Interleukin (IL)-1 Blocking Compounds and Their Use in Autoinflammatory Diseases

  • Tilmann Kallinich
  • Fabrizio de BenedettiEmail author


Autoinflammatory diseases are driven by an excessive production of proinflammatory cytokines. Hypersecretion of interleukin (IL)-1β plays a pivotal role in the pathogenesis of many of these disorders and explains a large part of the clinical manifestations of these multisystem diseases. Several drugs which block the IL-1 pathway have been developed. In this chapter, we summarize the properties of the three compounds, namely anakinra, rilonacept and canakinumab, which are currently approved for treatment of a variety of autoinflammatory diseases. We focus on their mode of action, summarize the data of their use in autoinflammatory diseases derived from case reports, case series, clinical trials, and registries, outline their pharmacokinetic and pharmacodynamics properties and discuss safety aspects of these medications.


Interleukin (IL-1) IL-1 receptor antagonist Anakinra Rilonacept Canakinumab 



American College of Rheumatology


Anti-drug antibodies


Autoinflammatory syndrome associated with lymphedema


Adult-onset Still disease


Adaptor related protein complex 1 sigma 3


Autoinflammation and PLCG2-associated antibody deficiency and immune dysregulation


Area under the curve


Cryopyrin-associated periodic syndrome


Caspase recruitment domain


Central nervous system


Cerebrospinal fluid


Deficiency of adenosine deaminase 2


Deficiency of the IL-1 receptor antagonist


Deficiency of the IL-36 receptor antagonist


Disease modifying antirheumatic drugs


European Medicines Agency


End-stage renal disease


Food and Drug Administration


Familial Mediterranean fever


Heme-oxidized iron regulatory protein 2 ubiquitin ligase-1


50% inhibitory concentration




Interleukin-1 receptor antagonist


IL-1 receptor accessory protein




Macrophage activation syndrome


Mevalonate kinase deficiency




NOD-like receptor


Neonatal onset multisystem inflammatory disease


Pyrin-associated autoinflammation with neutrophilic dermatosis


Pyogenic arthritis, pyoderma gangrenosum and acne


Periodic fever, aphthous stomatitis, pharyngitis, cervical adenitis


Periodic fever, immunodeficiency, and thrombocytopenia


Rheumatoid arthritis


Synovitis, acne, pustulosis, hyperostosis, osteitis


Sideroblastic anemia with immunodeficiency, fevers, and developmental delay


Systemic juvenile idiopathic arthritis


Swedish Orphan Biovitrum


TNF receptor superfamily member


Target-related affinity profiling


Tumor necrosis factor receptor-associated periodic syndrome


  1. 1.
    Dinarello CA, Simon A, van der Meer JW. Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases. Nat Rev Drug Discov. 2012;11:633–52.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Balavoine JF, de Rochemonteix B, Williamson K, Seckinger P, Cruchaud A, Dayer JM. Prostaglandin E2 and collagenase production by fibroblasts and synovial cells is regulated by urine-derived human interleukin 1 and inhibitor(s). J Clin Invest. 1986;78:1120–4.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Eisenberg SP, Evans RJ, Arend WP, et al. Primary structure and functional expression from complementary DNA of a human interleukin-1 receptor antagonist. Nature. 1990;343:341–6.PubMedCrossRefGoogle Scholar
  4. 4.
    Stahl S, Gräslund T, Eriksson Karlström A, Frejd FY, Nygren PÅ, Löfblom J. Affibody molecules in biotechnological and medical applications. Trends Biotechnol. 2017;35:691–712.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Arend WP. Cytokine imbalance in the pathogenesis of rheumatoid arthritis: the role of interleukin-1 receptor antagonist. Semin Arthritis Rheum. 2001;30:1–6.PubMedCrossRefGoogle Scholar
  6. 6.
    Arend WP, Welgus HG, Thompson RC, Eisenberg SP. Biological properties of recombinant human monocyte-derived interleukin 1 receptor antagonist. J Clin Invest. 1990;85:1694–7.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Seckinger P, Yaron I, Meyer FA, Yaron M, Dayer JM. Modulation of the effects of interleukin-1 on glycosaminoglycan synthesis by the urine-derived interleukin-1 inhibitor, but not by interleukin-6. Arthritis Rheum. 1990;33:1807–14.PubMedCrossRefGoogle Scholar
  8. 8.
    Seckinger P, Kaufmann MT, Dayer JM. An interleukin 1 inhibitor affects both cell-associated interleukin 1-induced T cell proliferation and PGE2/collagenase production by human dermal fibroblasts and synovial cells. Immunobiology. 1990;180:316–27.PubMedCrossRefGoogle Scholar
  9. 9.
    Smith RJ, Chin JE, Sam LM, Justen JM. Biologic effects of an interleukin-1 receptor antagonist protein on interleukin-1-stimulated cartilage erosion and chondrocyte responsiveness. Arthritis Rheum. 1991;34:78–83.PubMedCrossRefGoogle Scholar
  10. 10.
    Seckinger P, Klein-Nulend J, Alander C, Thompson RC, Dayer JM, Raisz LG. Natural and recombinant human IL-1 receptor antagonists block the effects of IL-1 on bone resorption and prostaglandin production. J Immunol. 1990;145:4181–4.PubMedGoogle Scholar
  11. 11.
    Schwab JH, Anderle SK, Brown RR, Dalldorf FG, Thompson RC. Pro- and anti-inflammatory roles of interleukin-1 in recurrence of bacterial cell wall-induced arthritis in rats. Infect Immun. 1991;59:4436–42.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Matsukawa A, Ohkawara S, Maeda T, Takagi K, Yoshinaga M. Production of IL-1 and IL-1 receptor antagonist and the pathological significance in lipopolysaccharide-induced arthritis in rabbits. Clin Exp Immunol. 1993;93:206–11.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Wooley PH, Whalen JD, Chapman DL, et al. The effect of an interleukin-1 receptor antagonist protein on type II collagen-induced arthritis and antigen-induced arthritis in mice. Arthritis Rheum. 1993;36:1305–14.CrossRefGoogle Scholar
  14. 14.
    Arner EC, Harris RR, DiMeo TM, Collins RC, Galbraith W. Interleukin-1 receptor antagonist inhibits proteoglycan breakdown in antigen induced but not polycation induced arthritis in the rabbit. J Rheumatol. 1995;22:1338–46.PubMedGoogle Scholar
  15. 15.
    Lewthwaite J, Blake SM, Hardingham TE, Warden PJ, Henderson B. The effect of recombinant human interleukin 1 receptor antagonist on the induction phase of antigen induced arthritis in the rabbit. J Rheumatol. 1994;21:467–72.PubMedGoogle Scholar
  16. 16.
    Carter DB, Deibel MR Jr, Dunn CJ, et al. Purification, cloning, expression and biological characterization of an interleukin-1 receptor antagonist protein. Nature. 1990;344:633–8.PubMedCrossRefGoogle Scholar
  17. 17.
    Mertens M, Singh JA. Anakinra for rheumatoid arthritis. Cochrane Database Syst Rev. 2009;CD005121.Google Scholar
  18. 18.
    Mertens M, Singh JA. Anakinra for rheumatoid arthritis: a systematic review. J Rheumatol. 2009;36:1118–25.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Thaler K, Chandiramani DV, Hansen RA, Gartlehner G. Efficacy and safety of anakinra for the treatment of rheumatoid arthritis: an update of the Oregon drug effectiveness review project. Biologics. 2009;3:485–98.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Akar S, Cetin P, Kalyoncu U, et al. A nationwide experience with the off-label use of interleukin-1 targeting treatment in familial Mediterranean fever patients. Arthritis Care Res (Hoboken). 2017;70:1090–4.CrossRefGoogle Scholar
  21. 21.
    Ben-Zvi I, Kukuy O, Giat E, et al. Anakinra for colchicine-resistant familial Mediterranean fever: a randomized, double-blind, placebo-controlled trial. Arthritis Rheumatol. 2017;69:854–62.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Bodar EJ, Kuijk LM, Drenth JP, van der Meer JW, Simon A, Frenkel J. On-demand anakinra treatment is effective in mevalonate kinase deficiency. Ann Rheum Dis. 2011;70:2155–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Bodar EJ, van der Hilst JC, Drenth JP, van der Meer JW, Simon A. Effect of etanercept and anakinra on inflammatory attacks in the hyper-IgD syndrome: introducing a vaccination provocation model. Neth J Med. 2005;63:260–4.Google Scholar
  24. 24.
    Gattorno M, Pelagatti MA, Meini A, et al. Persistent efficacy of anakinra in patients with tumor necrosis factor receptor-associated periodic syndrome. Arthritis Rheum. 2008;58:1516–20.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Simon A, Bodar EJ, van der Hilst JC, et al. Beneficial response to interleukin 1 receptor antagonist in traps. Am J Med. 2004;117:208–10.CrossRefGoogle Scholar
  26. 26.
    Obici L, Meini A, Cattalini M, et al. Favourable and sustained response to anakinra in tumour necrosis factor receptor-associated periodic syndrome (TRAPS) with or without AA amyloidosis. Ann Rheum Dis. 2011;70:1511–2.CrossRefGoogle Scholar
  27. 27.
    Lovell DJ, Bowyer SL, Solinger AM. Interleukin-1 blockade by anakinra improves clinical symptoms in patients with neonatal-onset multisystem inflammatory disease. Arthritis Rheum. 2005;52:1283–6.PubMedCrossRefGoogle Scholar
  28. 28.
    Goldbach-Mansky R, Dailey NJ, Canna SW, et al. Neonatal-onset multisystem inflammatory disease responsive to interleukin-1beta inhibition. N Engl J Med. 2006;355:581–92.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Kullenberg T, Lofqvist M, Leinonen M, Goldbach-Mansky R, Olivecrona H. Long-term safety profile of anakinra in patients with severe cryopyrin-associated periodic syndromes. Rheumatology. 2016;55:1499–506.PubMedCrossRefGoogle Scholar
  30. 30.
    Hawkins PN, Lachmann HJ, McDermott MF. Interleukin-1-receptor antagonist in the Muckle-Wells syndrome. N Engl J Med. 2003;348:2583–4.CrossRefGoogle Scholar
  31. 31.
    Hoffman HM, Rosengren S, Boyle DL, et al. Prevention of cold-associated acute inflammation in familial cold autoinflammatory syndrome by interleukin-1 receptor antagonist. Lancet. 2004;364:1779–85.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Arostegui JI, Arnal C, Merino R, et al. NOD2 gene-associated pediatric granulomatous arthritis: clinical diversity, novel and recurrent mutations, and evidence of clinical improvement with interleukin-1 blockade in a Spanish cohort. Arthritis Rheum. 2007;56:3805–13.CrossRefGoogle Scholar
  33. 33.
    Dierselhuis MP, Frenkel J, Wulffraat NM, Boelens JJ. Anakinra for flares of pyogenic arthritis in PAPA syndrome. Rheumatology. 2005;44:406–8.PubMedCrossRefGoogle Scholar
  34. 34.
    Brenner M, Ruzicka T, Plewig G, Thomas P, Herzer P. Targeted treatment of pyoderma gangrenosum in PAPA (pyogenic arthritis, pyoderma gangrenosum and acne) syndrome with the recombinant human interleukin-1 receptor antagonist anakinra. Br J Dermatol. 2009;161:1199–201.PubMedCrossRefGoogle Scholar
  35. 35.
    Herlin T, Fiirgaard B, Bjerre M, et al. Efficacy of anti-IL-1 treatment in Majeed syndrome. Ann Rheum Dis. 2013;72:410–3.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Schnellbacher C, Ciocca G, Menendez R, et al. Deficiency of interleukin-1 receptor antagonist responsive to anakinra. Pediatr Dermatol. 2013;30:758–60.PubMedCrossRefGoogle Scholar
  37. 37.
    Aksentijevich I, Masters SL, Ferguson PJ, et al. An autoinflammatory disease with deficiency of the interleukin-1-receptor antagonist. N Engl J Med. 2009;360:2426–37.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Reddy S, Jia S, Geoffrey R, et al. An autoinflammatory disease due to homozygous deletion of the IL1RN locus. N Engl J Med. 2009;360:2438–44.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Rossi-Semerano L, Piram M, Chiaverini C, De Ricaud D, Smahi A, Koné-Paut I. First clinical description of an infant with interleukin-36-receptor antagonist deficiency successfully treated with anakinra. Pediatrics. 2013;132:e1043–7.PubMedCrossRefGoogle Scholar
  40. 40.
    Tauber M, Viguier M, Le Gall C, Smahi A, Bachelez H. Is it relevant to use an interleukin-1-inhibiting strategy for the treatment of patients with deficiency of interleukin-36 receptor antagonist? Br J Dermatol. 2014;170:1198–9.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Huffmeier U, Watzold M, Mohr J, Schon MP, Mossner R. Successful therapy with anakinra in a patient with generalized pustular psoriasis carrying IL36RN mutations. Br J Dermatol. 2014;170:202–4.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Di Zazzo A, Tahvildari M, Florakis GJ, Dana R. Ocular manifestations of inherited phospholipase-cgamma2-associated antibody deficiency and immune dysregulation. Cornea. 2016;35:1656–7.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Canna SW, de Jesus AA, Gouni S, et al. An activating NLRC4 inflammasome mutation causes autoinflammation with recurrent macrophage activation syndrome. Nat Genet. 2014;46:1140–6.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Masters SL, Lagou V, Jéru I, et al. Familial autoinflammation with neutrophilic dermatosis reveals a regulatory mechanism of pyrin activation. Sci Transl Med. 2016;8:332ra345.CrossRefGoogle Scholar
  45. 45.
    Volker-Touw CM, de Koning HD, Giltay JC, et al. Erythematous nodes, urticarial rash and arthralgias in a large pedigree with NLRC4-related autoinflammatory disease, expansion of the phenotype. Br J Dermatol. 2017;176:244–8.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Stojanov S, Lapidus S, Chitkara P, et al. Periodic fever, aphthous stomatitis, pharyngitis, and adenitis (PFAPA) is a disorder of innate immunity and Th1 activation responsive to IL-1 blockade. Proc Natl Acad Sci U S A. 2011;108:7148–53.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Cantarini L, Vitale A, Galeazzi M, Frediani B. A case of resistant adult-onset periodic fever, aphthous stomatitis, pharyngitis and cervical adenitis (PFAPA) syndrome responsive to anakinra. Clin Exp Rheumatol. 2012;30:593.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Pardeo M, Pires Marafon D, Messia V, Garganese MC, De Benedetti F, Insalaco A. Anakinra in a cohort of children with chronic nonbacterial osteomyelitis. J Rheumatol. 2017;44:1231–8.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Wendling D, Prati C, Aubin F. Anakinra treatment of SAPHO syndrome: short-term results of an open study. Ann Rheum Dis. 2012;71:1098–100.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Vastert SJ, de Jager W, Noordman BJ, et al. Effectiveness of first-line treatment with recombinant interleukin-1 receptor antagonist in steroid-naive patients with new-onset systemic juvenile idiopathic arthritis: results of a prospective cohort study. Arthritis Rheumatol. 2014;66:1034–43.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Dewitt EM, Kimura Y, Beukelman T, et al. Consensus treatment plans for new-onset systemic juvenile idiopathic arthritis. Arthritis Care Res (Hoboken). 2012;64:1001–10.Google Scholar
  52. 52.
    Pardeo M, Pires Marafon D, Insalaco A, et al. Anakinra in systemic juvenile idiopathic arthritis: a single-center experience. J Rheumatol. 2015;42:1523–7.CrossRefGoogle Scholar
  53. 53.
    Quartier P, Allantaz F, Cimaz R, et al. A multicentre, randomised, double-blind, placebo-controlled trial with the interleukin-1 receptor antagonist anakinra in patients with systemic-onset juvenile idiopathic arthritis (ANAJIS trial). Ann Rheum Dis. 2011;70:747–54.CrossRefGoogle Scholar
  54. 54.
    Horneff G, Schulz AC, Klotsche J, et al. Experience with etanercept, tocilizumab and interleukin-1 inhibitors in systemic onset juvenile idiopathic arthritis patients from the BIKER registry. Arthritis Res Ther. 2017;19:256.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Woerner A, Uettwiller F, Melki I, et al. Biological treatment in systemic juvenile idiopathic arthritis: achievement of inactive disease or clinical remission on a first, second or third biological agent. RMD Open. 2015;1:e000036.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Hong D, Yang Z, Han S, Liang X, Kuifen MA, Zhang X. Interleukin 1 inhibition with anakinra in adult-onset Still disease: a meta-analysis of its efficacy and safety. Drug Des Devel Ther. 2014;8:2345–57.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Nordstrom D, Knight A, Luukkainen R, et al. Beneficial effect of interleukin 1 inhibition with anakinra in adult-onset Still’s disease. An open, randomized, multicenter study. J Rheumatol. 2012;39:2008–11.CrossRefGoogle Scholar
  58. 58.
    Balasubramaniam G, Parker T, Turner D, et al. Feasibility randomised multicentre, double-blind, double-dummy controlled trial of anakinra, an interleukin-1 receptor antagonist versus intramuscular methylprednisolone for acute gout attacks in patients with chronic kidney disease (ASGARD): protocol study. BMJ Open. 2017;7:e017121.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Ottaviani S, Moltó A, Ea HK, et al. Efficacy of anakinra in gouty arthritis: a retrospective study of 40 cases. Arthritis Res Ther. 2013;15:R123.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Grayson PC, Yazici Y, Merideth M, et al. Treatment of mucocutaneous manifestations in Behcet’s disease with anakinra: a pilot open-label study. Arthritis Res Ther. 2017;19:69.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Fabiani C, Vitale A, Emmi G, et al. Interleukin (IL)-1 inhibition with anakinra and canakinumab in Behcet’s disease-related uveitis: a multicenter retrospective observational study. Clin Rheumatol. 2017;36:191–7.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Picco P, Brisca G, Traverso F, Loy A, Gattorno M, Martini A. Successful treatment of idiopathic recurrent pericarditis in children with interleukin-1beta receptor antagonist (anakinra): an unrecognized autoinflammatory disease? Arthritis Rheum. 2009;60:264–8.CrossRefGoogle Scholar
  63. 63.
    Finetti M, Insalaco A, Cantarini L, et al. Long-term efficacy of interleukin-1 receptor antagonist (anakinra) in corticosteroid-dependent and colchicine-resistant recurrent pericarditis. J Pediatr. 2014;164:1425–31.CrossRefGoogle Scholar
  64. 64.
    Vassilopoulos D, Lazaros G, Tsioufis C, Vasileiou P, Stefanadis C, Pectasides D. Successful treatment of adult patients with idiopathic recurrent pericarditis with an interleukin-1 receptor antagonist (anakinra). Int J Cardiol. 2012;160:66–8.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Lazaros G, Vasileiou P, Koutsianas C, et al. Anakinra for the management of resistant idiopathic recurrent pericarditis. Initial experience in 10 adult cases. Ann Rheum Dis. 2014;73:2215–7.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Brucato A, Imazio M, Gattorno M, et al. Effect of Anakinra on recurrent pericarditis among patients with colchicine resistance and corticosteroid dependence: the AIRTRIP randomized clinical trial. JAMA. 2016;316:1906–12.CrossRefGoogle Scholar
  67. 67.
    Ahn MJ, Yu JE, Jeong J, Sim DW, Koh YI. A case of Schnitzler’s syndrome without monoclonal Gammopathy-associated chronic Urticaria treated with Anakinra. Yonsei Med J. 2018;59:154–7.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Sonnichsen A, Saulite I, Mangana J, et al. Interleukin-1 receptor antagonist (anakinra) for Schnitzler syndrome. J Dermatolog Treat. 2016;27:436–8.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Rowczenio DM, Pathak S, Arostegui JI, et al. Molecular genetic investigation, clinical features and response to treatment in 21 patients with Schnitzler’s syndrome. Blood. 2017;131:974–81.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Vanderschueren S, van der Veen A. The Schnitzler syndrome: chronic urticaria in disguise: a single-centre report of 11 cases and a critical reappraisal of the literature. Clin Exp Rheumatol. 2017;35:69–73.PubMedPubMedCentralGoogle Scholar
  71. 71.
    Tzanetakou V, Kanni T, Giatrakou S, et al. Safety and efficacy of anakinra in severe hidradenitis suppurativa: a randomized clinical trial. JAMA Dermatol. 2016;152:52–9.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Abbate A, Van Tassell BW, Biondi-Zoccai G, et al. Effects of interleukin-1 blockade with anakinra on adverse cardiac remodeling and heart failure after acute myocardial infarction [from the Virginia Commonwealth University-Anakinra remodeling trial (2) (VCU-ART2) pilot study]. Am J Cardiol. 2013;111:1394–400.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Moran A, Bundy B, Becker DJ, et al. Interleukin-1 antagonism in type 1 diabetes of recent onset: two multicentre, randomised, double-blind, placebo-controlled trials. Lancet. 2013;381:1905–15.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Hahn KJ, Ho N, Yockey L, et al. Treatment with Anakinra, a recombinant IL-1 receptor antagonist, unlikely to induce lasting remission in patients with CGD colitis. Am J Gastroenterol. 2015;110:938–9.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Vambutas A, Lesser M, Mullooly V, et al. Early efficacy trial of anakinra in corticosteroid-resistant autoimmune inner ear disease. J Clin Invest. 2014;124:4115–22.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Galea J, Ogungbenro K, Hulme S, et al. Reduction of inflammation after administration of interleukin-1 receptor antagonist following aneurysmal subarachnoid hemorrhage: results of the subcutaneous interleukin-1Ra in SAH (SCIL-SAH) study. J Neurosurg. 2018;128:515–23.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Van Tassell BW, Arena RA, Toldo S, et al. Enhanced interleukin-1 activity contributes to exercise intolerance in patients with systolic heart failure. PLoS One. 2012;7:e33438.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Lust JA, Lacy MQ, Zeldenrust SR, et al. Induction of a chronic disease state in patients with smoldering or indolent multiple myeloma by targeting interleukin 1{beta}-induced interleukin 6 production and the myeloma proliferative component. Mayo Clin Proc. 2009;84:114–22.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Bresnihan B, Alvaro-Gracia JM, Cobby M, et al. Treatment of rheumatoid arthritis with recombinant human interleukin-1 receptor antagonist. Arthritis Rheum. 1998;41:2196–204.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Cohen S, Hurd E, Cush J, et al. Treatment of rheumatoid arthritis with anakinra, a recombinant human interleukin-1 receptor antagonist, in combination with methotrexate: results of a twenty-four-week, multicenter, randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 2002;46:614–24.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Cohen SB, Moreland LW, Cush JJ, et al. A multicentre, double blind, randomised, placebo controlled trial of anakinra (Kineret), a recombinant interleukin 1 receptor antagonist, in patients with rheumatoid arthritis treated with background methotrexate. Ann Rheum Dis. 2004;63:1062–8.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Fleischmann RM, Schechtman J, Bennett R, et al. Anakinra, a recombinant human interleukin-1 receptor antagonist (r-metHuIL-1ra), in patients with rheumatoid arthritis: a large, international, multicenter, placebo-controlled trial. Arthritis Rheum. 2003;48:927–34.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Garg N, Kasapcopur O, Foster J 2nd, et al. Novel adenosine deaminase 2 mutations in a child with a fatal vasculopathy. Eur J Pediatr. 2014;173:827–30.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Zhou Q, Yang D, Ombrello AK, et al. Early-onset stroke and vasculopathy associated with mutations in ADA2. N Engl J Med. 2014;370:911–20.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    van Montfrans J, Zavialov A, Zhou Q. Mutant ADA2 in vasculopathies. N Engl J Med. 2014;371:478.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Jeru I, Hentgen V, Normand S, et al. Role of interleukin-1beta in NLRP12-associated autoinflammatory disorders and resistance to anti-interleukin-1 therapy. Arthritis Rheum. 2011;63:2142–8.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Granowitz EV, Porat R, Mier JW, et al. Pharmacokinetics, safety and immunomodulatory effects of human recombinant interleukin-1 receptor antagonist in healthy humans. Cytokine. 1992;4:353–60.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Fisher CJ Jr, Dhainaut JF, Opal SM, et al. Recombinant human interleukin 1 receptor antagonist in the treatment of patients with sepsis syndrome. Results from a randomized, double-blind, placebo-controlled trial. Phase III rhIL-1ra Sepsis Syndrome Study Group. JAMA. 1994;271:1836–43.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Genovese MC, Cohen S, Moreland L, et al. Combination therapy with etanercept and anakinra in the treatment of patients with rheumatoid arthritis who have been treated unsuccessfully with methotrexate. Arthritis Rheum. 2004;50:1412–9.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Li T, Lu WL, Hong HY, et al. Pharmacokinetics and anti-asthmatic potential of non-parenterally administered recombinant human interleukin-1 receptor antagonist in animal models. J Pharmacol Sci. 2006;102:321–30.PubMedCrossRefGoogle Scholar
  91. 91.
    Urien S, Bardin C, Bader-Meunier B, et al. Anakinra pharmacokinetics in children and adolescents with systemic-onset juvenile idiopathic arthritis and autoinflammatory syndromes. BMC Pharmacol Toxicol. 2013;14:40.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Kim DC, Reitz B, Carmichael DF, Bloedow DC. Kidney as a major clearance organ for recombinant human interleukin-1 receptor antagonist. J Pharm Sci. 1995;84:575–80.PubMedCrossRefGoogle Scholar
  93. 93.
    Yang BB, Baughman S, Sullivan JT. Pharmacokinetics of anakinra in subjects with different levels of renal function. Clin Pharmacol Ther. 2003;74:85–94.PubMedCrossRefGoogle Scholar
  94. 94.
    Goshen I, Kreisel T, Ounallah-Saad H, et al. A dual role for interleukin-1 in hippocampal-dependent memory processes. Psychoneuroendocrinology. 2007;32:1106–15.PubMedCrossRefGoogle Scholar
  95. 95.
    Lepore L, Paloni G, Caorsi R, et al. Follow-up and quality of life of patients with cryopyrin-associated periodic syndromes treated with Anakinra. J Pediatr. 2010;157:310–5.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Gutierrez EG, Banks WA, Kastin AJ. Blood-borne interleukin-1 receptor antagonist crosses the blood-brain barrier. J Neuroimmunol. 1994;55:153–60.PubMedCrossRefGoogle Scholar
  97. 97.
    Fox E, Jayaprakash N, Pham TH, et al. The serum and cerebrospinal fluid pharmacokinetics of anakinra after intravenous administration to non-human primates. J Neuroimmunol. 2010;223:138–40.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Clark SR, McMahon CJ, Gueorguieva I, et al. Interleukin-1 receptor antagonist penetrates human brain at experimentally therapeutic concentrations. J Cereb Blood Flow Metab. 2008;28:387–94.PubMedCrossRefGoogle Scholar
  99. 99.
    Galea J, Ogungbenro K, Hulme S, et al. Intravenous anakinra can achieve experimentally effective concentrations in the central nervous system within a therapeutic time window: results of a dose-ranging study. J Cereb Blood Flow Metab. 2011;31:439–47.PubMedCrossRefGoogle Scholar
  100. 100.
    Greenhalgh AD, Galea J, Denes A, Tyrrell PJ, Rothwell NJ. Rapid brain penetration of interleukin-1 receptor antagonist in rat cerebral ischaemia: pharmacokinetics, distribution, protection. Br J Pharmacol. 2010;160:153–9.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Gueorguieva I, Clark SR, McMahon CJ, et al. Pharmacokinetic modelling of interleukin-1 receptor antagonist in plasma and cerebrospinal fluid of patients following subarachnoid haemorrhage. Br J Clin Pharmacol. 2008;65:317–25.PubMedCrossRefGoogle Scholar
  102. 102.
    Schiff MH, DiVittorio G, Tesser J, et al. The safety of anakinra in high-risk patients with active rheumatoid arthritis: six-month observations of patients with comorbid conditions. Arthritis Rheum. 2004;50:1752–60.PubMedCrossRefGoogle Scholar
  103. 103.
    Salliot C, Dougados M, Gossec L. Risk of serious infections during rituximab, abatacept and anakinra treatments for rheumatoid arthritis: meta-analyses of randomised placebo-controlled trials. Ann Rheum Dis. 2009;68:25–32.PubMedCrossRefGoogle Scholar
  104. 104.
    Tesser J, Fleischmann R, Dore R, et al. Concomitant medication use in a large, international, multicenter, placebo controlled trial of anakinra, a recombinant interleukin 1 receptor antagonist, in patients with rheumatoid arthritis. J Rheumatol. 2004;31:649–54.PubMedGoogle Scholar
  105. 105.
    Fleischmann RM, Tesser J, Schiff MH, et al. Safety of extended treatment with anakinra in patients with rheumatoid arthritis. Ann Rheum Dis. 2006;65:1006–12.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Galloway JB, Hyrich KL, Mercer LK, et al. The risk of serious infections in patients receiving anakinra for rheumatoid arthritis: results from the British Society for Rheumatology Biologics Register. Rheumatology. 2011;50:1341–2.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Kuemmerle-Deschner JB, Tyrrell PN, Koetter I, et al. Efficacy and safety of anakinra therapy in pediatric and adult patients with the autoinflammatory Muckle-Wells syndrome. Arthritis Rheum. 2011;63:840–9.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Kafka D, Ling E, Feldman G, et al. Contribution of IL-1 to resistance to Streptococcus pneumoniae infection. Int Immunol. 2008;20:1139–46.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Bendele A, Colloton M, Vrkljan M, Morris J, Sabados K. Cutaneous mast cell degranulation in rats receiving injections of recombinant human interleukin-1 receptor antagonist (rhIL-1ra) and/or its vehicle: possible clinical implications. J Lab Clin Med. 1995;125:493–500.PubMedPubMedCentralGoogle Scholar
  110. 110.
    Desai D, Goldbach-Mansky R, Milner JD, et al. Anaphylactic reaction to anakinra in a rheumatoid arthritis patient intolerant to multiple nonbiologic and biologic disease-modifying antirheumatic drugs. Ann Pharmacother. 2009;43:967–72.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Leroy V, Lazaro E, Darrigade AS, Taïeb A, Milpied B, Seneschal J. Successful rapid subcutaneous desensitization to anakinra in a case of delayed-type hypersensitivity reaction. Br J Dermatol. 2016;174:1417–8.PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Kaiser C, Knight A, Nordström D, et al. Injection-site reactions upon Kineret (anakinra) administration: experiences and explanations. Rheumatol Int. 2012;32:295–9.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Emmi G, Silvestri E, Cantarini L, et al. Rapid desensitization to anakinra-related delayed reaction: need for a standardized protocol. J Dermatol. 2017;44:981–2.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Youngstein T, Hoffmann P, Gül A, et al. International multi-centre study of pregnancy outcomes with interleukin-1 inhibitors. Rheumatology. 2017;56:2102–8.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Venhoff N, Voll RE, Glaser C, Thiel J. IL-1-blockade with anakinra during pregnancy : retrospective analysis of efficacy and safety in female patients with familial Mediterranean fever. Z Rheumatol. 2018;77:127–34.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Smith CJF, Chambers CD. Five successful pregnancies with antenatal anakinra exposure. Rheumatology. 2018;57:1271–5.CrossRefGoogle Scholar
  117. 117.
    Chang Z, Spong CY, Jesus AA, et al. Anakinra use during pregnancy in patients with cryopyrin-associated periodic syndromes (CAPS). Arthritis Rheumatol. 2014;66:3227–32.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    YY. Prescribing Information Kineret.
  119. 119.
    XX. Prescribing Information Arcalyst.
  120. 120.
    Gillespie J, Mathews R, McDermott MF. Rilonacept in the management of cryopyrin-associated periodic syndromes (CAPS). J Inflamm Res. 2010;3:1–8.PubMedPubMedCentralGoogle Scholar
  121. 121.
    Hoffman HM. Rilonacept for the treatment of cryopyrin-associated periodic syndromes (CAPS). Expert Opin Biol Ther. 2009;9:519–31.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Ilowite NT, Prather K, Lokhnygina Y, et al. Randomized, double-blind, placebo-controlled trial of the efficacy and safety of rilonacept in the treatment of systemic juvenile idiopathic arthritis. Arthritis Rheumatol. 2014;66:2570–9.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Autmizguine J, Cohen-Wolkowiez M, Ilowite N, Investigators, R. Rilonacept pharmacokinetics in children with systemic juvenile idiopathic arthritis. J Clin Pharmacol. 2015;55:39–44.PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Don BR, Spin G, Nestorov I, Hutmacher M, Rose A, Kaysen GA. The pharmacokinetics of etanercept in patients with end-stage renal disease on haemodialysis. J Pharm Pharmacol. 2005;57:1407–13.PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Radin A, Marbury T, Osgood G, Belomestnov P. Safety and pharmacokinetics of subcutaneously administered rilonacept in patients with well-controlled end-stage renal disease (ESRD). J Clin Pharmacol. 2010;50:835–41.PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Lovell DJ, Giannini EH, Reiff AO, et al. Long-term safety and efficacy of rilonacept in patients with systemic juvenile idiopathic arthritis. Arthritis Rheum. 2013;65:2486–96.PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Schumacher HR Jr, Evans RR, Saag KG, et al. Rilonacept (interleukin-1 trap) for prevention of gout flares during initiation of uric acid-lowering therapy: results from a phase III randomized, double-blind, placebo-controlled, confirmatory efficacy study. Arthritis Care Res (Hoboken). 2012;64:1462–70.CrossRefGoogle Scholar
  128. 128.
    Mitha E, Schumacher HR, Fouche L, et al. Rilonacept for gout flare prevention during initiation of uric acid-lowering therapy: results from the PRESURGE-2 international, phase 3, randomized, placebo-controlled trial. Rheumatology. 2013;52:1285–92.PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Sundy JS, Schumacher HR, Kivitz A, et al. Rilonacept for gout flare prevention in patients receiving uric acid-lowering therapy: results of RESURGE, a phase III, international safety study. J Rheumatol. 2014;41:1703–11.PubMedCrossRefGoogle Scholar
  130. 130.
    Hoffman HM, Throne ML, Amar NJ, et al. Long-term efficacy and safety profile of rilonacept in the treatment of cryopryin-associated periodic syndromes: results of a 72-week open-label extension study. Clin Ther. 2012;34:2091–103.PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Hashkes PJ, Spalding SJ, Giannini EH, et al. Rilonacept for colchicine-resistant or -intolerant familial Mediterranean fever: a randomized trial. Ann Intern Med. 2012;157:533–41.PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Hoffman HM, Throne ML, Amar NJ, et al. Efficacy and safety of rilonacept (interleukin-1 trap) in patients with cryopyrin-associated periodic syndromes: results from two sequential placebo-controlled studies. Arthritis Rheum. 2008;58:2443–52.CrossRefGoogle Scholar
  133. 133.
    Goldbach-Mansky R, Shroff SD, Wilson M, et al. A pilot study to evaluate the safety and efficacy of the long-acting interleukin-1 inhibitor rilonacept (interleukin-1 trap) in patients with familial cold autoinflammatory syndrome. Arthritis Rheum. 2008;58:2432–42.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Garg M, de Jesus AA, Chapelle D et al. Rilonacept maintains long-term inflammatory remission in patients with deficiency of the IL-1 receptor antagonist. JCI Insight. 2017;2.Google Scholar
  135. 135.
    Petryna O, Cush JJ, Efthimiou P. IL-1 trap rilonacept in refractory adult onset Still’s disease. Ann Rheum Dis. 2012;71:2056–7.PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Terkeltaub R, Sundy JS, Schumacher HR, et al. The interleukin 1 inhibitor rilonacept in treatment of chronic gouty arthritis: results of a placebo-controlled, monosequence crossover, non-randomised, single-blind pilot study. Ann Rheum Dis. 2009;68:1613–7.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Schumacher HR Jr, Sundy JS, Terkeltaub R, et al. Rilonacept (interleukin-1 trap) in the prevention of acute gout flares during initiation of urate-lowering therapy: results of a phase II randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 2012;64:876–84.PubMedCrossRefPubMedCentralGoogle Scholar
  138. 138.
    Krause K, Weller K, Stefaniak R, et al. Efficacy and safety of the interleukin-1 antagonist rilonacept in Schnitzler syndrome: an open-label study. Allergy. 2012;67:943–50.PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    Brik R, Butbul-Aviel Y, Lubin S, et al. Canakinumab for the treatment of children with colchicine-resistant familial Mediterranean fever: a 6-month open-label, single-arm pilot study. Arthritis Rheumatol (Hoboken, NJ). 2014;66:3241–3.CrossRefGoogle Scholar
  140. 140.
    Gul A, Ozdogan H, Erer B, et al. Efficacy and safety of canakinumab in adolescents and adults with colchicine-resistant familial Mediterranean fever. Arthritis Res Ther. 2015;17:243.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    De Benedetti F, Gattorno M, Anton J, et al. Canakinumab for the treatment of autoinflammatory recurrent fever syndromes. N Engl J Med. 2018;378:1908–19.CrossRefGoogle Scholar
  142. 142.
    Arostegui JI, Anton J, Calvo I, et al. Open-label, Phase II Study to assess the efficacy and safety of canakinumab treatment in active hyperimmunoglobulinemia D with periodic fever syndrome. Arthritis Rheumatol (Hoboken, NJ). 2017;69:1679–88.CrossRefGoogle Scholar
  143. 143.
    Gattorno M, Obici L, Cattalini M, et al. Canakinumab treatment for patients with active recurrent or chronic TNF receptor-associated periodic syndrome (TRAPS): an open-label, phase II study. Ann Rheum Dis. 2017;76:173–8.CrossRefGoogle Scholar
  144. 144.
    Caorsi R, Lepore L, Zulian F, et al. The schedule of administration of canakinumab in cryopyrin associated periodic syndrome is driven by the phenotype severity rather than the age. Arthritis Res Ther. 2013;15:R33.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Kuemmerle-Deschner JB, Hachulla E, Cartwright R, et al. Two-year results from an open-label, multicentre, phase III study evaluating the safety and efficacy of canakinumab in patients with cryopyrin-associated periodic syndrome across different severity phenotypes. Ann Rheum Dis. 2011;70:2095–102.CrossRefGoogle Scholar
  146. 146.
    Lachmann HJ, Kone-Paut I, Kuemmerle-Deschner JB, et al. Use of canakinumab in the cryopyrin-associated periodic syndrome. N Engl J Med. 2009;360:2416–25.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Ruperto N, Brunner HI, Quartier P, et al. Two randomized trials of canakinumab in systemic juvenile idiopathic arthritis. N Engl J Med. 2012;367:2396–406.CrossRefGoogle Scholar
  148. 148.
    Ruperto N, Quartier P, Wulffraat N, et al. A phase II, multicenter, open-label study evaluating dosing and preliminary safety and efficacy of canakinumab in systemic juvenile idiopathic arthritis with active systemic features. Arthritis Rheum. 2012;64:557–67.PubMedCrossRefPubMedCentralGoogle Scholar
  149. 149.
    Feist E, Quartier P, Fautrel B, et al. Efficacy and safety of canakinumab in patients with Stills disease: exposure-response analysis of pooled systemic juvenile idiopathic arthritis data by age groups. Clin Exp Rheumatol. 2018;36(4):668–75.PubMedPubMedCentralGoogle Scholar
  150. 150.
    Junge G, Mason J, Feist E. Adult onset Still’s disease—the evidence that anti-interleukin-1 treatment is effective and well-tolerated (a comprehensive literature review). Semin Arthritis Rheum. 2017;47:295–302.CrossRefGoogle Scholar
  151. 151.
    Simonini G, Xu Z, Caputo R, et al. Clinical and transcriptional response to the long-acting interleukin-1 blocker canakinumab in Blau syndrome-related uveitis. Arthritis Rheum. 2013;65:513–8.PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Kolios AG, Maul JT, Meier B, et al. Canakinumab in adults with steroid-refractory pyoderma gangrenosum. Br J Dermatol. 2015;173:1216–23.PubMedCrossRefGoogle Scholar
  153. 153.
    Moussa T, Bhat V, Kini V, Fathalla BM. Clinical and genetic association, radiological findings and response to biological therapy in seven children from Qatar with non-bacterial osteomyelitis. Int J Rheum Dis. 2017;20:1286–96.PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Lopalco G, Rigante D, Vitale A, Caso F, Iannone F. Canakinumab efficacy in refractory adult-onset PFAPA syndrome. Int J Rheum Dis. 2017;20:1050–1.PubMedCrossRefGoogle Scholar
  155. 155.
    Schlesinger N, Alten RE, Bardin T, et al. Canakinumab for acute gouty arthritis in patients with limited treatment options: results from two randomised, multicentre, active-controlled, double-blind trials and their initial extensions. Ann Rheum Dis. 2012;71:1839–48.PubMedCrossRefGoogle Scholar
  156. 156.
    Schlesinger N, Mysler E, Lin HY, et al. Canakinumab reduces the risk of acute gouty arthritis flares during initiation of allopurinol treatment: results of a double-blind, randomised study. Ann Rheum Dis. 2011;70:1264–71.PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    So A, De Meulemeester M, Pikhlak A, et al. Canakinumab for the treatment of acute flares in difficult-to-treat gouty arthritis: results of a multicenter, phase II, dose-ranging study. Arthritis Rheum. 2010;62:3064–76.PubMedCrossRefGoogle Scholar
  158. 158.
    Orlando I, Vitale A, Rigante D, Lopalco G, Fabiani C, Cantarini L. Long-term efficacy and safety of the interleukin-1 inhibitors anakinra and canakinumab in refractory Behcet disease uveitis and concomitant bladder papillary carcinoma. Intern Med J. 2017;47:1086–8.PubMedCrossRefGoogle Scholar
  159. 159.
    Ugurlu S, Ucar D, Seyahi E, Hatemi G, Yurdakul S. Canakinumab in a patient with juvenile Behcet’s syndrome with refractory eye disease. Ann Rheum Dis. 2012;71:1589–91.PubMedCrossRefGoogle Scholar
  160. 160.
    Vitale A, Rigante D, Caso F, et al. Inhibition of interleukin-1 by canakinumab as a successful mono-drug strategy for the treatment of refractory Behcet’s disease: a case series. Dermatology (Basel, Switzerland). 2014;228:211–4.CrossRefGoogle Scholar
  161. 161.
    de Koning HD, Schalkwijk J, van der Ven-Jongekrijg J, Stoffels M, van der Meer JW, Simon A. Sustained efficacy of the monoclonal anti-interleukin-1 beta antibody canakinumab in a 9-month trial in Schnitzler’s syndrome. Ann Rheum Dis. 2013;72:1634–8.PubMedCrossRefGoogle Scholar
  162. 162.
    Krause K, Tsianakas A, Wagner N, et al. Efficacy and safety of canakinumab in Schnitzler syndrome: a multicenter randomized placebo-controlled study. J Allergy Clin Immunol. 2017;139:1311–20.PubMedCrossRefGoogle Scholar
  163. 163.
    Ridker PM, Everett BM, Thuren T, et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med. 2017;377:1119–31.CrossRefGoogle Scholar
  164. 164.
    Ridker PM, Howard CP, Walter V, et al. Effects of interleukin-1beta inhibition with canakinumab on hemoglobin A1c, lipids, C-reactive protein, interleukin-6, and fibrinogen: a phase IIb randomized, placebo-controlled trial. Circulation. 2012;126:2739–48.PubMedCrossRefPubMedCentralGoogle Scholar
  165. 165.
    Rissanen A, Howard CP, Botha J, Thuren T. Effect of anti-IL-1beta antibody (canakinumab) on insulin secretion rates in impaired glucose tolerance or type 2 diabetes: results of a randomized, placebo-controlled trial. Diabetes Obes Metab. 2012;14:1088–96.PubMedCrossRefPubMedCentralGoogle Scholar
  166. 166.
    Alten R, Gomez-Reino J, Durez P, et al. Efficacy and safety of the human anti-IL-1beta monoclonal antibody canakinumab in rheumatoid arthritis: results of a 12-week, phase II, dose-finding study. BMC Musculoskelet Disord. 2011;12:153.PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Chakraborty A, Tannenbaum S, Rordorf C, et al. Pharmacokinetic and pharmacodynamic properties of canakinumab, a human anti-interleukin-1beta monoclonal antibody. Clin Pharmacokinet. 2012;51:e1–18.PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Chakraborty A, Van LM, Skerjanec A, et al. Pharmacokinetic and pharmacodynamic properties of canakinumab in patients with gouty arthritis. J Clin Pharmacol. 2013;53:1240–51.PubMedCrossRefPubMedCentralGoogle Scholar
  169. 169.
    Noe A, Howard C, Thuren T, Taylor A, Skerjanec A. Pharmacokinetic and pharmacodynamic characteristics of single-dose canakinumab in patients with type 2 diabetes mellitus. Clin Ther. 2014;36:1625–37.PubMedCrossRefPubMedCentralGoogle Scholar
  170. 170.
    Sun H, Van LM, Floch D, et al. Pharmacokinetics and pharmacodynamics of canakinumab in patients with systemic juvenile idiopathic arthritis. J Clin Pharmacol. 2016;56:1516–27.PubMedCrossRefGoogle Scholar
  171. 171.
    Sibley CH, Chioato A, Felix S, et al. A 24-month open-label study of canakinumab in neonatal-onset multisystem inflammatory disease. Ann Rheum Dis. 2015;74:1714–9.CrossRefGoogle Scholar
  172. 172.
    Rodriguez-Smith J, Lin YC, Tsai WL, et al. Cerebrospinal fluid cytokines correlate with aseptic meningitis and blood-brain barrier function in neonatal-onset multisystem inflammatory disease: central nervous system biomarkers in neonatal-onset multisystem inflammatory disease correlate with central nervous system inflammation. Arthritis Rheumatol (Hoboken, NJ). 2017;69:1325–36.CrossRefGoogle Scholar
  173. 173.
    Brogan PHM, Kuemmerle-Deschner J. FRI0503 efficacy and safety of canakinumab in patients with cryopyrin associated periodic syndromes: an open-label, phase-III, extension study. Ann Rheum Dis. 2016;75(suppl 2):620–1.CrossRefGoogle Scholar
  174. 174.
    Ridker PM, MacFadyen JG, Thuren T, et al. Effect of interleukin-1beta inhibition with canakinumab on incident lung cancer in patients with atherosclerosis: exploratory results from a randomised, double-blind, placebo-controlled trial. Lancet. 2017;390:1833–42.PubMedCrossRefGoogle Scholar
  175. 175.
    Chioato A, Noseda E, Felix SD, et al. Influenza and meningococcal vaccinations are effective in healthy subjects treated with the interleukin-1 beta-blocking antibody canakinumab: results of an open-label, parallel group, randomized, single-center study. Clin Vaccine Immunol. 2010;17:1952–7.PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    Jaeger VK, Hoffman HM, van der Poll T, et al. Safety of vaccinations in patients with cryopyrin-associated periodic syndromes: a prospective registry based study. Rheumatology. 2017;56:1484–91.PubMedCrossRefGoogle Scholar
  177. 177.
    Walker UA, Hoffman HM, Williams R, Kuemmerle-Deschner J, Hawkins PN. Brief report: severe inflammation following vaccination against streptococcus pneumoniae in patients with cryopyrin-associated periodic syndromes. Arthritis Rheumatol. 2016;68:516–20.PubMedCrossRefGoogle Scholar
  178. 178.
    Kang I. Editorial: is the NLPR3 Inflammasome “overheated” by pneumococcal vaccination in cryopyrin-associated periodic syndromes? Arthritis Rheumatol. 2016;68:274–6.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Pediatric Pulmonology, Immunology and Intensive Care MedicineCharité University Medicine BerlinBerlinGermany
  2. 2.Division of Rheumatology and Laboratory of Immuno RheumatologyOspedale Pediatrico Bambino GesùRomeItaly

Personalised recommendations