Skip to main content

Renewable Energy Technologies for Microgrids

  • Chapter
  • First Online:
Microgrids Design and Implementation

Abstract

Power generation in microgrids is based on small-sized generating units, typically ranging from less than a kW to tens of MW, connected at the distribution network on-site or near the load demand. Renewable energy technologies for microgrids exploit sustainable energies such as wind energy, solar power, small-scale hydropower, bioenergy, and geothermal power. Many countries in the world have been implementing policies to promote the deployment of renewable generating technologies aiming at reducing the greenhouse gas emissions, principally the exploitation of variable output renewable energies mainly based on wind and solar photovoltaic (PV). The continuous and robust deployment of these types of renewables and their relatively easiness for sizing and installing have set the expectation that power generation integrated into microgrids will be based predominantly on these technologies. Hence, this work focuses on wind and solar photovoltaic generation technologies for microgrid applications. In this document, detailed models to simulate its dynamic performance are presented, including the power conditioning system and the control strategy for grid-tied operation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adefarati, T., & Bansal, R. C. (2016). Integration of renewable distributed generators into the distribution system: A review. IET Renewable Power Generation, 10(7), 873–884.

    Article  Google Scholar 

  2. Sims, R., Mercado, P. E., Krewit, W., et al. (2011). Integration of renewable energy into present and future energy systems. In IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation (pp. 609–706). Cambridge: Cambridge University Press ISBN: 978-1-107-60710-1.

    Chapter  Google Scholar 

  3. Ackermann, T., Carlini, E. M., Ernst, B., et al. (2015). Integrating variable renewables in Europe: Current status and recent extreme events. IEEE Power and Energy Magazine, 13(6), 67–77.

    Article  Google Scholar 

  4. Gazi, R. B., Hossain, E., Bekiroglu, E., & Kabalci, E. (2014). Microgrid facility at European Union. 3rd International Conference on Renewable Energy Research and Applications (ICRERA) (pp. 865–872), October 19–22, Milwaukee, USA.

    Google Scholar 

  5. REN21. (2016). Renewables 2016 Global Status Report. Paris: REN21 Secretariat ISBN 978-3-9818107-0-7.

    Google Scholar 

  6. Ragheb, M. (2015). Economics of wind energy. In: Wind Power Systems, Course NPRE 475 (Chapter 34). Champaign, IL: University of Illinois at Urbana-Champaign.

    Google Scholar 

  7. Global Wind Energy Council. (2006). Global wind energy markets continue to boom – 2006 another record year. http://www.gwec.net/. June 2007.

  8. Blaabjerg, F., & Chen, Z. (2006). Power electronics for modern wind turbines (1st ed.). Seattle: Morgan & Claypool Publishers.

    Google Scholar 

  9. Chen, Z., & Blaabjerg, F. (2009). Wind farm – a power source in future power systems. Renewable and Sustainable Energy Reviews, 13(6–7), 1288–1300.

    Article  Google Scholar 

  10. Vestergaard, J., Brandstrup, L., & Goddard, R. D. (2004). A brief history of the wind turbine industries in Denmark and the United States. Proceedings of the Academy of International Business (Southeast USA Chapter) Annual Meeting, Knozville, Tenesse, USA.

    Google Scholar 

  11. Power technology – the world’s 10 biggest wind turbines. [Online]. http://www.power-technology.com/features/featurethe-worlds-biggest-wind-turbines-4154395/. January 2014.

  12. Ackerman, T. (2005). Wind power in power systems (1st ed.). London: John Wiley and Sons, Ltd.

    Book  Google Scholar 

  13. Hansen, A. D., Iov, F., Blaabjerg, F., & Hansen, L. H. (2004). Review of contemporary wind turbine concepts and their market penetration. Journal of Wind Engineering, 28(3), 247–263.

    Article  Google Scholar 

  14. Qiao, W., Harley, R. G., & Venayagamoorthy, G. K. (2007). Dynamic modeling of wind farms with fixed-speed wind turbine generators. Proceedings of IEEE PES 2007 General Meeting, Tampa, USA, June 24–8.

    Google Scholar 

  15. Camm, E. H., Behnke, M. R., Bolado, O., Bollen, M., Bradt, M., Brooks, C. Dilling, W.; Edds, M.; Hejdak, W. J., Houseman, D., Klein, S., Li, F., Li, J., Maibach, P., Nicolai, T., Patino, J., Pasupulati, S. V., Samaan, N., Saylors, S., Siebert, T., Smith, T., Starke, M., & Walling, R (2009). Characteristics of wind turbine generators for wind power plants. IEEE Power & Energy Society (PES) General Meeting (pp. 1–5).

    Google Scholar 

  16. Krüger T., & Andresen, B. (2001). Vestas OptiSpeed - advanced control strategy for variable speed wind turbines. Proceedings of European Wind Energy Conference, Copenhagen, Denmark (pp. 983–986), July 2–6

    Google Scholar 

  17. Muller, S., Deicke, M., & De Doncker, R. W. (2002). Doubly fed induction generator systems for wind turbines. IEEE Industry Applications Magazine, 8(3), 26–33.

    Article  Google Scholar 

  18. Li, S., Haskew, T. A., Muljadi, E., & Serrentino, C. (2009). Characteristic study of vector-controlled direct-driven permanent magnet synchronous generator in wind power generation. Electric Power Components & Systems, 37(10), 1162–1179.

    Article  Google Scholar 

  19. Molina, M. G., & Mercado, P. E. (2011). Modelling and control design of pitch-controlled variable speed wind turbines. In I. Al-Bahadly (Ed.), Wind turbines (1st ed.). Vienna: InTech Education and Publishing.

    Google Scholar 

  20. Raiambal, K., & Chellamuthu, C. (2002). Modeling and simulation of grid connected wind electric generating system. Proceedings of IEEE TENCON (pp. 1847–1852).

    Google Scholar 

  21. Carrasco, J. M., Garcia-Franquelo, L., Bialasiewicz, J. T., Galván, E., Portillo-Guisado, R. C., Martín-Prats, M. A., León, J. I., & Moreno-Alfonso, N. (2006). Power electronic systems for the grid integration of renewable energy sources: A survey. IEEE Transactions on Industrial Electronics, 53(4), 1002–1016.

    Article  Google Scholar 

  22. Sanchez, A. G., Molina, M. G., & Rizzato Lede, A. M. (2012). Dynamic model of wind energy conversion systems with PMSG-based variable-speed wind turbines for power system studies. International Journal of Hydrogen Energy, 37(13), 10064–10069.

    Article  Google Scholar 

  23. International Energy Agency. (2010, October) Technology road map, solar photovoltaic energy [Internet]. Retrieved June 25, from http://www.iea.org/papers/2010/pv_roadmap.pdf

  24. Greentechmedia. (2014, March) Solar PV pricing continues to fall during a record-breaking 2014 [Internet]. Retrieved June 2015, from http://www.greentechmedia.com/articles/read/solar-pv-system-prices-continue-to-fall-during-a-record-breaking-2014

  25. Bloomberg News. China targets 70 gigawatts of solar power to cut coal reliance. Retrieved May 2014.

    Google Scholar 

  26. CleanTechnica. Jump up to China’s National Energy Administration: 17.8 GW of new solar PV In 2015 (~20% Increase). Retrieved March 2015.

    Google Scholar 

  27. Nelson, V. C. (2011). Introduction to renewable energy. Boca Raton: CRC Press.

    Book  Google Scholar 

  28. Sabonnadiere, J. C. (2009). Renewable energy technologies (1st ed.). Hoboken: Wiley-ISTE.

    Google Scholar 

  29. Chowdhury, S., Chowdhury, S. P., & Crossley, P. (2009). Microgrids and active distribution networks. London: The Institution of Engineering and Technology.

    Book  Google Scholar 

  30. Wayne Beaty, H., & Fink, D. G. (2013). Standard handbook for electrical engineers (16th ed.). New York: McGraw-Hill.

    Google Scholar 

  31. Khaligh, A., & Onar, O. C. (2010). Energy harvesting solar, wind, and ocean energy conversion systems. Boca Raton: CRC Press.

    Google Scholar 

  32. Duffie, J. A., & Beckman, W. A. (1991). Solar engineering of thermal processes (2nd ed.). New York: John Wiley & Sons.

    Google Scholar 

  33. Molina, M. G., & Espejo, E. J. (2014). Modeling and simulation of grid-connected photovoltaic energy conversion systems. International Journal of Hydrogen Energy, 39(16), 8702–8707.

    Article  Google Scholar 

  34. Teodorescu, R., Liserre, M., & Rodríguez, P. (2011). Introduction in grid converters for photovoltaic and wind power systems. Chichester: John Wiley & Sons, Ltd.

    Book  Google Scholar 

  35. Reisi, A. R., Moradi, M. H., & Jamasb, S. (2013). Classification and comparison of maximum power point tracking techniques for photovoltaic system: A review. Renewable and Sustainable Energy Reviews, 19, 433–443.

    Article  Google Scholar 

  36. Molina, M. G. (2016). Modelling and control of grid-connected solar photovoltaic systems. In W.-P. Cao & Y. Hu (Eds.), Renewable energy utilization and system integration (1st ed.). Vienna: InTech Education and Publishing.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro E. Mercado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Molina, M.G., Mercado, P.E. (2019). Renewable Energy Technologies for Microgrids. In: Zambroni de Souza, A., Castilla, M. (eds) Microgrids Design and Implementation. Springer, Cham. https://doi.org/10.1007/978-3-319-98687-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98687-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98686-9

  • Online ISBN: 978-3-319-98687-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics