Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 621 Accesses

Abstract

This chapter describes details of settings and experiment reports for a point anomaly detection application. First, a dataset of freezing of gait (FoG) in patients with advanced Parkinson’s disease is explained. Then, specific classification settings for FoG detection are provided. Final sections are results of feature ranking and performance comparisons with existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ackerman M, Ben-David S (2009) Clusterability: a theoretical study. In: International conference on artificial intelligence and statistics, pp 1–8

    Google Scholar 

  2. Bachlin M, Plotnik M, Roggen D, Maidan I, Hausdorff J, Giladi N, Troster G (2010) Wearable assistant for Parkinson’s disease patients with the freezing of gait symptom. IEEE Trans Inf Technol Biomed 14(2):436–446

    Article  Google Scholar 

  3. Bloem B, Hausdorff J, Visser J, Giladi N (2004) Falls and freezing of gait in Parkinson’s disease: a review of two interconnected, episodic phenomena. Mov Disord 19(8):871–884

    Article  Google Scholar 

  4. Challis R, Kitney R (1990) Biomedical signal processing (part 3 of 4):the power spectrum and coherence function. Med Biol Eng Comput 28(6):509–524

    Article  Google Scholar 

  5. Cole B, Roy S, Nawab S (2011) Detecting freezing-of-gait during unscripted and unconstrained activity. In: Annual international conference of the IEEE engineering in medicine and biology society, EMBC, pp 5649–5652

    Google Scholar 

  6. Daubechies I, Bates BJ (1993) Ten lectures on wavelets. J Acoust Soc Am 93(3):1671–1671

    Article  Google Scholar 

  7. Fahn S, Elton R (1987) Unified rating scale for Parkinson’s disease. In: Recent developments in Parkinson’s disease, pp 153–163

    Google Scholar 

  8. Folstein MF, Folstein SE, McHugh PR (1975) mini-mental state: a practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12(3):189–198

    Article  Google Scholar 

  9. Gazit E, Bernad-Elazari H, Moore S, Cho C, Kubota K, Vincent L, Cohen S, Reitblat L, Fixler N, Mirelman A et al (2015) Assessment of Parkinsonian motor symptoms using a continuously worn smartwatch: preliminary experience. Mov Disord 30:S272–S272

    Google Scholar 

  10. Gibb WRG, Lees A (1988) A comparison of clinical and pathological features of young-and old-onset Parkinson’s disease. Neurology 38(9):1402–1402

    Article  Google Scholar 

  11. Giladi N, Tal J, Azulay T, Rascol O, Brooks DJ, Melamed E, Oertel W, Poewe WH, Stocchi F, Tolosa E (2009) Validation of the freezing of gait questionnaire in patients with Parkinson’s disease. Mov Disord 24(5):655–661

    Article  Google Scholar 

  12. Goetz CG, Tilley BC, Shaftman SR, Stebbins GT, Fahn S, Martinez-Martin P, Poewe W, Sampaio C, Stern MB, Dodel R et al (2008) Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov Disord 23(15):2129–2170

    Article  Google Scholar 

  13. Han J, Lee W, Ahn T, Jeon B, Park KS (2003) Gait analysis for freezing detection in patients with movement disorder using three dimensional acceleration system. In: Proceedings of the 25th annual international conference of the IEEE engineering in medicine and biology society, vol 2, pp 1863–1865

    Google Scholar 

  14. Hoehn MM, Yahr MD (1998) Parkinsonism: onset, progression, and mortality. Neurology 50(2):318–318

    Article  Google Scholar 

  15. Hua JC, Roy S, McCauley JL, Gunaratne GH (2016) Using dynamic mode decomposition to extract cyclic behavior in the stock market. Phys A Stat Mech Appl 448:172–180

    Article  Google Scholar 

  16. Kira K, Rendell LA (1992) The feature selection problem: traditional methods and a new algorithm. In: Proceedings of the tenth national conference on artificial intelligence, AAAI Press, AAAI’92, pp 129–134. http://dl.acm.org/citation.cfm?id=1867135.1867155

  17. Koopman BO (1931) Hamiltonian systems and transformation in Hilbert space. Proc Natl Acad Sci USA 17(5):315

    Article  Google Scholar 

  18. Latt M, Lord S, Morris J, Fung V (2009) Clinical and physiological assessments for elucidating falls risk in Parkinson’s disease. Mov Disord 24(9):1280–1289

    Article  Google Scholar 

  19. Macht M, Kaussner Y, Moller J, Stiasny-Kolster K, Eggert K, Kruger H, Ellgring H (2007) Predictors of freezing in Parkinson’s disease: a survey of 6,620 patients. Mov Disord 22(7):953–956

    Article  Google Scholar 

  20. Mazilu S, Hardegger M, Zhu Z, Roggen D, Troster G, Plotnik M, Hausdorff J (2012) Online detection of freezing of gait with smartphones and machine learning techniques. In: 6th international conference on pervasive computing technologies for healthcare (PervasiveHealth), pp 123–130

    Google Scholar 

  21. Mazilu S, Calatroni A, Gazit E, Roggen D, Hausdorff JM, Tröster G (2013) Feature learning for detection and prediction of freezing of gait in Parkinson’s disease. In: Machine learning and data mining in pattern recognition. Springer, pp 144–158

    Google Scholar 

  22. McGraw KO, Wong SP (1996) Forming inferences about some intraclass correlation coefficients. Psychol Methods 1(1):30

    Article  Google Scholar 

  23. Moore S, MacDougall H, Ondo W (2008) Ambulatory monitoring of freezing of gait in Parkinson’s disease. J Neurosci Methods 167(2):340–348

    Article  Google Scholar 

  24. Moore ST, Yungher DA, Morris TR, Dilda V, MacDougall HG, Shine JM, Naismith SL, Lewis SJG (2013) Autonomous identification of freezing of gait in Parkinson’s disease from lower-body segmental accelerometry. J Neuroeng Rehabil 10(1):1

    Article  Google Scholar 

  25. Moreau C, Defebvre L, Bleuse S, Blatt J, Duhamel A, Bloem B, Destée A, Krystkowiak P (2008) Externally provoked freezing of gait in open runways in advanced Parkinsons disease results from motor and mental collapse. J Neural Transm 115(10):1431–1436

    Article  Google Scholar 

  26. Morris TR, Cho C, Dilda V, Shine JM, Naismith SL, Lewis SJ, Moore ST (2012) A comparison of clinical and objective measures of freezing of gait in Parkinson’s disease. Parkinsonism Related Disord 18(5):572–577

    Article  Google Scholar 

  27. Paul S, Canning C, Sherrington C, Lord S, Close J, Fung V (2013) Three simple clinical tests to accurately predict falls in people with Parkinson’s disease. Mov Disord 28(5):655–662

    Article  Google Scholar 

  28. Pham TT, Moore ST, Lewis SJG, Nguyen DN, Dutkiewicz E, Fuglevand AJ, McEwan AL, Leong PH (2017) Freezing of gait detection in Parkinson’s disease: a subject-independent detector using anomaly scores. IEEE Trans Biomed Eng 64(11):2719–2728

    Article  Google Scholar 

  29. Reimer J, Grabowski M, Lindvall O, Hagell P (2004) Use and interpretation of on-off diaries in Parkinson’s disease. J Neurol Neurosurg Psychiatry 75(3):396–400

    Article  Google Scholar 

  30. Rijsbergen CJV (1979) Information retrieval, 2nd edn. Butterworth-Heinemann, Newton, MA, USA

    MATH  Google Scholar 

  31. Schaafsma J, Balash Y, Gurevich T, Bartels A, Hausdorff J, Giladi N (2003) Characterization of freezing of gait subtypes and the response of each to levodopa in Parkinson’s disease. Eur J Neurol 10(4):391–398

    Article  Google Scholar 

  32. Schmid PJ (2010) Dynamic mode decomposition of numerical and experimental data. J Fluid Mech 656:5–28

    Article  MathSciNet  Google Scholar 

  33. Sejdi E, Lowry KA, Bellanca J, Redfern MS, Brach JS (2014) A comprehensive assessment of gait accelerometry signals in time, frequency and time-frequency domains. IEEE Trans Neural Syst Rehabil Eng 22(3):603–612

    Article  Google Scholar 

  34. Shannon C (1948) A mathematical theory of communication. Bell Syst Techn J 27(3):379–423

    Article  MathSciNet  Google Scholar 

  35. Shine J, Moore S, Bolitho S, Morris T, Dilda V, Naismith S, Lewis S (2012) Assessing the utility of freezing of gait questionnaires in Parkinsons disease. Parkinsonism Relat Disord 18(1):25–29

    Article  Google Scholar 

  36. Shrout PE, Fleiss JL (1979) Intraclass correlations: uses in assessing rater reliability. Psychol Bull 86(2):420

    Article  Google Scholar 

  37. Snijders AH, Weerdesteyn V, Hagen YJ, Duysens J, Giladi N, Bloem BR (2010) Obstacle avoidance to elicit freezing of gait during treadmill walking. Mov Disord 25(1):57–63

    Article  Google Scholar 

  38. Zach H, Janssen AM, Snijders AH, Delval A, Ferraye MU, Auff E, Weerdesteyn V, Bloem BR, Nonnekes J (2015) Identifying freezing of gait in Parkinson’s disease during freezing provoking tasks using waist-mounted accelerometry. Parkinsonism Relat Disord 21(11):1362–1366

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thuy T. Pham .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pham, T.T. (2019). Point Anomaly Detection: Application to Freezing of Gait Monitoring . In: Applying Machine Learning for Automated Classification of Biomedical Data in Subject-Independent Settings. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-98675-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98675-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98674-6

  • Online ISBN: 978-3-319-98675-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics