Corticosteroid, Other Biologic and Small Molecule Therapies in Systemic Autoinflammatory Disorders

  • Helen J. LachmannEmail author


Not all patients with autoinflammatory disorders respond to treatment with colchicine or anti-interleukin (IL)-1 agents. Although no other biologics nor small molecule pharmaceuticals are currently licenced for use in autoinflammatory disease several agents are used. The pharmacology, mechanisms of action and safety data of these medications are summarised in this chapter. These include corticosteroids, tumor necrosis factor (TNF), IL-6 and Janus kinase (JAK) inhibitors. There are published consensus criteria which provide guidance to the management of familial Mediterranean fever (FMF), cryopyrin-associated periodic syndromes (CAPS), tumor necrosis factor receptor associated periodic syndrome (TRAPS) and mevalonate kinase deficiency (MKD).


Corticosteroids Monoclonal antibodies Etanercept Infliximab Adalimumab Interleukin-6 Tocilizumab Janus kinase inhibitors Baricitinib Tofacitinib 



Chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature


Cryopyrin-associated periodic syndromes


Chimeric antigen receptors


Chronic non-bacterial osteomyelitis


C-reactive protein


Deficiency of adenosine deaminase 2


Food and Drug Administration


Familial Mediterranean fever


Granulocyte-macrophage colony-stimulating factor


Glucocorticoid Toxicity Index






Janus kinase


Mevalonate kinase deficiency


Nuclear factor kappa B


Nucleotide-binding oligomerization domain, leucine rich repeat and pyrin domain


Nonsteroidal anti-inflammatory drugs


Pyogenic arthritis, pyoderma gangrenosum, acne


Periodic fever, aphthous stomatitis, pharyngitis, cervical adenitis


Serum amyloid A


STING-associated vasculopathy with onset in infancy


Single Hub and Access point for Paediatric Rheumatology in Europe


Suppressor of cytokine signaling


Signal transducer and activator of transcription


Tumor necrosis factor


Tumor necrosis factor receptor-associated periodic syndrome


Tyrosine kinase


United Kingdom


United States of America


  1. 1.
    Overman RA, Yeh JY, Deal CL. Prevalence of oral glucocorticoid usage in the United States: a general population perspective. Arthritis Care Res (Hoboken). 2013;65:294–8.CrossRefGoogle Scholar
  2. 2.
    Barnes PJ. How corticosteroids control inflammation: quintiles prize lecture 2005. Br J Pharmacol. 2006;148:245–54.CrossRefGoogle Scholar
  3. 3.
    Hench PS, Kendall EC, Slocumb CH, Polley HF. The effect of a hormone of the adrenal cortex (17-hydroxy-11-dehydrocorticosterone: compound E) and of pituitary adrenocortical hormone in arthritis: preliminary report. Ann Rheum Dis. 1949;8:97–104.CrossRefGoogle Scholar
  4. 4.
    Sedwick C. Wanted: a new model for glucocorticoid receptor transactivation and transrepression. PLoS Biol. 2014;12(3).CrossRefGoogle Scholar
  5. 5.
    Liu L, Wang YX, Zhou J, et al. Rapid non-genomic inhibitory effects of glucocorticoids on human neutrophil degranulation. Inflamm Res. 2005;54:37–41.CrossRefGoogle Scholar
  6. 6.
    Da Silva JA, Jacobs JW, Kirwan JR, et al. Safety of low dose glucocorticoid treatment in rheumatoid arthritis: published evidence and prospective trial data. Ann Rheum Dis. 2006;65:285–93.CrossRefGoogle Scholar
  7. 7.
    Smolen JS, Landewe R, Bijlsma J, et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2016 update. Ann Rheum Dis. 2017;76:960–77.CrossRefGoogle Scholar
  8. 8.
    van der Goes MC, Jacobs JW, Boers M, et al. Monitoring adverse events of low-dose glucocorticoid therapy: EULAR recommendations for clinical trials and daily practice. Ann Rheum Dis. 2010;69:1913–9.CrossRefGoogle Scholar
  9. 9.
    Miloslavsky EM, Naden RP, Bijlsma JW, et al. Development of a glucocorticoid toxicity index (GTI) using multicriteria decision analysis. Ann Rheum Dis. 2017;76:543–6.CrossRefGoogle Scholar
  10. 10.
    Ozen S, Demirkaya E, Erer B, et al. EULAR recommendations for the management of familial Mediterranean fever. Ann Rheum Dis. 2016;75:644–51.CrossRefGoogle Scholar
  11. 11.
    Kaplan E, Mukamel M, Barash J, et al. Protracted febrile myalgia in children and young adults with familial Mediterranean fever: analysis of 15 patients and suggested criteria for working diagnosis. Clin Exp Rheumatol. 2007;25:S114–7.Google Scholar
  12. 12.
    Rom E, Amarilyo G, Levinski Y, et al. Protracted febrile myalgia syndrome treated with pulse of corticosteroids. Semin Arthritis Rheum. 2017;47:897–9.CrossRefGoogle Scholar
  13. 13.
    Kallinich T, Haffner D, Rudolph B, et al. “Periodic fever” without fever: two cases of non-febrile TRAPS with mutations in the TNFRSF1A gene presenting with episodes of inflammation or monosymptomatic amyloidosis. Ann Rheum Dis. 2006;65:958–60.CrossRefGoogle Scholar
  14. 14.
    Drewe E, Powell RJ, McDermott EM. Comment on: failure of anti-TNF therapy in TNF receptor 1-associated periodic syndrome (TRAPS). Rheumatology (Oxford). 2007;46:1865–6.CrossRefGoogle Scholar
  15. 15.
    Drewe E, McDermott EM, Powell PT, Isaacs JD, Powell RJ. Prospective study of anti-tumour necrosis factor receptor superfamily 1B fusion protein, and case study of anti-tumour necrosis factor receptor superfamily 1A fusion protein, in tumour necrosis factor receptor associated periodic syndrome (TRAPS): clinical and laboratory findings in a series of seven patients. Rheumatology (Oxford). 2003;42:235–9.CrossRefGoogle Scholar
  16. 16.
    Ter Haar N, Lachmann H, Ozen S, et al. Treatment of autoinflammatory diseases: results from the Eurofever Registry and a literature review. Ann Rheum Dis. 2013;72:678–85.CrossRefGoogle Scholar
  17. 17.
    Ter Haar NM, Oswald M, Jeyaratnam J, et al. Recommendations for the management of autoinflammatory diseases. Ann Rheum Dis. 2015;74:1636–44.CrossRefGoogle Scholar
  18. 18.
    van der Hilst JC, Bodar EJ, Barron KS, et al. Long-term follow-up, clinical features, and quality of life in a series of 103 patients with hyperimmunoglobulinemia D syndrome. Medicine (Baltimore). 2008;87:301–10.CrossRefGoogle Scholar
  19. 19.
    Stubbs DF. Post-acute myocardial infarction symptomatic pericarditis (PAMISP): report on a large series and the effect of methylprednisolone therapy. J Int Med Res. 1986;14:25–9.CrossRefGoogle Scholar
  20. 20.
    Imazio M, Bobbio M, Cecchi E, et al. Colchicine in addition to conventional therapy for acute pericarditis: results of the COlchicine for acute PEricarditis (COPE) trial. Circulation. 2005;112:2012–6.CrossRefGoogle Scholar
  21. 21.
    Imazio M, Battaglia A, Gaido L, Gaita F. Recurrent pericarditis. La Revue de Medecine Interne. 2017;38:307–11.CrossRefGoogle Scholar
  22. 22.
    Padeh S, Brezniak N, Zemer D, et al. Periodic fever, aphthous stomatitis, pharyngitis, and adenopathy syndrome: clinical characteristics and outcome. J Pediatr. 1999;135:98–101.CrossRefGoogle Scholar
  23. 23.
    Yazgan H, Gultekin E, Yazicilar O, Sagun OF, Uzun L. Comparison of conventional and low dose steroid in the treatment of PFAPA syndrome: preliminary study. Int J Pediatr Otorhinolaryngol. 2012;76:1588–90.CrossRefGoogle Scholar
  24. 24.
    Hofer M, Pillet P, Cochard MM, et al. International periodic fever, aphthous stomatitis, pharyngitis, cervical adenitis syndrome cohort: description of distinct phenotypes in 301 patients. Rheumatology (Oxford). 2014;53:1125–9.CrossRefGoogle Scholar
  25. 25.
    Tasher D, Stein M, Dalal I, Somekh E. Colchicine prophylaxis for frequent periodic fever, aphthous stomatitis, pharyngitis and adenitis episodes. Acta Paediatr. 2008;97:1090–2.CrossRefGoogle Scholar
  26. 26.
    Caorsi R, Penco F, Grossi A, et al. ADA2 deficiency (DADA2) as an unrecognised cause of early onset polyarteritis nodosa and stroke: a multicentre national study. Ann Rheum Dis. 2017;76:1648–56.CrossRefGoogle Scholar
  27. 27.
    Taylor PC. Pharmacology of TNF blockade in rheumatoid arthritis and other chronic inflammatory diseases. Curr Opin Pharmacol. 2010;10:308–15.CrossRefGoogle Scholar
  28. 28.
    de La Forest Divonne M, Gottenberg JE, Salliot C. Safety of biologic DMARDs in RA patients in real life: a systematic literature review and meta-analyses of biologic registers. Joint Bone Spine. 2017;84:133–40.CrossRefGoogle Scholar
  29. 29.
    Beukelman T, Xie F, Chen L, et al. Risk of malignancy associated with paediatric use of tumour necrosis factor inhibitors. Ann Rheum Dis. 2018;77:1012–6.CrossRefGoogle Scholar
  30. 30.
    Bilgen SA, Kilic L, Akdogan A, et al. Effects of anti-tumor necrosis factor agents for familial mediterranean fever patients with chronic arthritis and/or sacroiliitis who were resistant to colchicine treatment. J Clin Rheumatol. 2011;17:358–62.CrossRefGoogle Scholar
  31. 31.
    Nedjai B, Quillinan N, Coughlan RJ, et al. Lessons from anti-TNF biologics: infliximab failure in a TRAPS family with the T50M mutation in TNFRSF1A. Adv Exp Med Biol. 2011;691:409–19.CrossRefGoogle Scholar
  32. 32.
    Bulua AC, Mogul DB, Aksentijevich I, et al. Efficacy of etanercept in the tumor necrosis factor receptor-associated periodic syndrome (TRAPS). Arthritis Rheum. 2012;64:908–13.CrossRefGoogle Scholar
  33. 33.
    Ter Haar NM, Jeyaratnam J, Lachmann HJ, et al. The phenotype and genotype of mevalonate kinase deficiency: a series of 114 cases from the Eurofever registry. Arthritis Rheumatol. 2016;68:2795–805.CrossRefGoogle Scholar
  34. 34.
    Otsubo Y, Okafuji I, Shimizu T, Nonaka F, Ikeda K, Eguchi K. A long-term follow-up of Japanese mother and her daughter with Blau syndrome: effective treatment of anti-TNF inhibitors and useful diagnostic tool of joint ultrasound examination. Mod Rheumatol. 2017;27:169–73.CrossRefGoogle Scholar
  35. 35.
    Milman N, Andersen CB, Hansen A, et al. Favourable effect of TNF-alpha inhibitor (infliximab) on Blau syndrome in monozygotic twins with a de novo CARD15 mutation. APMIS. 2006;114:912–9.CrossRefGoogle Scholar
  36. 36.
    Rose CD, Pans S, Casteels I, et al. Blau syndrome: cross-sectional data from a multicentre study of clinical, radiological and functional outcomes. Rheumatology (Oxford). 2015;54:1008–16.CrossRefGoogle Scholar
  37. 37.
    Sarens IL, Casteels I, Anton J, et al. Blau syndrome-associated uveitis: preliminary results from an international prospective interventional case series. Am J Ophthalmol. 2018;187:158–66.CrossRefGoogle Scholar
  38. 38.
    Nanthapisal S, Murphy C, Omoyinmi E, et al. Deficiency of adenosine deaminase type 2: A description of phenotype and genotype in fifteen cases. Arthritis Rheumatol (Hoboken, NJ). 2016;68:2314–22.CrossRefGoogle Scholar
  39. 39.
    Tronconi E, Miniaci A, Baldazzi M, Greco L, Pession A. Biologic treatment for chronic recurrent multifocal osteomyelitis: report of four cases and review of the literature. Rheumatol Int. 2018;38:153–60.CrossRefGoogle Scholar
  40. 40.
    Zhao Y, Wu EY, Oliver MS, et al. Consensus treatment plans for chronic nonbacterial osteomyelitis refractory to nonsteroidal anti-inflammatory drugs and/or with active spinal lesions. Arthritis Care Res (Hoboken). 2018;70:1228–37.CrossRefGoogle Scholar
  41. 41.
    Cugno M, Borghi A, Marzano AV. PAPA, PASH and PAPASH syndromes: pathophysiology, presentation and treatment. Am J Clin Dermatol. 2017;18:555–62.CrossRefGoogle Scholar
  42. 42.
    Garbers C, Aparicio-Siegmund S, Rose-John S. The IL-6/gp130/STAT3 signaling axis: recent advances towards specific inhibition. Curr Opin Immunol. 2015;34:75–82.CrossRefGoogle Scholar
  43. 43.
    Yamamoto K, Goto H, Hirao K, et al. Longterm safety of tocilizumab: results from 3 years of followup postmarketing surveillance of 5573 patients with rheumatoid arthritis in Japan. J Rheumatol. 2015;42:1368–75.CrossRefGoogle Scholar
  44. 44.
    Ebina K, Hashimoto M, Yamamoto W, et al. Drug retention and discontinuation reasons between seven biologics in patients with rheumatoid arthritis—the ANSWER cohort study. PLoS One. 2018;13:e0194130.CrossRefGoogle Scholar
  45. 45.
    Umeda M, Aramaki T, Fujikawa K, et al. Tocilizumab is effective in a familial Mediterranean fever patient complicated with histologically proven recurrent fasciitis and myositis. Int J Rheum Dis. 2017;20:1868–71.CrossRefGoogle Scholar
  46. 46.
    Vaitla PM, Radford PM, Tighe PJ, et al. Role of interleukin-6 in a patient with tumor necrosis factor receptor-associated periodic syndrome: assessment of outcomes following treatment with the anti-interleukin-6 receptor monoclonal antibody tocilizumab. Arthritis Rheum. 2011;63:1151–5.CrossRefGoogle Scholar
  47. 47.
    Shendi HM, Devlin LA, Edgar JD. Interleukin 6 blockade for hyperimmunoglobulin D and periodic fever syndrome. J Clin Rheumatol. 2014;20:103–5.CrossRefGoogle Scholar
  48. 48.
    Stoffels M, Jongekrijg J, Remijn T, Kok N, van der Meer JW, Simon A. TLR2/TLR4-dependent exaggerated cytokine production in hyperimmunoglobulinaemia D and periodic fever syndrome. Rheumatology (Oxford). 2015;54:363–8.CrossRefGoogle Scholar
  49. 49.
    Lane T, Gillmore JD, Wechalekar AD, Hawkins PN, Lachmann HJ. Therapeutic blockade of interleukin-6 by tocilizumab in the management of AA amyloidosis and chronic inflammatory disorders: a case series and review of the literature. Clin Exp Rheumatol. 2015;33:46–53.Google Scholar
  50. 50.
    Musters A, Tak PP, Baeten DL, Tas SW. Anti-interleukin 6 receptor therapy for hyper-IgD syndrome. BMJ Case Rep. 2015;2015.Google Scholar
  51. 51.
    Lachmann HJ, Goodman HJB, Gilbertson JA, et al. Natural history and outcome in systemic AA amyloidosis. N Engl J Med. 2007;356:2361–71.CrossRefGoogle Scholar
  52. 52.
    Ugurlu S, Hacioglu A, Adibnia Y, Hamuryudan V, Ozdogan H. Tocilizumab in the treatment of twelve cases with aa amyloidosis secondary to familial mediterranean fever. Orphanet J Rare Dis. 2017;12:105.CrossRefGoogle Scholar
  53. 53.
    Banerjee S, Biehl A, Gadina M, Hasni S, Schwartz DM. JAK-STAT signaling as a target for inflammatory and autoimmune diseases: current and future prospects. Drugs. 2017;77:521–46.CrossRefGoogle Scholar
  54. 54.
    Winthrop KL. The emerging safety profile of JAK inhibitors in rheumatic disease. Nat Rev Rheumatol. 2017;13:320.CrossRefGoogle Scholar
  55. 55.
    Ugarte F, Irarrazabal C, Oh J, et al. Impaired phosphorylation of JAK2-STAT5b signaling in fibroblasts from uremic children. Pediatr Nephrol. 2016;31:965–74.CrossRefGoogle Scholar
  56. 56.
    Sanchez GAM, Reinhardt A, Ramsey S, et al. JAK1/2 inhibition with baricitinib in the treatment of autoinflammatory interferonopathies. J Clin Invest. 2018;128:3041–52.CrossRefGoogle Scholar
  57. 57.
    Kim H, Brooks KM, Tang CC, et al. Pharmacokinetics, pharmacodynamics, and proposed dosing of the oral JAK1 and JAK2 inhibitor baricitinib in pediatric and young adult CANDLE and SAVI patients. Clin Pharmacol Ther. 2018;104:364–73.CrossRefGoogle Scholar
  58. 58.
    Coll RC, Robertson AAB, Chae JJ, et al. A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat Med. 2015;21:248–55.CrossRefGoogle Scholar
  59. 59.
    Todd I, Negm OH, Reps J, et al. A signalome screening approach in the autoinflammatory disease TNF receptor associated periodic syndrome (TRAPS) highlights the anti-inflammatory properties of drugs for repurposing. Pharmacol Res. 2017;125:188–200.CrossRefGoogle Scholar
  60. 60.
    Park J, Matralis AN, Berghuis AM, Tsantrizos YS. Human isoprenoid synthase enzymes as therapeutic targets. Front Chem. 2014;2:50.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.National Amyloidosis CentreUniversity College London and Royal Free Hospital London NHS Foundation TrustLondonUK

Personalised recommendations