Other Rare Monogenic Autoinflammatory Diseases

  • Isabelle JéruEmail author
  • Scott W. Canna
  • Eric P. Hanson


Over the past decade, major advances have been m`ade in understanding the molecular and cellular bases leading to autoinflammatory diseases, and a number of very rare entities have been described. Next-generation sequencing technologies led to the rapid identification of a number of additional genes responsible for syndromes observed in only a very small number of families or in sporadic cases. The identification of all these new genes and associated molecular pathways underlines that activation of interleukin (IL)-1β signaling is far from being the only pathogenic process involved in autoinflammatory disorders. Genetic defects found in patients with rare monogenic autoinflammatory diseases might also facilitate the study of common autoinflammatory diseases with a genetic component. Since these disorders affect multiple organs with potentially severe complications, management of patients is complex and warrants a multidisciplinary approach. Finally, it is necessary to translate discoveries of the pathophysiology of these conditions into more effective therapies, since the choice of therapeutic options often remains empirical.


NLRP12: NOD-like receptor family pyrin domain containing 12 NLRP1: NOD-like receptor family pyrin domain containing 1 PAAND: Pyrin-associated autoinflammation with neutrophilic dermatosis TNFRSF11A: Tumor necrosis factor receptor superfamily member 11a NLRC4: NOD-like receptor family CARD domain containing 4 NEMO-△CT: NEMO deleted C-terminus Otulin HA20: A20 haploinsufficiency 



Autoimmune lymphoproliferative syndrome


Apoptosis-associated speck-like protein containing a CARD


Cryopyrin-associated periodic syndrome


C-terminal caspase activation and recruitment domain


Central nervous system


C-reactive protein




Danger-associated molecular pattern


Disease-modifying anti-rheumatic drugs


Deubiquitinating enzymes


Ectodermal dysplasia with anhydrosis with immunodeficiency


Erythrocyte sedimentation rate


Familial cold autoinflammatory syndrome


Function-to-find domain


Familial keratosis lichenoides chronica


Familial Mediterranean fever


Gasdermin D


Graft versus host disease


Haploinsufficiency of A20


Hemophagocytic lymphohistiocytosis


Inflammatory bowel disease




IκB kinase




IL-1 receptor antagonist


Keratinocyte growth factor


Leucine-rich repeat


Linear ubiquitin assembly chain complex


Macrophage activation syndrome


Multiple self-healing palmoplantar carcinoma


NLRP1-associated autoinflammation with arthritis and dyskeratosis


Nucleotide binding site


NF-κB essential modulator


Nuclear factor kappa B


NOD-like receptor


NOD-like receptor family CARD domain containing 4


NOD-like receptor family pyrin domain containing 1


NOD-like receptor family pyrin domain containing 12


NLRP12-associated disorder


Nucleotide-binding oligomerization domain


Otulin-related autoinflammatory syndrome


Pyrin-associated autoinflammation with neutrophilic dermatosis


Pathogen-associated molecular pattern


Pyogenic arthritis, pyoderma gangrenosum, acne


Peripheral blood mononuclear cell


Proline-serine-threonine phosphatase interacting protein


Pyrin domain


Retinoic acid-inducible gene


Receptor interacting protein 1


RIG-I-like receptor


Ribonuclear protein


Squamous cell carcinoma


TRAF associated NFκB activator


Toll-like receptor


Tumor necrosis factor


Tumor necrosis factor receptor


Tumor necrosis factor receptor superfamily member 11a


Tumor necrosis factor receptor-associated factors


Tumor necrosis factor receptor-associated periodic syndrome


  1. 1.
    Jeru I, Duquesnoy P, Fernandes-Alnemri T, et al. Mutations in NALP12 cause hereditary periodic fever syndromes. Proc Natl Acad Sci U S A. 2008;105(5):1614–9.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Borghini S, Tassi S, Chiesa S, et al. Clinical presentation and pathogenesis of cold-induced autoinflammatory disease in a family with recurrence of an NLRP12 mutation. Arthritis Rheum. 2011;63(3):830–9.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Jeru I, Le Borgne G, Cochet E, et al. Identification and functional consequences of a recurrent NLRP12 missense mutation in periodic fever syndromes. Arthritis Rheum. 2011;63(5):1459–64.PubMedCrossRefGoogle Scholar
  4. 4.
    Rusmini M, Federici S, Caroli F, et al. Next-generation sequencing and its initial applications for molecular diagnosis of systemic auto-inflammatory diseases. Ann Rheum Dis. 2016;75(8):1550–7.PubMedCrossRefGoogle Scholar
  5. 5.
    Xia X, Dai C, Zhu X, et al. Identification of a novel NLRP12 nonsense mutation (Trp408X) in the extremely rare disease FCAS by exome sequencing. PLoS One. 2016;11(6):e0156981.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    De Pieri C, Vuch J, Athanasakis E, et al. F402L variant in NLRP12 in subjects with undiagnosed periodic fevers and in healthy controls. Clin Exp Rheumatol. 2014;32(6):993–4.PubMedGoogle Scholar
  7. 7.
    Kostik MM, Suspitsin EN, Guseva MN, et al. Multigene sequencing reveals heterogeneity of NLRP12-related autoinflammatory disorders. Rheumatol Int. 2018;38(5):887–93.PubMedCrossRefGoogle Scholar
  8. 8.
    Borte S, Celiksoy MH, Menzel V, et al. Novel NLRP12 mutations associated with intestinal amyloidosis in a patient diagnosed with common variable immunodeficiency. Clin Immunol. 2014;154(2):105–11.PubMedCrossRefGoogle Scholar
  9. 9.
    Wang L, Manji GA, Grenier JM, et al. PYPAF7, a novel PYRIN-containing Apaf1-like protein that regulates activation of NF-kappa B and caspase-1-dependent cytokine processing. J Biol Chem. 2002;277(33):29874–80.PubMedCrossRefGoogle Scholar
  10. 10.
    Vladimer GI, Weng D, Paquette SW, et al. The NLRP12 inflammasome recognizes Yersinia pestis. Immunity. 2012;37(1):96–107.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Lich JD, Williams KL, Moore CB, et al. Monarch-1 suppresses non-canonical NF-kappaB activation and p52-dependent chemokine expression in monocytes. J Immunol. 2007;178(3):1256–60.PubMedCrossRefGoogle Scholar
  12. 12.
    Jeru I, Hentgen V, Normand S, et al. Role of interleukin-1beta in NLRP12-associated autoinflammatory disorders and resistance to anti-interleukin-1 therapy. Arthritis Rheum. 2011;63(7):2142–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Soler VJ, Tran-Viet KN, Galiacy SD, et al. Whole exome sequencing identifies a mutation for a novel form of corneal intraepithelial dyskeratosis. J Med Genet. 2013;50(4):246–54.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Zhong FL, Mamaï O, Sborgi L, et al. Germline NLRP1 mutations cause skin inflammatory and cancer susceptibility syndromes via inflammasome activation. Cell. 2016;167(1):187–202.. e17PubMedCrossRefGoogle Scholar
  15. 15.
    Grandemange S, Sanchez E, Louis-Plence P, et al. A new autoinflammatory and autoimmune syndrome associated with NLRP1 mutations: NAIAD (NLRP1-associated autoinflammation with arthritis and dyskeratosis). Ann Rheum Dis. 2017;76(7):1191–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Masters SL, Lagou V, Jéru I, et al. Familial autoinflammation with neutrophilic dermatosis reveals a regulatory mechanism of pyrin activation. Sci Transl Med. 2016;8(332):332ra45.PubMedCrossRefGoogle Scholar
  17. 17.
    Moghaddas F, Llamas R, De Nardo D, et al. A novel pyrin-associated autoinflammation with neutrophilic dermatosis mutation further defines 14-3-3 binding of pyrin and distinction to familial Mediterranean fever. Ann Rheum Dis. 2017;76(12):2085–94.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Consortium TIF. Ancient missense mutations in a new member of the RoRet gene family are likely to cause familial Mediterranean fever. The International FMF Consortium. Cell. 1997;90(4):797–807.CrossRefGoogle Scholar
  19. 19.
    Consortium TFF. A candidate gene for familial Mediterranean fever. Nat Genet. 1997;17(1):25–31.CrossRefGoogle Scholar
  20. 20.
    Centola M, Wood G, Frucht DM, et al. The gene for familial Mediterranean fever, MEFV, is expressed in early leukocyte development and is regulated in response to inflammatory mediators. Blood. 2000;95(10):3223–31.PubMedGoogle Scholar
  21. 21.
    Diaz A, Hu C, Kastner DL, et al. Lipopolysaccharide-induced expression of multiple alternatively spliced MEFV transcripts in human synovial fibroblasts: a prominent splice isoform lacks the C-terminal domain that is highly mutated in familial Mediterranean fever. Arthritis Rheum. 2004;50(11):3679–89.PubMedCrossRefGoogle Scholar
  22. 22.
    Yu JW, Wu J, Zhang Z, et al. Cryopyrin and pyrin activate caspase-1, but not NF-kappaB, via ASC oligomerization. Cell Death Differ. 2006;13(2):236–49.PubMedCrossRefGoogle Scholar
  23. 23.
    Jeru I, Papin S, L’hoste S, et al. Interaction of pyrin with 14.3.3 in an isoform-specific and phosphorylation-dependent manner regulates its translocation to the nucleus. Arthritis Rheum. 2005;52(6):1848–57.PubMedCrossRefGoogle Scholar
  24. 24.
    Wise CA, Gillum JD, Seidman CE, et al. Mutations in CD2BP1 disrupt binding to PTP PEST and are responsible for PAPA syndrome, an autoinflammatory disorder. Hum Mol Genet. 2002;11(8):961–9.PubMedCrossRefGoogle Scholar
  25. 25.
    McDermott MF, Aksentijevich I, Galon J, et al. Germline mutations in the extracellular domains of the 55 kDa TNF receptor, TNFR1, define a family of dominantly inherited autoinflammatory syndromes. Cell. 1999;97(1):133–44.PubMedCrossRefGoogle Scholar
  26. 26.
    Jeru I, Cochet E, Duquesnoy P, et al. Brief report: involvement of TNFRSF11A molecular defects in autoinflammatory disorders. Arthritis Rheumatol. 2014;66(9):2621–7.PubMedCrossRefGoogle Scholar
  27. 27.
    Hanada R, Leibbrandt A, Hanada T, et al. Central control of fever and female body temperature by RANKL/RANK. Nature. 2009;462(7272):505–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Franchi L, Amer A, Body-Malapel M, et al. Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1beta in salmonella-infected macrophages. Nat Immunol. 2006;7(6):576–82.PubMedCrossRefGoogle Scholar
  29. 29.
    Miao EA, Alpuche-Aranda CM, Dors M, et al. Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1beta via Ipaf. Nat Immunol. 2006;7(6):569–75.PubMedCrossRefGoogle Scholar
  30. 30.
    Rauch I, Deets KA, Ji DX, et al. NAIP-NLRC4 Inflammasomes coordinate intestinal epithelial cell expulsion with eicosanoid and IL-18 release via activation of Caspase-1 and -8. Immunity. 2017;46(4):649–59.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Zhao Y, Yang J, Shi J, et al. The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature. 2011;477(7366):596–600.PubMedCrossRefGoogle Scholar
  32. 32.
    Diebolder CA, Halff EF, Koster AJ, Huizinga EG, Koning RI. Cryoelectron tomography of the NAIP5/NLRC4 Inflammasome: implications for NLR activation. Structure. 2015;23(12):2349–57.PubMedCrossRefGoogle Scholar
  33. 33.
    Hu Z, Yan C, Liu P, et al. Crystal structure of NLRC4 reveals its autoinhibition mechanism. Science. 2013;341(6142):172–5.PubMedCrossRefGoogle Scholar
  34. 34.
    Tenthorey JL, Haloupek N, López-Blanco JR, et al. The structural basis of flagellin detection by NAIP5: a strategy to limit pathogen immune evasion. Science. 2017;358(6365):888–93.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Zhang L, Chen S, Ruan J, et al. Cryo-EM structure of the activated NAIP2-NLRC4 inflammasome reveals nucleated polymerization. Science. 2015;350(6259):404–9.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Canna SW, de Jesus AA, Gouni S, et al. An activating NLRC4 inflammasome mutation causes autoinflammation with recurrent macrophage activation syndrome. Nat Genet. 2014;46(10):1140–6.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Kitamura A, Sasaki Y, Abe T, Kano H, Yasutomo K. An inherited mutation in NLRC4 causes autoinflammation in human and mice. J Exp Med. 2014;211(12):2385–96.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Romberg N, Al Moussawi K, Nelson-Williams C, et al. Mutation of NLRC4 causes a syndrome of enterocolitis and autoinflammation. Nat Genet. 2014;46(10):1135–9.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Bracaglia C, Prencipe G, Gatto A, et al. Anti interferon-gamma (IFN gamma) monoclonal antibody treatment in a child with NLRC4-related disease and severe hemophagocytic lymphohistiocytosis (HLH). Pediatr Blood Cancer. 2015;62:S123.CrossRefGoogle Scholar
  40. 40.
    Kawasaki Y, Oda H, Ito J, et al. Identification of a high-frequency somatic NLRC4 mutation as a cause of autoinflammation by pluripotent cell-based phenotype dissection. Arthritis Rheumatol. 2017;69(2):447–59.PubMedCrossRefGoogle Scholar
  41. 41.
    Romberg N, Vogel TP, Canna SW. NLRC4 inflammasomopathies. Curr Opin Allergy Clin Immunol. 2017;17(6):398–404.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Johansson A, Eriksson N, Becker RC, et al. NLRC4 inflammasome is an important regulator of Interleukin-18 levels in patients with acute coronary syndromes: genome-wide association study in the PLATelet inhibition and patient outcomes trial (PLATO). Circ Cardiovasc Genet. 2015;8(3):498–506.PubMedCrossRefGoogle Scholar
  43. 43.
    Kofoed EM, Vance RE. Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity. Nature. 2011;477(7366):592–5.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Reyes Ruiz VM, Ramirez J, Naseer N, et al. Broad detection of bacterial type III secretion system and flagellin proteins by the human NAIP/NLRC4 inflammasome. Proc Natl Acad Sci U S A. 2017;114(50):13242–7.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Case CL, Shin S, Roy CR. Asc and Ipaf Inflammasomes direct distinct pathways for caspase-1 activation in response to Legionella pneumophila. Infect Immun. 2009;77(5):1981–91.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    von Moltke J, Trinidad NJ, Moayeri M, et al. Rapid induction of inflammatory lipid mediators by the inflammasome in vivo. Nature. 2012;490(7418):107–11.CrossRefGoogle Scholar
  47. 47.
    Wang X, Shaw DK, Hammond HL, et al. The prostaglandin E2-EP3 receptor axis regulates Anaplasma phagocytophilum-mediated NLRC4 inflammasome activation. PLoS Pathog. 2016;12(8):e1005803.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Man SM, Hopkins LJ, Nugent E, et al. Inflammasome activation causes dual recruitment of NLRC4 and NLRP3 to the same macromolecular complex. Proc Natl Acad Sci U S A. 2014;111(20):7403–8.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Qu Y, Misaghi S, Newton K, et al. NLRP3 recruitment by NLRC4 during Salmonella infection. J Exp Med. 2016;213(6):877–85.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Weiss ES, Girard-Guyonvarc’h C, Holzinger D, et al. Interleukin-18 diagnostically distinguishes and pathogenically promotes human and murine macrophage activation syndrome. Blood. 2018;131:1442–55.PubMedCrossRefGoogle Scholar
  51. 51.
    Canna SW, Girard C, Malle L, et al. Life-threatening NLRC4-associated hyperinflammation successfully treated with IL-18 inhibition. J Allergy Clin Immunol. 2017;139(5):1698–701.PubMedCrossRefGoogle Scholar
  52. 52.
    Liang J, Alfano DN, Squires JE, et al. Novel NLRC4 mutation causes a syndrome of perinatal autoinflammation with hemophagocytic lymphohistiocytosis, hepatosplenomegaly, fetal thrombotic vasculopathy, and congenital anemia and ascites. Pediatr Dev Pathol. 2017;20(6):498–505.PubMedCrossRefGoogle Scholar
  53. 53.
    Volker-Touw CM, de Koning HD, Giltay JC, et al. Erythematous nodes, urticarial rash and arthralgias in a large pedigree with NLRC4-related autoinflammatory disease, expansion of the phenotype. Br J Dermatol. 2017;176(1):244–8.PubMedCrossRefGoogle Scholar
  54. 54.
    Doffinger R, Smahi A, Bessia C, et al. X-linked anhidrotic ectodermal dysplasia with immunodeficiency is caused by impaired NF-kappaB signaling. Nat Genet. 2001;27(3):277–85.PubMedCrossRefGoogle Scholar
  55. 55.
    Hanson EP, Monaco-Shawver L, Solt LA, et al. Hypomorphic nuclear factor-kappaB essential modulator mutation database and reconstitution system identifies phenotypic and immunologic diversity. J Allergy Clin Immunol. 2008;122(6):1169–77.. e16PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Keller MD, Petersen M, Ong P, et al. Hypohidrotic ectodermal dysplasia and immunodeficiency with coincident NEMO and EDA mutations. Front Immunol. 2011;2:61.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Miot C, Imai K, Imai C, et al. Hematopoietic stem cell transplantation in 29 patients hemizygous for hypomorphic IKBKG/NEMO mutations. Blood. 2017;130(12):1456–67.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Takada H, Nomura A, Ishimura M, Ichiyama M, Ohga S, Hara T. NEMO mutation as a cause of familial occurrence of Behcet’s disease in female patients. Clin Genet. 2010;78(6):575–9.PubMedCrossRefGoogle Scholar
  59. 59.
    Nenci A, Becker C, Wullaert A, et al. Epithelial NEMO links innate immunity to chronic intestinal inflammation. Nature. 2007;446(7135):557–61.PubMedCrossRefGoogle Scholar
  60. 60.
    Nenci A, Huth M, Funteh A, et al. Skin lesion development in a mouse model of incontinentia pigmenti is triggered by NEMO deficiency in epidermal keratinocytes and requires TNF signaling. Hum Mol Genet. 2006;15(4):531–42.PubMedCrossRefGoogle Scholar
  61. 61.
    Zilberman-Rudenko J, Shawver LM, Wessel AW, et al. Recruitment of A20 by the C-terminal domain of NEMO suppresses NF-kappaB activation and autoinflammatory disease. Proc Natl Acad Sci U S A. 2016;113(6):1612–7.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Mancini AJ, Lawley LP, Uzel G. X-linked ectodermal dysplasia with immunodeficiency caused by NEMO mutation: early recognition and diagnosis. Arch Dermatol. 2008;144(3):342–6.PubMedCrossRefGoogle Scholar
  63. 63.
    Cheng LE, Kanwar B, Tcheurekdjian H, et al. Persistent systemic inflammation and atypical enterocolitis in patients with NEMO syndrome. Clin Immunol. 2009;132(1):124–31.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Pachlopnik Schmid JM, Junge SA, Hossle JP, et al. Transient hemophagocytosis with deficient cellular cytotoxicity, monoclonal immunoglobulin M gammopathy, increased T-cell numbers, and hypomorphic NEMO mutation. Pediatrics. 2006;117(5):e1049–56.PubMedCrossRefGoogle Scholar
  65. 65.
    Tono C, Takahashi Y, Terui K, et al. Correction of immunodeficiency associated with NEMO mutation by umbilical cord blood transplantation using a reduced-intensity conditioning regimen. Bone Marrow Transplant. 2007;39(12):801–4.PubMedCrossRefGoogle Scholar
  66. 66.
    Makris C, Godfrey VL, Krähn-Senftleben G, et al. Female mice heterozygous for IKK gamma/NEMO deficiencies develop a dermatopathy similar to the human X-linked disorder incontinentia pigmenti. Mol Cell. 2000;5(6):969–79.CrossRefGoogle Scholar
  67. 67.
    Yates T, Wright B, Bauer C. Difficulty finding NEMO: functional pathways to sequencing. J Allergy Clin Immunol. 2017;139(2):AB113.CrossRefGoogle Scholar
  68. 68.
    Chandrakasan S, Marsh RA, Uzel G, Holland SM, Shah KN, Bleesing J. Outcome of patients with NEMO deficiency following allogeneic hematopoietic cell transplant. J Allergy Clin Immunol. 2017;139(3):1040–1043 e2.PubMedCrossRefGoogle Scholar
  69. 69.
    Wertz IE, O’Rourke KM, Zhou H, et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signalling. Nature. 2004;430(7000):694–9.PubMedCrossRefGoogle Scholar
  70. 70.
    Zhou Q, Wang H, Schwartz DM, et al. Loss-of-function mutations in TNFAIP3 leading to A20 haploinsufficiency cause an early-onset autoinflammatory disease. Nat Genet. 2016;48(1):67–73.PubMedCrossRefGoogle Scholar
  71. 71.
    Ohnishi H, Kawamoto N, Seishima M, Ohara O, Fukao T. A Japanese family case with juvenile onset Behcet’s disease caused by TNFAIP3 mutation. Allergol Int. 2017;66(1):146–8.PubMedCrossRefGoogle Scholar
  72. 72.
    Takagi M, Ogata S, Ueno H, et al. Haploinsufficiency of TNFAIP3 (A20) by germline mutation is involved in autoimmune lymphoproliferative syndrome. J Allergy Clin Immunol. 2017;139(6):1914–22.PubMedCrossRefGoogle Scholar
  73. 73.
    Aeschlimann FA, Batu ED, Canna SW, et al. A20 haploinsufficiency (HA20): clinical phenotypes and disease course of patients with a newly recognised NF-kB-mediated autoinflammatory disease. Ann Rheum Dis. 2018;77(5):728–35.PubMedCrossRefGoogle Scholar
  74. 74.
    Damgaard RB, Walker JA, Marco-Casanova P, et al. The Deubiquitinase OTULIN is an essential negative regulator of inflammation and autoimmunity. Cell. 2016;166(5):1215–30.. e20PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Zhou Q, Yu X, Demirkaya E, et al. Biallelic hypomorphic mutations in a linear deubiquitinase define otulipenia, an early-onset autoinflammatory disease. Proc Natl Acad Sci U S A. 2016;113(36):10127–32.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Rivkin E, Almeida SM, Ceccarelli DF, et al. The linear ubiquitin-specific deubiquitinase gumby regulates angiogenesis. Nature. 2013;498(7454):318–24.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Isabelle Jéru
    • 1
    • 2
    Email author
  • Scott W. Canna
    • 3
    • 4
  • Eric P. Hanson
    • 5
  1. 1.Department of Molecular Biology and GeneticsSaint-Antoine Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP)ParisFrance
  2. 2.INSERM UMR_S938, Saint-Antoine Research CenterInstitute of Cardiometabolism and Nutrition (ICAN), Sorbonne UniversitéParisFrance
  3. 3.RK Mellon Institute for Pediatric Research, Children’s Hospital of Pittsburgh of UPMCPittsburghUSA
  4. 4.Pediatric RheumatologyUniversity of Pittsburgh School of MedicinePittsburghUSA
  5. 5.Immunodeficiency and Inflammation Unit, Autoimmunity BranchNational Institutes of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of HealthBethesdaUSA

Personalised recommendations