

  20. Pratas, D., Hosseini, M., Pinho, A.J.: Substitutional tolerant Markov models for relative compression of DNA sequences. In: 11th International Conference on Practical Applications of Computational Biology and Bioinformatics, pp. 265–272. Springer (2017)

    Google Scholar 

  21. Diribi, W., Raimond, K.: Comparison of protein corpuses. Int. J. Innov. Manag. Technol. 3(3), 281 (2012)

    Google Scholar 

Download references

Acknowledgments

This work was partially funded by the European Union Seventh Framework Programme (FP7/2007–2013) under grant agreement No. 305444 “RD-Connect: An integrated platform connecting registries, biobanks and clinical bioinformatics for rare disease research”. It was also funded by FEDER (Programa Operacional Factores de Competitividade - COMPETE) and by National Funds through the FCT - Foundation for Science and Technology, in the context of the UID/CEC/00127/2013 and PTCD/EEI-SII/6608/2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diogo Pratas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pratas, D., Hosseini, M., Pinho, A.J. (2019). Compression of Amino Acid Sequences. In: Fdez-Riverola, F., Mohamad, M., Rocha, M., De Paz, J., González, P. (eds) Practical Applications of Computational Biology and Bioinformatics, 12th International Conference. PACBB2018 2018. Advances in Intelligent Systems and Computing, vol 803. Springer, Cham. https://doi.org/10.1007/978-3-319-98702-6_13

Download citation

Publish with us

Policies and ethics