Macrophage Activation Syndrome in Rheumatic Diseases

  • Alexei A. GromEmail author
  • Edward M. Behrens


Macrophage activation syndrome is a hemophagocytic syndrome presenting as a complication of a rheumatic disease. Excessive activation and expansion of T lymphocytes and macrophagic histiocytes in MAS leads to a cytokine storm and hyperinflammation associated with extreme hyperferritinemia, cytopenias, liver dysfunction and coagulopathy resembling disseminated intravascular coagulation. It is a life-threatening condition and may progress to multiple organ failure. High dose glucocorticoids and cyclosporine A are most commonly used to treat MAS. Anakinra and intravenous immunoglobulin may be effective in some patients. Etoposide should be considered in more severe cases. Treatments under investigation include strategies aimed at neutralization of IFN-γ and IL-18.


Macrophage activation syndrome Systemic juvenile idiopathic arthritis Still disease Hemophagocytic macrophages Hemophagocytic lymphohistiocytosis 



Adult onset Still disease


Anti-thymocyte globulin


Bone marrow




C-reactive protein


Disseminated intravascular coagulation


Epstein Barr virus


Erythrocyte sedimentation rate


Hemophagocytic lymphohistiocytosis


Interferon regulatory factor 5


Macrophage activation syndrome

NK cells

Natural killer cells


Systemic juvenile idiopathic arthritis


Toll-like receptor


  1. 1.
    Silverman ED, Miller JJ III, Bernstein B, Shafai H. Consumption coagulopathy associated with systemic juvenile rheumatoid arthritis. J Pediatr. 1983;103:872–6.PubMedCrossRefGoogle Scholar
  2. 2.
    Hadchouel M, Prieur AM, Griscelli C. Acute hemorrhagic, hepatic, and neurologic manifestations in juvenile rheumatoid arthritis: possible relationship to drugs or infection. J Pediatr. 1985;106:561–6.PubMedCrossRefGoogle Scholar
  3. 3.
    Stephan JL, Zeller J, Hubert P, Herbelin C, Dayer JM, Prieur AM. Macrophage activation syndrome and rheumatic disease in childhood: a report of four new cases. Clin Exp Rheumatol. 1993;11:451–6.PubMedGoogle Scholar
  4. 4.
    Mouy R, Stephan JL, Pillet P, Haddad E, Hubert P, Prieur AM. Efficacy of cyclosporine a in the treatment of macrophage activation syndrome in juvenile arthritis: report of five cases. J Pediatr. 1996;129:750–4.PubMedCrossRefGoogle Scholar
  5. 5.
    Grom AA, Passo MH. Macrophage activation syndrome in systemic juvenile idiopathic arthritis. J Pediatr. 1996;129:630–2.PubMedCrossRefGoogle Scholar
  6. 6.
    Ravelli A, De Benedetti F, Viola S, Martini A. Macrophage activation syndrome in systemic juvenile rheumatoid arthritis successfully treated with cyclosporine. J Pediatr. 1996;128:275–8.PubMedCrossRefGoogle Scholar
  7. 7.
    Stephan JL, Kone-Paut I, Galambrun C, Mouy R, Bader-Meunier B, Prieur AM. Reactive haemophagocytic syndrome in children with inflammatory disorders. A retrospective study of 24 patients. Rheumatology (Oxford). 2001;40(11):1285–92.CrossRefGoogle Scholar
  8. 8.
    Sawhney S, Woo P, Murray KJ. Macrophage activation syndrome: a potentially fatal complication of rheumatic disorders. Arch Dis Child. 2001;85:421–6.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Grom AA. NK dysfunction: a common pathway in systemic onset juvenile rheumatoid arthritis, macrophage activation syndrome, and hemophagocytic lymphohistiocytosis. Arthritis Rheum. 2004;50:689–98.PubMedCrossRefGoogle Scholar
  10. 10.
    Ariet JB, Le Thi Huong D, Marinho A, et al. Reactive haemophagocytic syndrome in adult-onset Still’s disease: a report of six patients and a review of the literature. Ann Rheum Dis. 2006;65:1596–601.CrossRefGoogle Scholar
  11. 11.
    Ombrello MJ, Arthur VL, Remmers EF, et al. Genetic architecture distinguishes systemic juvenile idiopathic arthritis from other forms of juvenile idiopathic arthritis: clinical and therapeutic implications. Ann Rheum Dis. 2017;76(5):906–13.CrossRefGoogle Scholar
  12. 12.
    Nigrovic PA. Review: is there a window of opportunity for treatment of systemic juvenile idiopathic arthritis? Arthritis Rheum. 2014;66:1405–13.CrossRefGoogle Scholar
  13. 13.
    Rigante D, Cantarini L. The systemic onset variant of juvenile idiopathic arthritis needs to be recorded as an autoinnflammatory syndrome: comment on the review by Nigrovic. Arthritis Rheumatol. 2014;66:2645.PubMedCrossRefGoogle Scholar
  14. 14.
    Pascual V, Allantaz F, Arce E, Punaro M, Banchereau J. Role of interleukin-1 (IL-1) in the pathogenesis of systemic onset juvenile idiopathic arthritis and clinical response to IL-1 blockade. J Exp Med. 2005;201:1479–86.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Ruperto N, Brunner HI, Quartier P, et al. Two randomized trials of canakinumab in systemic juvenile idiopathic arthritis. N Engl J Med. 2012;367:2396–406.CrossRefGoogle Scholar
  16. 16.
    De Benedetti F, Martini A. Is systemic juvenile rheumatoid arthritis an IL-6 mediated disease. J Rheumatol. 1998;25:203–7.PubMedGoogle Scholar
  17. 17.
    Yokota S, Imagawa T, Mori M, et al. Efficacy and safety of tocilizumab in patients with systemic-onset juvenile idiopathic arthritis: a randomised, double-blind, placebo-controlled, withdrawal phase III trial. Lancet. 2008;371:998–1006.CrossRefGoogle Scholar
  18. 18.
    De Benedetti F, Brunner HI, Ruperto N, et al. Randomized trial of tocilizumab in systemic juvenile idiopathic arthritis. N Engl J Med. 2012;367:2385–95.CrossRefGoogle Scholar
  19. 19.
    Ravelli A, Martini A. Juvenile idiopathic arthritis. Lancet. 2007;369:767–78.PubMedCrossRefGoogle Scholar
  20. 20.
    Moradinejad MH, Ziaee V. The incidence of macrophage activation syndrome in children with rheumatic disorders. Minerva Pediatr. 2011;63:459–66.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Bleesing J, Prada A, Siegel DM, et al. The diagnostic significance of soluble CD163 and soluble interleukin-2 receptor alpha-chain in macrophage activation syndrome and untreated new-onset systemic juvenile idiopathic arthritis. Arthritis Rheum. 2007;56:965–71.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Behrens EM, Beukelman T, Paessler M, Cron RQ. Occult macrophage activation syndrome in patients with systemic juvenile idiopathic arthritis. J Rheumatol. 2007;34:1133–8.Google Scholar
  23. 23.
    Parodi A, Davì S, Pringe AB, et al. Macrophage activation syndrome in juvenile systemic lupus erythematosus. Multinational multicenter study of 38 patients. Arthritis Rheum. 2009;60:3388–99.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    García-Pavón S, Yamazaki-Nakashimada MA, Báez M, Borjas-Aguilar KL, Murata C. Kawasaki disease complicated with macrophage activation syndrome: a systematic review. J Pediatr Hematol Oncol. 2017;39(6):445–51.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Avcin T, Tse SML, Schneider R, Ngan B, Silverman ED. Macrophage activation syndrome as the presenting manifestation of rheumatic diseases in childhood. J Pediatr. 2006;148:683–6.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Minoia F, Davì S, Horne A, et al. Clinical features, treatment and outcome of macrophage activation syndrome complicating systemic juvenile idiopathic arthritis A multinational, multicenter study of 362 patients. Arthritis Rheumatol. 2014;66:3160–9.CrossRefGoogle Scholar
  27. 27.
    Prahalad S, Bove KE, Dickens D, Lovell DJ, Grom AA. Etanercept in the treatment of macrophage activation syndrome. J Rheumatol. 2001;28:2120–4.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Ramanan AV, Baildam EM. Macrophage activation syndrome is hemophagocytic lymphohistiocytosis—need for the right terminology. J Rheumatol. 2002;29:1105.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Favara BE, Feller AC, Pauli M, et al. Contemporary classification of histiocytic disorders. The WHO Committee on histiocytic/reticulum cell proliferations. Reclassification Working Group of the Histiocyte Society. Med Pediatr Oncol. 1997;29:157–66.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Filipovich HA. Hemophagocytic lymphohistiocytosis. Immunol Allergy Clin N Am. 2002;22:281–300.CrossRefGoogle Scholar
  31. 31.
    Jordan MB, Allen CE, Weitzman S, Filipovich AH, KL MC. How I treat hemophagocytic lymphohistiocytosis. Blood. 2011;118:4041–52.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Zhang K, Jordan MB, Marsh RA, et al. Hypomorphic mutations in PRF1, MUNC13–4, and STXBP2 are associated with adult-onset familial HLH. Blood. 2011;118:5794–8.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Stepp SE, Dufourcq-Lagelouse R, Le Deist F, et al. Perforin gene defects in familial hemophagocytic lymphohistiocytosis. Science. 1999;286:1957–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Feldmann J, Callebaut I, Raposo G, et al. MUNC13–4 is essential for cytolytic granules fusion and is mutated in a form of familial hemophagocytic lymphohistiocytosis (FHL3). Cell. 2003;115:461–73.PubMedCrossRefGoogle Scholar
  35. 35.
    zur Stadt U, Schmidt S, Kasper B, et al. Linkage of familial hemophagocytic lymphohistiocytosis (FHL) type-4 to chromosome 6q24 and identification of mutations in syntaxin 11. Hum Mol Genet. 2005;14:827–34.PubMedCrossRefGoogle Scholar
  36. 36.
    zur Stadt U, Rohr J, Seifert W, et al. Familial hemophagocytic lymphohistiocytosis type 5 (FHL-5) is caused by mutations in Munc18–2 and impaired binding to syntaxin 11. Am J Hum Genet. 2009;85:482–92.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Jenkins MR, Rudd-Schmidt JA, Lopez JA, et al. Failed CTL/NK cell killing and cytokine hypersecretion are directly linked through prolonged synapse time. J Exp Med. 2015;212:307–17.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Lykens JE, Terrell CE, Zoller EE, Risma K, Jordan MB. Perforin is a critical physiologic regulator of T-cell activation. Blood. 2011;118:618–26.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Grom AA, Villanueva J, Lee S, Goldmuntz EA, Passo MH, Filipovich A. Natural killer cell dysfunction in patients with systemic-onset juvenile rheumatoid arthritis and macrophage activation syndrome. J Pediatr. 2003;142:292–6.CrossRefGoogle Scholar
  40. 40.
    Vastert SJ, van Wijk R, D’Urbano LE, et al. Mutations in the perforin gene can be linked to macrophage activation syndrome in patients with systemic onset juvenile idiopathic arthritis. Rheumatology (Oxford). 2010;49:441–9.PubMedCrossRefGoogle Scholar
  41. 41.
    Cifaldi L, Prencipe G, Caiello I, Bracaglia C, Strippoli R, De Benedetti F. Inhibition of natural killer cell cytotoxicity by interleukin-6: implications for the pathogenesis of macrophage activation syndrome. Arthritis Rheumatol. 2015;67:3037–46.CrossRefGoogle Scholar
  42. 42.
    Kaufman KM, Linghu B, Szustakowski JD, et al. Whole exome sequencing reveals overlap between macrophage activation syndrome in systemic juvenile idiopathic arthritis and familial hemophagocytic lymphohistiocytosis. Arthritis Rheum. 2014;66:3486–95.CrossRefGoogle Scholar
  43. 43.
    Bracaglia C, Sieni E, Da Ros M, et al. Mutations of familial hemophagocytic lymphohistiocytosis related genes and abnormalities of cytotoxicity function tests in patients with macrophage activation syndrome (MAS) occurring in systemic juvenile idiopathic arthritis. Pediatr Rheumatol. 2014;12(Suppl 1):P53.CrossRefGoogle Scholar
  44. 44.
    Zhang M, Bracaglia C, Prencipe G, et al. A single copy RAB27a mutation leading to decreased NK cell cytolytic function and hemophagocytic lymphohistiocytosis. J Immunol. 2016;196:2492–503.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Put K, Vandenhaute J, Avau A, van Nieuwenhuijze A, et al. Inflammatory gene expression profile and defective interferon-γ and Granzyme K in natural killer cells from systemic juvenile idiopathic arthritis patients. Arthritis Rheumatol. 2017;69:213–24.CrossRefGoogle Scholar
  46. 46.
    Jordan MB, Hildeman D, Kappler J, Marrack P. An animal model of hemophagocytic lymphohistiocytosis (HLH): CD8+ T cells and interferon gamma are essential for the disorder. Blood. 2004;104:735–43.PubMedCrossRefGoogle Scholar
  47. 47.
    Pachlopnik Schmid J, Ho CH, Chretien F, et al. Neutralization of IFNgamma defeats haemophagocytosis in LCMV-infected perforin- and Rab27a-deficient mice. EMBO Mol Med. 2009;1:112–24.PubMedCrossRefGoogle Scholar
  48. 48.
    Krebs P, Crozat K, Popkin D, Oldstone MB, Beutler B. Disruption of MyD88 signaling suppresses hemophagocytic lymphohistiocytosis in mice. Blood. 2011;117:6582–8.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Rood JE, Rao S, Paessler M, et al. ST2 contributes to T-cell hyperactivation and fatal hemophagocytic lymphohistiocytosis in mice. Blood. 2016;127:426–35.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Brisse E, Imbrechts M, Put K, Avau A, et al. Mouse cytomegalovirus infection in BALB/c mice resembles virus-associated secondary hemophagocytic lymphohistiocytosis and shows a pathogenesis distinct from primary hemophagocytic lymphohistiocytosis. J Immunol. 2016;196:3124–34.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Billiau AD, Roskams T, Van Damme-Lombaerts R, Matthys P, Wouters C. Macrophage activation syndrome: characteristic findings on liver biopsy illustrating the key role of activated, IFN-gamma-producing lymphocytes and IL-6- and TNF-alpha-producing macrophages. Blood. 2005;105:1648–51.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Behrens EM, Canna SW, Slade K, et al. Repeated TLR9 stimulation results in macrophage activation syndrome-like disease in mice. J Clin Invest. 2011;121:2264–77.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Yanagimachi M, Naruto T, Miyamae T, et al. Association of IRF5 polymorphisms with susceptibility to macrophage activation syndrome in patients with juvenile idiopathic arthritis. J Rheumatol. 2011;38:769–74.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Fall N, Barnes M, Thornton S, et al. Gene expression profiling of peripheral blood from patients with untreated new-onset systemic juvenile idiopathic arthritis reveals molecular heterogeneity that may predict macrophage activation syndrome. Arthritis Rheum. 2007;56:3793–804.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Canna SW, Wrobel J, Chu N, Kreiger PA, Paessler M, Behrens EM. Interferon-γ mediates anemia but is dispensable for fulminant toll-like receptor 9-induced macrophage activation syndrome and hemophagocytosis in mice. Arthritis Rheum. 2013;65:1764–75.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Strippoli R, Carvello F, Scianaro R, et al. Amplification of the response to toll-like receptor ligands by prolonged exposure to interleukin-6 in mice: implication for the pathogenesis of macrophage activation syndrome. Arthritis Rheum. 2012;64:1680–8.PubMedCrossRefGoogle Scholar
  57. 57.
    Shimizu M, Yokoyama T, Yamada K, et al. Distinct cytokine profiles of systemic-onset juvenile idiopathic arthritis-associated macrophage activation syndrome with particular emphasis on the role of interleukin-18 in its pathogenesis. Rheumatology. 2010;49:1645–53.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Chiossone L, Audonnet S, Chetaille B, et al. Protection from inflammatory organ damage in a murine model of hemophagocytic lymphohistiocytosis using treatment with IL-18 binding protein. Front Immunol. 2012;3:239–49.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Canna SW, de Jesus AA, Gouni S, et al. An activating NLRC4 inflammasome mutation causes autoinflammation with recurrent macrophage activation syndrome. Nat Genet. 2014;46:1140–6.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Allantaz F, Chaussabel D, Stichweh D, et al. Blood leukocyte microarrays to diagnose systemic onset juvenile idiopathic arthritis and follow the response to IL-1 blockade. J Exp Med. 2007;204:2131–44.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Ogilvie EM, Khan A, Hubank M, Kellam P, Woo P. Specific gene expression profiles in systemic juvenile idiopathic arthritis. Arthritis Rheum. 2007;56:1954–65.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Sikora KA, Fall N, Thornton S, Grom AA. The limited role of interferon-gamma in systemic juvenile idiopathic arthritis cannot be explained by cellular hyporesponsiveness. Arthritis Rheum. 2012;64(11):3799–808.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Bracaglia C, Kathy de Graaf K, Marafon DP, et al. Elevated circulating levels of interferon-γ and interferon- induced chemokines characterize patients with macrophage activation syndrome complicating systemic JIA. Ann Rheum Dis. 2017;76(1):166–72.CrossRefGoogle Scholar
  64. 64.
    Put K, Avau A, Brisse E, et al. Cytokines in systemic juvenile idiopathic arthritis and haemophagocytic lymphohistiocytosis: tipping the balance between interleukin-18 and interferon-γ. Rheumatology (Oxford). 2015;54:1507–17.CrossRefGoogle Scholar
  65. 65.
    Ravelli A, Schneider R, Weitzman S, et al. Macrophage activation syndrome in patients with systemic juvenile idiopathic arthritis treated with tocilizumab. Arthritis Rheumatol. 2014;66(Suppl):83–4.CrossRefGoogle Scholar
  66. 66.
    Yokota S, Itoh Y, Morio T, Sumitomo N, Daimaru K, Minota S. Macrophage activation syndrome in patients with systemic juvenile idiopathic arthritis under treatment with tocilizumab. J Rheumatol. 2015;42:712–22.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Grom AA, Ilowite NT, Pascual V, et al. Canakinumab in systemic juvenile idiopathic arthritis: impact on the rate and clinical presentation of macrophage activation syndrome. Arthritis Rheumatol. 2016;68:218–28.CrossRefGoogle Scholar
  68. 68.
    Miettunen PM, Narendran A, Jayanthan A, Behrens EM, Cron RQ. Successful treatment of severe paediatric rheumatic disease-associated macrophage activation syndrome with interleukin-1 inhibition following conventional immunosuppressive therapy: case series with 12 patients. Rheumatology. 2011;50:4179.CrossRefGoogle Scholar
  69. 69.
    Durand M, Troyanov Y, Laflamme P, Gregoire G. Macrophage activation syndrome treated with anakinra. J Rheumatol. 2010;37:879–80.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Nigrovic PA, Mannion M, Prince FH, et al. Anakinra as first-line disease-modifying therapy in systemic juvenile idiopathic arthritis: report of forty-six patients from an international multicenter series. Arthritis Rheum. 2011;63:545–55.CrossRefGoogle Scholar
  71. 71.
    Ilowite NT, Prather K, Lokhnygina Y, et al. Randomized, double-blind, placebo-controlled trial of the efficacy and safety of rilonacept in the treatment of systemic juvenile idiopathic arthritis. Arthritis Rheumatol. 2014;66:2570–9.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Maeno N, Takei S, Imanaka H, et al. Increased interleukin-18 expression in bone marrow of a patient with systemic juvenile idiopathic arthritis and unrecognized macrophage-activation syndrome. Arthritis Rheum. 2004;50:1935–8.PubMedCrossRefGoogle Scholar
  73. 73.
    Kawashima M, Yamamura M, Taniai M, et al. Levels of interleukin-18 and its binding inhibitors in the blood circulation of patients with adult-onset Still’s disease. Arthritis Rheum. 2001;44:550–60.CrossRefGoogle Scholar
  74. 74.
    Novick D, Elbirt D, Miller G, Dinarello CA, Rubinstein M, Sthoeger ZM. High circulating levels of free interleukin-18 in patients with active SLE in the presence of elevated levels of interleukin-18 binding protein. Cytokine. 2009;48:103–4.CrossRefGoogle Scholar
  75. 75.
    de Jager W, Vastert SJ, Beekman JM, et al. Defective phosphorylation of interleukin-18 receptor beta causes impaired natural killer cell function in systemic-onset juvenile idiopathic arthritis. Arthritis Rheum. 2009;60:2782–93.CrossRefGoogle Scholar
  76. 76.
    Pham CG, Bubici C, Zazzeroni F, et al. Ferritin heavy chain upregulation by NF-kappa B inhibits TNFalpha-induced apoptosis by suppressing reactive oxygen species. Cell. 2004;119:529–42.PubMedCrossRefGoogle Scholar
  77. 77.
    Tran TN, Eubanks SK, Schaffer KJ, Zhou CY, Linder MC. Secretion of ferritin by rat hepatoma cells and its regulation by inflammatory cytokines and iron. Blood. 1997;90:4979–86.PubMedGoogle Scholar
  78. 78.
    Ravelli A, Minoia F, Davì S, Horne A, et al. Expert consensus on dynamics of laboratory tests for diagnosis of macrophage activation syndrome complicating systemic juvenile idiopathic arthritis. RMD Open. 2016;2:e000161.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Lehmberg K, Pink I, Eulenburg C, Beutel K, Maul-Pavicic A, Janka G. Differentiating macrophage activation syndrome in systemic juvenile idiopathic arthritis from other forms of hemophagocytic lymphohistiocytosis. J Pediatr. 2013;162:1245–51.PubMedCrossRefGoogle Scholar
  80. 80.
    Minoia F, Bovis F, Davì S, et al. Development and initial validation of the MH score, a diagnostic tool that differentiates primary hemophagocytic lymphohistiocytosis from macrophage activation syndrome. J Pediatr. 2017;189:72–78.e3.CrossRefGoogle Scholar
  81. 81.
    Henter JI, Horne A, Arico M, et al. HLH-2004: diagnostic and therapeutic guidelines for hemopagocytic lymphohistiocytosis. Pediatr Blood Cancer. 2007;48:124–31.CrossRefGoogle Scholar
  82. 82.
    Ravelli A, Minoia F, Davì S, et al. Development and initial validation of classification criteria for macrophage activation syndrome complicating systemic juvenile idiopathic arthritis. Arthritis Rheumatol. 2016;68:566–76.CrossRefGoogle Scholar
  83. 83.
    Schulert GS, Minoia F, Bohnsack J, et al. Biologic therapy modifies clinical and laboratory presentation of macrophage activation syndrome associated with systemic juvenile idiopathic arthritis. Arthritis Care Res. 2017.Google Scholar
  84. 84.
    Quesnel B, Catteau B, Aznar V, Bauters F, Fenaux P. Successful treatment of juvenile rheumatoid arthritis associated haemophagocytic syndrome by cyclosporin a with transient exacerbation by conventional-dose G-CSF. Br J Haematol. 1997;97:508–10.PubMedGoogle Scholar
  85. 85.
    Grom AA, Horne AC, De Benedetti F. Macrophage activation syndrome in the era of biologic therapy: clues to pathogenesis and impact on diagnostic approaches. Nat Rev Rheumatol. 2016;12:259–68.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Tristano AG, Casanova-Escalona L, Torres A, Rodriguez MA. Macrophage activation syndrome in a patient with systemic onset rheumatoid arthritis: rescue with intravenous immunoglobulin therapy. J Clin Rheumatol. 2003;9:253–8.PubMedCrossRefGoogle Scholar
  87. 87.
    Balamuth NJ, Nichols KE, Paessler M, Teachey DT. Use of rituximab in conjunction with immunosuppressive chemotherapy as a novel therapy for Epstein Barr virus-associated hemophagocytic lymphohistiocytosis. J Pediatr Hematol Oncol. 2007;29:569–73.PubMedCrossRefGoogle Scholar
  88. 88.
    Bosman G, Langemeijer SM, Hebeda KM, Raemaekers JM, Pickkers P, van der Velden WJ. The role of rituximab in a case of EBV-related lymphoproliferative disease presenting with haemophagocytosis. Neth J Med. 2009;67:364–5.PubMedGoogle Scholar
  89. 89.
    Palmblad K, Schierberg H, Sundberg E, et al. High systemic levels of the cytokine-inducing HMG1 isoform secereted in severe macrophgage activation syndrome. Mol Med. 2014;20:538–47.Google Scholar
  90. 90.
    Mahlaoui N, Ouachee-Chardin M, de Saint BG, et al. Immunotherapy of familial hemophagocytic lymphohistiocytosis with antithymocyte globulins: a single-center retrospective report of 38 patients. Pediatrics. 2007;120:e622–8.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Coca A, Bundy KW, Marston B, Huggins J, Looney RJ. Macrophage activation syndrome: serological markers and treatment with anti-thymocyte globulin. Clin Immunol. 2009;132:10–8.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Canna SW, Girard C, Malle L, et al. Life-threatening NLRC4-associated hyperinflammation successfully treated with IL-18 inhibition. J Allergy Clin Immunol. 2017;139:1698–701.PubMedPubMedCentralGoogle Scholar
  93. 93.
    Das R, Guan P, Sprague L, et al. Janus kinase inhibition lessens inflammation and ameliorates disease in murine models of hemophagocytic lymphohistiocytosis. Blood. 2016;127:1666–75.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Ruscitti P, Cipriani P, Ciccia F, et al. Prognostic factors of macrophage activation syndrome, at the time of diagnosis, in adult patients affected by autoimmune disease: analysis of 41 cases collected in 2 rheumatologic centers. Autoimmun Rev. 2017;16:16–21.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Buatois V, Chatel L, Cons L, et al. Use of a mouse model to identify a blood biomarker for IFNγ activity in pediatric secondary hemophagocytic lymphohistiocytosis. Transl Res. 2017;180:37–52.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Cincinnati Children’s Hospital Medical CenterCincinnatiUSA
  2. 2.Children’s Hospital of PhiladelphiaPhiladelphiaUSA

Personalised recommendations