Skip to main content

Disruption of Protein Homeostasis and Activation of Cellular Stress Pathways in Autoinflammation

  • Chapter
  • First Online:
Textbook of Autoinflammation

Abstract

In addition to being a critical part of host defense against pathogens, the inflammatory response can also be triggered by a number of perturbations to cellular homeostasis, including responses to protein misfolding and endoplasmic reticulum (ER) stress. Physiologically, these responses can lead to activation of tissue repair pathways, but when not properly regulated, these stress response pathways can lead to chronic inflammation. ER stress and other inflammatory pathways triggered by misfolded proteins have been implicated in the pathogenesis of several monogenic autoinflammatory diseases, and also may play a role in other conditions such as neurodegenerative diseases, where increasing evidence has accumulated about the contribution of inflammation to disease pathogenesis. Alterations in protein homeostasis can trigger autoinflammatory diseases in a number of ways, including (1) a pathogenic protein is itself misfolded, primarily activating inflammatory signaling pathways, as with the mutant tumor necrosis factor receptor 1 (TNFR1) protein in TNF receptor-associated periodic syndrome (TRAPS), or triggering an intracellular ER stress response, such as the human leukocyte antigen (HLA)-B27 protein in spondylarthropathies; (2) inflammatory responses can also be triggered by extracellular misfolded proteins, and (3) genetic defects in protein homeostasis pathways which lead to inflammatory diseases. Examples of this mechanism are proteasome mutations in chronic atypical neutrophilic dermatitis with lipodystrophy and elevated temperature (CANDLE) and related syndromes, and variants in the gene encoding ATG16L which reduce the efficiency of autophagy and related secretory pathways in inflammatory bowel disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AD:

Alzheimer disease

AIM:

Absent in melanoma

AMPK:

AMP-activated protein kinase

AS:

Ankylosing spondylitis

ATG:

Autophagy-related genes

Bcl-2:

B-cell lymphoma 2

CANDLE:

Chronic atypical neutrophilic dermatitis with lipodystrophy and elevated temperature

cGAMP:

cyclic guanosine monophosphate–adenosine monophosphate

cGAS:

cyclic guanosine monophosphate-adenosine monophosphate synthetase

FIP200:

Family interacting protein of 200

HLA:

Human leukocyte antigen

IRF:

Interferon regulatory transcription factor

ISG:

Interferon-stimulated gene

LAP:

LC3-associated phagocytosis

LC3:

Microtubule-associated protein light chain 3

MHC:

Major histocompatibility complex

mTOR:

mammalian target of rapamycin

NEDD:

Neural precursor cell expressed, developmentally down-regulated

NF-κB:

Nuclear factor kappa B

NK:

Natural killer

NLRP:

NOD-like receptor family pyrin domain containing

NMDA:

N-methyl-d-aspartate

NOD:

Nucleotide-binding oligomerization domain

PARKIN:

Parkinson kinase

PDA:

Protein disulfide isomerase

PE:

Phosphatidylethanolamine

PI:

Phosphatidylinositol

PINK:

PTEN-induced putative kinase 1

ROS:

Reactive oxygen species

SAVI:

STING-associated vasculopathy with onset in infancy

STING:

Stimulator of interferon genes

SUMO:

Small ubiquitin-like modifier

TBK:

TANK binding kinase

TLR:

Toll-like receptor

TNF:

Tumor necrosis factor

TORC:

Target of rapamycin complex

TRAPS:

TNF receptor-associated periodic syndrome

TRIM:

The superfamily of tripartite motif-containing

ULK:

unc-51 like autophagy activating kinase

UPR:

Unfolded protein response

UPS:

Ubiquitin–proteasome system

VPS:

Vacuolar protein sorting

WIP:

WPP domain–interacting proteins

References

  1. van Deventer S, Neefjes J. The immunoproteasome cleans up after inflammation. Cell. 2010;142(4):517–8.

    Article  PubMed  Google Scholar 

  2. Green DR, Levine B. To be or not to be? How selective autophagy and cell death govern cell fate. Cell. 2014;157(1):65–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Martinez J, Malireddi RK, Lu Q, et al. Molecular characterization of LC3-associated phagocytosis reveals distinct roles for Rubicon, NOX2 and autophagy proteins. Nat Cell Biol. 2015;17(7):893–906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Martinez J, Cunha LD, Park S, et al. Noncanonical autophagy inhibits the autoinflammatory, lupus-like response to dying cells. Nature. 2016;533(7601):115–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Saitoh T, Akira S. Regulation of inflammasomes by autophagy. J Allergy Clin Immunol. 2016;138(1):28–36.

    Article  CAS  PubMed  Google Scholar 

  6. Shi CS, Shenderov K, Huang NN, et al. Activation of autophagy by inflammatory signals limits IL-1beta production by targeting ubiquitinated inflammasomes for destruction. Nat Immunol. 2012;13(3):255–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kimura T, Jain A, Choi SW, et al. TRIM-mediated precision autophagy targets cytoplasmic regulators of innate immunity. J Cell Biol. 2015;210(6):973–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Harris J, Hartman M, Roche C, et al. Autophagy controls IL-1beta secretion by targeting pro-IL-1beta for degradation. J Biol Chem. 2011;286(11):9587–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Harris J. Autophagy and IL-1 family cytokines. Front Immunol. 2013;4:83.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Saitoh T, Fujita N, Jang MH, et al. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature. 2008;456(7219):264–8.

    Article  CAS  PubMed  Google Scholar 

  11. Nakahira K, Haspel JA, Rathinam VA, et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat Immunol. 2011;12(3):222–30.

    Article  CAS  PubMed  Google Scholar 

  12. Sun L, Wu J, Du F, Chen X, Chen Z. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science (New York, NY). 2013;339(6121):786–91.

    Article  CAS  Google Scholar 

  13. Liu Y, Jesus AA, Marrero B, et al. Activated STING in a vascular and pulmonary syndrome. N Engl J Med. 2014;371(6):507–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Moretti J, Roy S, Bozec D, et al. STING senses microbial viability to orchestrate stress-mediated autophagy of the endoplasmic reticulum. Cell. 2017;171(4):809–23 e13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Konno H, Konno K, Barber G. Cyclic dinucleotides trigger ULK1 (ATG1) phosphorylation of STING to prevent sustained innate immune signaling. Cell. 2013;155(3):688–98.

    Article  CAS  PubMed  Google Scholar 

  16. McDermott MF, Aksentijevich I, Galon J, et al. Germline mutations in the extracellular domains of the 55 kDa TNF receptor, TNFR1, define a family of dominantly inherited autoinflammatory syndromes. Cell. 1999;97(1):133–44.

    Article  CAS  PubMed  Google Scholar 

  17. Bulua AC, Simon A, Maddipati R, et al. Mitochondrial reactive oxygen species promote production of proinflammatory cytokines and are elevated in TNFR1-associated periodic syndrome (TRAPS). J Exp Med. 2011;208(3):519–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bachetti T, Chiesa S, Castagnola P, et al. Autophagy contributes to inflammation in patients with TNFR-associated periodic syndrome (TRAPS). Ann Rheum Dis. 2013;72(6):1044–52.

    Article  CAS  PubMed  Google Scholar 

  19. Simon A, Park H, Maddipati R, et al. Concerted action of wild-type and mutant TNF receptors enhances inflammation in TNF receptor 1-associated periodic fever syndrome. Proc Natl Acad Sci U S A. 2010;107(21):9801–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dickie LJ, Aziz AM, Savic S, et al. Involvement of X-box binding protein 1 and reactive oxygen species pathways in the pathogenesis of tumour necrosis factor receptor-associated periodic syndrome. Ann Rheum Dis. 2012;71(12):2035–43.

    Article  CAS  PubMed  Google Scholar 

  21. De Benedetti F, Gattorno M, Anton J, et al. Canakinumab for the treatment of autoinflammatory recurrent fever syndromes. N Engl J Med. 2018;378(20):1908–19.

    Article  PubMed  Google Scholar 

  22. Cadwell K, Liu JY, Brown SL, et al. A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature. 2008;456(7219):259–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Braun J, Sieper J. Ankylosing spondylitis. Lancet. 2007;369(9570):1379–90.

    Article  PubMed  Google Scholar 

  24. Allen RL, Trowsdale J. Recognition of classical and heavy chain forms of HLA-B27 by leukocyte receptors. Curr Mol Med. 2004;4(1):59–65.

    Article  CAS  PubMed  Google Scholar 

  25. Kollnberger S, Bowness P. The role of B27 heavy chain dimer immune receptor interactions in spondyloarthritis. Adv Exp Med Biol. 2009;649:277–85.

    Article  CAS  PubMed  Google Scholar 

  26. Goodall JC, Wu C, Zhang Y, et al. Endoplasmic reticulum stress-induced transcription factor, CHOP, is crucial for dendritic cell IL-23 expression. Proc Natl Acad Sci U S A. 2010;107(41):17698–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Colbert RA, Tran TM, Layh-Schmitt G. HLA-B27 misfolding and ankylosing spondylitis. Mol Immunol. 2014;57(1):44–51.

    Article  CAS  PubMed  Google Scholar 

  28. Sherlock JP, Joyce-Shaikh B, Turner SP, et al. IL-23 induces spondyloarthropathy by acting on ROR-gammat+ CD3+CD4-CD8- entheseal resident T cells. Nat Med. 2012;18(7):1069–76.

    Article  CAS  PubMed  Google Scholar 

  29. Taurog JD, Chhabra A, Colbert RA. Ankylosing spondylitis and axial spondyloarthritis. N Engl J Med. 2016;374(26):2563–74.

    Article  PubMed  Google Scholar 

  30. Martinon F, Chen X, Lee AH, Glimcher LH. TLR activation of the transcription factor XBP1 regulates innate immune responses in macrophages. Nat Immunol. 2010;11(5):411–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Scheper W, Hoozemans JJ. The unfolded protein response in neurodegenerative diseases: a neuropathological perspective. Acta Neuropathol. 2015;130(3):315–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Costa RO, Lacor PN, Ferreira IL, et al. Endoplasmic reticulum stress occurs downstream of GluN2B subunit of N-methyl-d-aspartate receptor in mature hippocampal cultures treated with amyloid-beta oligomers. Aging Cell. 2012;11(5):823–33.

    Article  CAS  PubMed  Google Scholar 

  33. Uehara T, Nakamura T, Yao D, et al. S-nitrosylated protein-disulphide isomerase links protein misfolding to neurodegeneration. Nature. 2006;441(7092):513–7.

    Article  CAS  PubMed  Google Scholar 

  34. Salminen A, Kauppinen A, Suuronen T, Kaarniranta K, Ojala J. ER stress in Alzheimer’s disease: a novel neuronal trigger for inflammation and Alzheimer’s pathology. J Neuroinflammation. 2009;6:41.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Masters SL, Dunne A, Subramanian SL, et al. Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1beta in type 2 diabetes. Nat Immunol. 2010;11(10):897–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Larsen CM, Faulenbach M, Vaag A, et al. Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N Engl J Med. 2007;356(15):1517–26.

    Article  CAS  PubMed  Google Scholar 

  37. Makley LN, McMenimen KA, DeVree BT, et al. Pharmacological chaperone for alpha-crystallin partially restores transparency in cataract models. Science. 2015;350(6261):674–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Galluzzi L, Bravo-San Pedro JM, Levine B, Green DR, Kroemer G. Pharmacological modulation of autophagy: therapeutic potential and persisting obstacles. Nat Rev Drug Discov. 2017;16(7):487–511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rubinsztein DC, Codogno P, Levine B. Autophagy modulation as a potential therapeutic target for diverse diseases. Nat Rev Drug Discov. 2012;11(9):709–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cromm PM, Crews CM. Targeted protein degradation: from chemical biology to drug discovery. Cell Chem Biol. 2017;24(9):1181–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Agyemang AF, Harrison SR, Siegel RM, McDermott MF. Protein misfolding and dysregulated protein homeostasis in autoinflammatory diseases and beyond. Semin Immunopathol. 2015;37(4):335–47.

    Article  CAS  PubMed  Google Scholar 

  42. Park H, Bourla AB, Kastner DL, Colbert RA, Siegel RM. Lighting the fires within: the cell biology of autoinflammatory diseases. Nat Rev Immunol. 2012;12(8):570–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard M. Siegel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cudrici, C.D., Siegel, R.M. (2019). Disruption of Protein Homeostasis and Activation of Cellular Stress Pathways in Autoinflammation. In: Hashkes, P., Laxer, R., Simon, A. (eds) Textbook of Autoinflammation. Springer, Cham. https://doi.org/10.1007/978-3-319-98605-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98605-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98604-3

  • Online ISBN: 978-3-319-98605-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics