Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 587 Accesses

Abstract

In this chapter, data sets and feature learning result observations in respiratory artefact removal for lung function tests, specifically the forced oscillation technique (FOT) are presented. The first section introduces the FOT method and respiratory artefacts. The next two sections describe our FOT data sets and performance metrics used to evaluate the proposed scheme in Sect. 5. Section 6 discusses feature selection for FOT data, and two different models for artefact detectors are presented in Sects. 7 and 8. The last four sections reports results/discussion of feature ranking and performance comparison between our proposed detectors and existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ackerman M, Ben-David S (2009) Clusterability: a theoretical study. In: International conference on artificial intelligence and statistics, pp 1–8

    Google Scholar 

  2. Altman NS (1992) An introduction to kernel and nearest-neighbor nonparametric regression. Am Stat 46(3):175–185

    MathSciNet  Google Scholar 

  3. Bateman E, Hurd S, Barnes P, Bousquet J, Drazen J, FitzGerald M, Gibson P, Ohta K, O’byrne P, Pedersen S et al (2008) Global strategy for asthma management and prevention: gina executive summary. Eur Respir J 31(1):143–178

    Google Scholar 

  4. Beydon N, Davis S, Lombardi E, Allen J, Arets H, Aurora P, Bisgaard H, Davis G, Ducharme F, Eigen H, Gappa M, Gaultier C, Gustafsson P, Hall G, Hantos Z, Healy M, Jones M, Klug B, Carlsen K, McKenzie S, Marchal F, Mayer O, Merkus P, Morris M, Oostveen E, Pillow J, Seddon P, Silverman M, Sly P, Stocks J, Tepper R, Vilozni D, Wilson N (2007) An official American thoracic society/European respiratory society statement: pulmonary function testing in preschool children. Am J Respir Crit Care Med 175(12):1304–1345. https://doi.org/10.1164/rccm.200605-642ST

    Article  Google Scholar 

  5. Bhatawadekar SA, Leary D, Chen Y, Ohishi J, Hernandez P, Brown T, McParland C, Maksym GN (2013) A study of artifacts and their removal during forced oscillation of the respiratory system. Ann Biomed Eng 41(5):990–1002

    Article  Google Scholar 

  6. Brown NJ, Thorpe CW, Thompson B, Berend N, Downie S, Verbanck S, Salome CM, King GG (2004) A comparison of two methods for measuring airway distensibility: nitrogen washout and the forced oscillation technique. Physiol Meas 25(4):1067–1075

    Article  Google Scholar 

  7. Challis R, Kitney R (1990) Biomedical signal processing (part 3 of 4): the power spectrum and coherence function. Med Biol Eng Comput 28(6):509–524

    Article  Google Scholar 

  8. Chang CC, Lin CJ (2011) Libsvm: a library for support vector machines. ACM Trans Intell Syst Technol 2(3):27:1–27:27

    Google Scholar 

  9. Daubechies I, Bates BJ (1993) Ten lectures on wavelets. J Acoust Soc Am 93(3):1671–1671

    Article  Google Scholar 

  10. Dellacà RL, Pompilio P, Walker P, Duffy N, Pedotti A, Calverley PM (2009) Effect of bronchodilation on expiratory flow limitation and resting lung mechanics in COPD. Eur Respir J 33(6):1329–1337

    Article  Google Scholar 

  11. DuBois AB, Brody AW, Lewis DH, Burgess BF et al (1956) Oscillation mechanics of lungs and chest in man. J Appl Physiol 8(6):587–594

    Article  Google Scholar 

  12. Dundar M, Krishnapuram B, Bi J, Rao RB (2007) Learning classifiers when the training data is not IID. In: Proceedings of the 20th international joint conference on artifical intelligence, IJCAI 2007. Morgan Kaufmann Publishers Inc., San Francisco, USA, pp 756–761. http://dl.acm.org/citation.cfm?id=1625275.1625397

  13. Ezz WN, Mazaheri M, Robinson P, Johnson GR, Clifford S, He C, Morawska L, Marks GB (2015) Ultrafine particles from traffic emissions and children’s health (UPTECH) in Brisbane, Queensland (Australia): study design and implementation. Int J Environ Res Public Health 12(2):1687–1702, https://doi.org/10.3390/ijerph120201687. https://eprints.qut.edu.au/82503/

  14. Freund Y, Schapire RE (1997) A decision-theoretic generalization of on-line learning and an application to boosting. J Comput Syst Sci 55(1):119–139

    Article  MathSciNet  Google Scholar 

  15. Kira K, Rendell LA (1992) The feature selection problem: traditional methods and a new algorithm. In: Proceedings of the 10th national conference on artificial intelligence, AAAI 1992. AAAI Press, pp 129–134. http://dl.acm.org/citation.cfm?id=1867135.1867155

  16. Lilliefors HW (1967) On the Kolmogorov-Smirnov test for normality with mean and variance unknown. J Am Stat Assoc 62(318):399–402

    Article  Google Scholar 

  17. Lorino H, Mariette C, Karouia M, Lorino A (1993) Influence of signal processing on estimation of respiratory impedance. J Appl Physiol 74(1):215–223

    Article  Google Scholar 

  18. Massey FJ Jr (1951) The Kolmogorov-Smirnov test for goodness of fit. J Am Stat Assoc 46(253):68–78

    Article  Google Scholar 

  19. Mazaheri M, Clifford S, Jayaratne R, Megat Mokhtar MA, Fuoco F, Buonanno G, Morawska L (2013) School childrens personal exposure to ultrafine particles in the urban environment. Environ Sci Technol 48(1):113–120

    Article  Google Scholar 

  20. Nunn JF (2013) Applied respiratory physiology. Butterworth-Heinemann

    Google Scholar 

  21. Oostveen E, MacLeod D, Lorino H, Farre R, Hantos Z, Desager K, Marchal F et al (2003) The forced oscillation technique in clinical practice: methodology, recommendations and future developments. Eur Respir J 22(6):1026–1041

    Article  Google Scholar 

  22. Pham TT, Thamrin C, Robinson PD, McEwan A, Leong PH (2016) Respiratory artefact removal in forced oscillation measurements: a machine learning approach. IEEE Trans Biomed Eng 64(7):1–9

    Google Scholar 

  23. Pham TT, Leong PH, Robinson PD, Gutzler T, Jee AS, King GG, Thamrin C (2017) Automated quality control of forced oscillation measurements: respiratory artifact detection with advanced feature extraction. J Appl Physiol 123(4):781–789

    Article  Google Scholar 

  24. Que CL, Kenyon C, Olivenstein R, Macklem PT, Maksym GN (2001) Homeokinesis and short-term variability of human airway caliber. J Appl Physiol 91(3):1131–1141

    Article  Google Scholar 

  25. Rijsbergen CJV (1979) Information retrieval, 2nd edn. Butterworth-Heinemann, Newton, USA

    MATH  Google Scholar 

  26. Robinson PD, Turner M, Brown NJ, Salome C, Berend N, Marks GB, King GG (2011) Procedures to improve the repeatability of forced oscillation measurements in school-aged children. Respir Physiol Neurobiol 177(2):199–206

    Article  Google Scholar 

  27. Schölkopf B, Platt JC, Shawe-Taylor J, Smola AJ, Williamson RC (2001) Estimating the support of a high-dimensional distribution. Neural Comput 13(7):1443–1471

    Article  Google Scholar 

  28. Schweitzer C, Chone C, Marchal F (2003) Influence of data filtering on reliability of respiratory impedance and derived parameters in children. Pediatr Pulmonol 36(6):502–508

    Article  Google Scholar 

  29. Shannon C (1948) A mathematical theory of communication. Bell Syst Tech J 27(3):379–423

    Article  MathSciNet  Google Scholar 

  30. Smith H, Reinhold P, Goldman M (2005) Forced oscillation technique and impulse oscillometry. Eur Respir Monogr 31:72

    Google Scholar 

  31. Székely GJ, Rizzo ML, Bakirov NK et al (2007) Measuring and testing dependence by correlation of distances. Ann Stat 35(6):2769–2794

    Article  MathSciNet  Google Scholar 

  32. Thorpe CW, Salome CM, Berend N, King GG (2004) Modeling airway resistance dynamics after tidal and deep inspirations. J Appl Physiol 97(5):1643–1653

    Article  Google Scholar 

  33. Timmins SC, Diba C, Thamrin C, Berend N, Salome CM, King GG (2012) The feasibility of home monitoring of impedance with the forced oscillation technique in chronic obstructive pulmonary disease subjects. Physiol Meas 34(1):67–81

    Article  Google Scholar 

  34. Timmins SC, Coatsworth N, Palnitkar G, Thamrin C, Farrow CE, Schoeffel RE, Berend N, Diba C, Salome CM, King GG (2013) Day-to-day variability of oscillatory impedance and spirometry in asthma and COPD. Respir Physiol Neurobiol 185(2):416–424

    Article  Google Scholar 

  35. Vural V, Fung G, Krishnapuram B, Dy J, Rao B (2006) Batch classification with applications in computer aided diagnosis. In: Machine learning: ECML 2006. Springer, pp 449–460

    Google Scholar 

  36. Wilcoxon F (1945) Individual comparisons by ranking methods. Biom Bull 80–83

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thuy T. Pham .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pham, T.T. (2019). Collective Anomaly Detection: Application to Respiratory Artefact Removals. In: Applying Machine Learning for Automated Classification of Biomedical Data in Subject-Independent Settings. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-98675-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98675-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98674-6

  • Online ISBN: 978-3-319-98675-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics