Advertisement

A Hybrid of Simple Constrained Artificial Bee Colony Algorithm and Flux Balance Analysis for Enhancing Lactate and Succinate in Escherichia Coli

  • Mei Kie Hon
  • Mohd Saberi Mohamad
  • Abdul Hakim Mohamed Salleh
  • Yee Wen Choon
  • Muhammad Akmal Remli
  • Mohd Arfian Ismail
  • Sigeru Omatu
  • Juan Manuel Corchado
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 803)

Abstract

In the past decades, metabolic engineering has received great attention from different sectors of science due to its important role in enhancing the over expression of the target phenotype by manipulating the metabolic pathway. The advent of metabolic engineering has further laid the foundation for computational biology, leading to the development of computational approaches for suggesting genetic manipulation. Previously, conventional methods have been used to enhance the production of lactate and succinate in E. coli. However, these products are always far below their theoretical maxima. In this research, a hybrid algorithm is developed to seek optimal solutions in order to increase the overproduction of lactate and succinate by gene knockout in E. coli. The hybrid algorithm employed the Simple Constrained Artificial Bee Colony (SCABC) algorithm, using swarm intelligence as an optimization algorithm to optimize the objective function, where lactate and succinate productions are maximized by simulating gene knockout in E. coli. In addition, Flux Balance Analysis (FBA) is used as a fitness function in the SCABC algorithm to assess the growth rate of E. coli and the productivity of lactate and succinate. As a result of the research, the gene knockout list which induced the highest production of lactate and succinate is obtained.

Keywords

Gene knockout strategies Escherichia coli Lactate Succinate Simple Constrained Artificial Bee Colony Flux Balance Analysis Computational intelligence 

Notes

Acknowledgement

We would like to thank Malaysian Ministry of Higher Education and Universiti Teknologi Malaysia for supporting this research by the Fundamental Research Grant Schemes (grant number: R.J130000.7828.4F886 and R.J130000.7828.4F720). We would also like to thank Universiti Malaysia Pahang for sponsoring this research via the RDU Grant (Grant Number: RDU180307).

References

  1. 1.
    Vemuri, G.N., Eiteman, M.A., Altman, E.: Effects of growth mode and pyruvate carboxylase on succinic acid production by metabolically engineered strains of Escherichia coli. Appl. Environ. Microbiol. 68, 1715–1727 (2002)CrossRefGoogle Scholar
  2. 2.
    Jantama, K., Zhang, X., Moore, J.C., Shanmugam, K.T., Svoronos, S.A., Ingram, L.O.: Eliminating side products and increasing succinate yields in engineered strains of Escherichia coli C. Biotechnol. Bioeng. 101, 881–893 (2008)CrossRefGoogle Scholar
  3. 3.
    Zhou, L., Zuo, Z.-R., Chen, X.-Z., Niu, D.-D., Tian, K.-M., Prior, B.A., Shen, W., Shi, G.-Y., Singh, S., Wang, Z.-X.: Evaluation of genetic manipulation strategies on D-lactate Production by Escherichia coli. Curr. Microbiol. 62, 981–989 (2011)CrossRefGoogle Scholar
  4. 4.
    Lee, S., Lee, D., Kim, T., Kim, B.: Metabolic engineering of Escherichia coli for enhanced production of succinic acid, based on genome comparison and in silico gene knockout simulation. Appl. Environ. Microbiol. 71, 7880–7887 (2005)CrossRefGoogle Scholar
  5. 5.
    Salleh, A.H.M., Mohamad, M.S., Deris, S., Omatu, S., Fdez-Riverola, F., Corchado, J.M.: Gene knockout identification for metabolite production improvement using a hybrid of genetic ant colony optimization and flux balance analysis. Biotechnol. Bioprocess Eng. 20, 685–693 (2015)CrossRefGoogle Scholar
  6. 6.
    Choon, Y.W., Mohamad, M.S., Deris, S., Illias, R.M., En Chai, L., Chong, C.K.: Identifying gene knockout strategy using Bees Hill Flux Balance Analysis (BHFBA) for improving the production of ethanol in bacillus subtilis. In: Advances in Biomedical Infrastructure 2013. Studies in Computational Intelligence, vol. 477, pp. 117–126. Springer, Heidelberg (2013)Google Scholar
  7. 7.
    Choon, Y.W., Mohamad, M.S., Deris, S., Illias, R.M., Chong, C.K., Chai, L.E., Omatu, S., Corchado, J.M.: Differential bees flux balance analysis with OptKnock for in silico microbial strains optimization. PLoS One 9(7), e102744 (2014)Google Scholar
  8. 8.
    Burgard, A.P., Pharkya, P., Maranas, C.D.: OptKnock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol. Bioeng. 84, 647–657 (2003)CrossRefGoogle Scholar
  9. 9.
    Martino, G.D.S., Cardillo, F.A., Starita, A.: A new swarm intelligence coordination model inspired by collective prey retrieval and its application to image alignment. In: Runarsson, T.P., Beyer, H.-G., Burke, E., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 691–700. Springer, Heidelberg (2006).  https://doi.org/10.1007/11844297_70CrossRefGoogle Scholar
  10. 10.
    Patil, K., Rocha, I., Förster, J., Nielsen, J.: Evolutionary programming as a platform for in silico metabolic engineering. BMC Bioinform. 6, 308 (2005)CrossRefGoogle Scholar
  11. 11.
    Raman, K., Chandra, N.: Flux balance analysis of biological systems: applications and challenges. Brief Bioinform. 10(4), 435–449 (2009)Google Scholar
  12. 12.
    Brajevic, I., Tuba, M., Subotic, M.: Performance of the improved artificial bee colony algorithm on standard engineering constrained problems. Int. J. Math. Comput. Simul. 5, 135–143 (2011)Google Scholar
  13. 13.
    Rocha, M., Maia, P., Mendes, R., Pinto, J.P., Ferreira, E.C., Nielsen, J., Patil, K., Rocha, I.: Natural computation meta-heuristics for the in silico optimization of microbial strains. BMC Bioinform. 9, 499 (2008)CrossRefGoogle Scholar
  14. 14.
    Yang, Y.T., Bennett, G.N., San, K.Y.: Effect of inactivation of nuo and ackA-pta on redistribution of metabolic fluxes in Escherichia coli. Biotechnol. Bioeng. 65, 291–297 (1999)CrossRefGoogle Scholar
  15. 15.
    Zhu, J., Shimizu, K.: Effect of a single-gene knockout on the metabolic regulation in Escherichia coli for D-lactate production under microaerobic condition. Metab. Eng. 7, 104–115 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mei Kie Hon
    • 1
  • Mohd Saberi Mohamad
    • 2
    • 3
  • Abdul Hakim Mohamed Salleh
    • 1
  • Yee Wen Choon
    • 1
  • Muhammad Akmal Remli
    • 1
  • Mohd Arfian Ismail
    • 4
  • Sigeru Omatu
    • 5
  • Juan Manuel Corchado
    • 6
  1. 1.Artificial Intelligence and Bioinformatics Research Group, Faculty of ComputingUniversiti Teknologi MalaysiaSkudaiMalaysia
  2. 2.Institute for Artificial Intelligence and Big DataUniversiti Malaysia KelantanKota BharuMalaysia
  3. 3.Faculty of Bioengineering and TechnologyUniversiti Malaysia KelantanJeliMalaysia
  4. 4.Soft Computing and Intelligent System Research Group, Faculty of Computer Systems and Software EngineeringUniversiti Malaysia PahangKuantanMalaysia
  5. 5.Department of Electronics, Information and Communication EngineeringOsaka Institute of TechnologyOsakaJapan
  6. 6.Biomedical Research Institute of Salamanca/BISITE Research GroupUniversity of SalamancaSalamancaSpain

Personalised recommendations