Skip to main content

Hydatidiform Moles

  • Chapter
  • First Online:
Textbook of Autoinflammation

Abstract

Hydatidiform mole (HM) is a form of human pregnancy loss that is characterized by the absence of, or abnormal, embryonic development and hyperproliferation of the trophoblast. The common form is sporadic and has a multifactorial etiology. Recurrent HM has a Mendelian etiology and segregates according to an autosomal recessive mode of transmission. To date, two genes, NLRP7 and KHDC3L, responsible for recurrent HM have been identified. NLRP7 is the major gene for this condition and underlies the etiology of recurrent HM in 55% of patients with at least two occurrences of HM. Here, we review the current knowledge about this condition and focus on the known roles of NLRP7 in the pathogenesis of recurrent HM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ASC:

Apoptosis-associated speck-like protein containing a CARD

ATP:

Adenosine triphosphate

CARD:

Caspase activation and recruitment domain

CDKN1C:

Cyclin dependent kinase inhibitor 1C

CHM:

Complete hydatidiform mole

FIGO:

International Federation of Gynecology and Obstetrics

GTN:

Gestational trophoblastic neoplasia

hCG:

Human chorionic gonadotropin

HEK293:

Human embryonic kidney cells 293

HM:

Hydatidiform mole

IL1B:

Interleukin 1 beta

KHDC3:

KH domain-containing protein 3

KHDC3L:

KH domain containing 3 like, subcortical maternal complex member

LPS:

Lipopolysacharide

LRR:

Leucine-rich domain

NACHT:

NAIP, CIITA, HET-E, and TP1 domain

NLR:

NOD-like receptor

NLRP2:

NLR family pyrin domain containing 2

NLRP3:

NLR family pyrin domain containing 3

NLRP5:

NLR family pyrin domain containing 5

NLRP7:

NLR family pyrin domain containing 7

NOD:

Nucleotide-binding oligomerization domain

OOEP:

Oocyte expressed protein

p57KIP2:

The protein coded by CDKN1C

PADI6:

Peptidyl arginine deiminase 6

PHM:

Partial hydatidiform mole

POC:

Product of conception

PYD:

Pyrin domain

RHM:

Recurrent hydatidiform mole

SCMC:

Subcortical maternal complex

THP1:

Transfected monocytic cell line

TLE6:

Transducin like enhancer of split 6

ZBED3:

Zinc finger BED-type containing 3

References

  1. Richardson MV, Hertig AT. New England’s first recorded hydatidiform mole; a historical note. N Engl J Med. 1959;260:544–5.

    Article  CAS  PubMed  Google Scholar 

  2. Savage P, et al. The demographics of molar pregnancies in England and Wales from 2000-2009. J Reprod Med. 2010;55:341–5.

    PubMed  Google Scholar 

  3. Grimes DA. Epidemiology of gestational trophoblastic disease. Am J Obstet Gynecol. 1984;150:309–18.

    Article  CAS  Google Scholar 

  4. Bracken MB, Brinton LA, Hayashi K. Epidemiology of hydatidiform mole and choriocarcinoma. Epidemiol Rev. 1984;6:52–75.

    Article  CAS  Google Scholar 

  5. Steigrad SJ. Epidemiology of gestational trophoblastic diseases. Best Pract Res Clin Obstet Gynaecol. 2003;17:837–47.

    Article  Google Scholar 

  6. Bagshawe KD, Dent J, Webb J. Hydatidiform mole in England and Wales 1973-83. Lancet. 1986;2:673–7.

    Article  CAS  Google Scholar 

  7. Berkowitz RS, Im SS, Bernstein MR, Goldstein DP. Gestational trophoblastic disease. Subsequent pregnancy outcome, including repeat molar pregnancy. J Reprod Med. 1998;43:81–6.

    CAS  PubMed  Google Scholar 

  8. Boufettal H, et al. Complete hydatiforme mole in Morocco: epidemiological and clinical study. J Gynecol Obstet Biol Reprod (Paris). 2011;40:419–29.

    Article  CAS  Google Scholar 

  9. Horn LC, Kowalzik J, Bilek K, Richter CE, Einenkel J. Clinicopathologic characteristics and subsequent pregnancy outcome in 139 complete hydatidiform moles. Eur J Obstet Gynecol Reprod Biol. 2006;128:10–4.

    Article  Google Scholar 

  10. Kim JH, Park DC, Bae SN, Namkoong SE, Kim SJ. Subsequent reproductive experience after treatment for gestational trophoblastic disease. Gynecol Oncol. 1998;71:108–12.

    Article  CAS  Google Scholar 

  11. Kronfol NM, Iliya FA, Hajj SN. Recurrent hydatidiform mole: a report of five cases with review of the literature. J Med Liban. 1969;22:507–20.

    CAS  PubMed  Google Scholar 

  12. Sebire NJ, et al. Risk of recurrent hydatidiform mole and subsequent pregnancy outcome following complete or partial hydatidiform molar pregnancy. BJOG. 2003;110:22–6.

    Article  CAS  PubMed  Google Scholar 

  13. Shih IM, Kurman RJ. p63 expression is useful in the distinction of epithelioid trophoblastic and placental site trophoblastic tumors by profiling trophoblastic subpopulations. Am J Surg Pathol. 2004;28:1177–83.

    Article  Google Scholar 

  14. Messerli ML, Lilienfeld AM, Parmley T, Woodruff JD, Rosenshein NB. Risk factors for gestational trophoblastic neoplasia. Am J Obstet Gynecol. 1985;153:294–300.

    Article  CAS  Google Scholar 

  15. Yen S, MacMahon B. Epidemiologic features of trophoblastic disease. Am J Obstet Gynecol. 1968;101:126–32.

    Article  CAS  Google Scholar 

  16. Palmer JR, et al. Oral contraceptive use and risk of gestational trophoblastic tumors. J Natl Cancer Inst. 1999;91:635–40.

    Article  CAS  Google Scholar 

  17. Graham IH, Fajardo AM, Richards RL. Epidemiological study of complete and partial hydatidiform mole in Abu Dhabi: influence age and ethnic group. J Clin Pathol. 1990;43:661–4.

    Article  CAS  Google Scholar 

  18. Nguyen NMP, et al. The genetics of recurrent hydatidiform moles: new insights and lessons from a comprehensive analysis of 113 patients. Mod Pathol. 2018;31(7):1116–30.

    Article  CAS  PubMed  Google Scholar 

  19. Banet N, et al. Characteristics of hydatidiform moles: analysis of a prospective series with p57 immunohistochemistry and molecular genotyping. Mod Pathol. 2014;27:238–54.

    Article  CAS  PubMed  Google Scholar 

  20. Murdoch S, et al. Mutations in NALP7 cause recurrent hydatidiform moles and reproductive wastage in humans. Nat Genet. 2006;38:300–2.

    Article  CAS  Google Scholar 

  21. Qian J, et al. The genetics of recurrent hydatidiform moles in China: correlations between NLRP7 mutations, molar genotypes, and reproductive outcomes. Mol Hum Reprod. 2011;17:612–9.

    Article  CAS  Google Scholar 

  22. Slim R, Bagga R, Chebaro W, Srinivasan R, Agarwal N. A strong founder effect for two NLRP7 mutations in the Indian population: an intriguing observation. Clin Genet. 2009;76:292–5.

    Article  CAS  Google Scholar 

  23. Hayward BE, et al. Genetic and epigenetic analysis of recurrent hydatidiform mole. Hum Mutat. 2009;30:E629–39.

    Article  Google Scholar 

  24. Estrada H, Buentello B, Zenteno JC, Fiszman R, Aguinaga M. The p.L750V mutation in the NLRP7 gene is frequent in Mexican patients with recurrent molar pregnancies and is not associated with recurrent pregnancy loss. Prenat Diagn. 2013;33(3):205–8.

    Article  CAS  PubMed  Google Scholar 

  25. Parry DA, et al. Mutations causing familial biparental hydatidiform mole implicate c6orf221 as a possible regulator of genomic imprinting in the human oocyte. Am J Hum Genet. 2011;89:451–8; [pii]: S0002-9297(11)00319-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Eagles N, et al. Risk of recurrent molar pregnancies following complete and partial hydatidiform moles. Hum Reprod. 2015;30:2055–63.

    Article  CAS  PubMed  Google Scholar 

  27. El-Maarri O, et al. Maternal alleles acquiring paternal methylation patterns in biparental complete hydatidiform moles. Hum Mol Genet. 2003;12:1405–13.

    Article  CAS  Google Scholar 

  28. Kou YC, et al. A recurrent intragenic genomic duplication, other novel mutations in NLRP7 and imprinting defects in recurrent biparental hydatidiform moles. Mol Hum Reprod. 2008;14:33–40.

    Article  CAS  PubMed  Google Scholar 

  29. Ito Y, et al. Novel nonsense mutation in the NLRP7 gene associated with recurrent hydatidiform mole. Gynecol Obstet Investig. 2016;81:353–8.

    Article  CAS  Google Scholar 

  30. Sanchez-Delgado M, et al. Absence of maternal methylation in biparental hydatidiform moles from women with NLRP7 maternal-effect mutations reveals widespread placenta-specific imprinting. PLoS Genet. 2015;11:e1005644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nguyen NM, et al. Comprehensive genotype-phenotype correlations between NLRP7 mutations and the balance between embryonic tissue differentiation and trophoblastic proliferation. J Med Genet. 2014;51:623–34.

    Article  PubMed  Google Scholar 

  32. Mahadevan S, et al. NLRP7 affects trophoblast lineage differentiation, binds to overexpressed YY1 and alters CpG methylation. Hum Mol Genet. 2014;23:706–16.

    Article  CAS  PubMed  Google Scholar 

  33. Kinoshita T, Wang Y, Hasegawa M, Imamura R, Suda T. PYPAF3, a PYRIN-containing APAF-1-like protein, is a feedback regulator of caspase-1-dependent interleukin-1{beta} secretion. J Biol Chem. 2005;280:21720–5.

    Article  CAS  Google Scholar 

  34. Okada K, et al. Oncogenic role of NALP7 in testicular seminomas. Cancer Sci. 2004;95:949–54.

    Article  CAS  Google Scholar 

  35. Zhang P, et al. Expression analysis of the NLRP gene family suggests a role in human preimplantation development. PLoS One. 2008;3:e2755.

    Article  Google Scholar 

  36. Akoury E, Zhang L, Ao A, Slim R. NLRP7 and KHDC3L, the two maternal-effect proteins responsible for recurrent hydatidiform moles, co-localize to the oocyte cytoskeleton. Hum Reprod. 2015;30:159–69.

    Article  CAS  PubMed  Google Scholar 

  37. Li L, Baibakov B, Dean J. A subcortical maternal complex essential for preimplantation mouse embryogenesis. Dev Cell. 2008;15:416–25.

    Article  CAS  Google Scholar 

  38. Yurttas P, et al. Role for PADI6 and the cytoplasmic lattices in ribosomal storage in oocytes and translational control in the early mouse embryo. Development. 2008;135:2627–36.

    Article  CAS  Google Scholar 

  39. Mahadevan S, et al. Maternally expressed NLRP2 links the subcortical maternal complex (SCMC) to fertility, embryogenesis and epigenetic reprogramming. Sci Rep. 2017;7:44667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gao Z, et al. Zbed3 participates in the subcortical maternal complex and regulates the distribution of organelles. J Mol Cell Biol. 2018;10:74–88.

    Article  PubMed  Google Scholar 

  41. Alazami AM, et al. TLE6 mutation causes the earliest known human embryonic lethality. Genome Biol. 2015;16:240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Xu Y, et al. Mutations in PADI6 cause female infertility characterized by early embryonic arrest. Am J Hum Genet. 2016;99:744–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Maddirevula S, et al. The human knockout phenotype of PADI6 is female sterility caused by cleavage failure of their fertilized eggs. Clin Genet. 2017;91:344–5.

    Article  CAS  PubMed  Google Scholar 

  44. Qian J, et al. Biallelic PADI6 variants linking infertility, miscarriages, and hydatidiform moles. Eur J Hum Genet. 2018;26:1007–13.

    Article  CAS  PubMed  Google Scholar 

  45. Edwards R, et al. Preimplantation diagnosis and recurrent hydatidiform mole. Lancet. 1990;335:1030–1.

    Article  CAS  Google Scholar 

  46. Edwards RG, et al. Pronuclear, cleavage and blastocyst histories in the attempted preimplantation diagnosis of the human hydatidiform mole. Hum Reprod. 1992;7:994–8.

    Article  CAS  Google Scholar 

  47. Pal L, Toth TL, Leykin L, Isaacson KB. High incidence of triploidy in in-vitro fertilized oocytes from a patient with a previous history of recurrent gestational trophoblastic disease. Hum Reprod. 1996;11:1529–32.

    Article  CAS  Google Scholar 

  48. Reubinoff BE, et al. Intracytoplasmic sperm injection combined with preimplantation genetic diagnosis for the prevention of recurrent gestational trophoblastic disease. Hum Reprod. 1997;12:805–8.

    Article  CAS  PubMed  Google Scholar 

  49. Sills ES, et al. Pathogenic variant in NLRP7 (19q13.42) associated with recurrent gestational trophoblastic disease: data from early embryo development observed during in vitro fertilization. Clin Exp Reprod Med. 2017;44:40–6.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Singer H, et al. NLRP7 inter-domain interactions: the NACHT-associated domain is the physical mediator for oligomeric assembly. Mol Hum Reprod. 2014;20:990–1001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Messaed C, et al. NLRP7, a nucleotide oligomerization domain-like receptor protein, is required for normal cytokine secretion and co-localizes with Golgi and the microtubule-organizing center. J Biol Chem. 2011;286:43313–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Khare S, et al. An NLRP7-containing inflammasome mediates recognition of microbial lipopeptides in human macrophages. Immunity. 2012;36:464–76.

    Article  CAS  Google Scholar 

  53. Zhou Y, et al. Virulent Mycobacterium bovis Beijing strain activates the NLRP7 inflammasome in THP-1 macrophages. PLoS One. 2016;11:e0152853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Messaed C, et al. NLRP7 in the spectrum of reproductive wastage: rare non-synonymous variants confer genetic susceptibility to recurrent reproductive wastage. J Med Genet. 2011;48:540–8.

    Article  CAS  PubMed  Google Scholar 

  55. Agostini L, et al. NALP3 forms an IL-1beta-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder. Immunity. 2004;20:319–25.

    Article  CAS  Google Scholar 

  56. Loock J, et al. Genetic predisposition (NLRP3 V198M mutation) for IL-1-mediated inflammation in a patient with Schnitzler syndrome. J Allergy Clin Immunol. 2010;125:500–2; [pii]: S0091-6749(09)01718-7.

    Article  CAS  PubMed  Google Scholar 

  57. Jeru I, et al. Role of interleukin-1beta in NLRP12-associated autoinflammatory disorders and resistance to anti-interleukin-1 therapy. Arthritis Rheum. 2011;63:2142–8.

    Article  CAS  PubMed  Google Scholar 

  58. Sun SY, et al. Changing presentation of complete hydatidiform mole at the New England Trophoblastic Disease Center over the past three decades: does early diagnosis alter risk for gestational trophoblastic neoplasia? Gynecol Oncol. 2015;138:46–9.

    Article  PubMed  Google Scholar 

  59. Cole LA. hCG and hyperglycosylated hCG in the establishment and evolution of hemochorial placentation. J Reprod Immunol. 2009;82:112–8.

    Article  CAS  PubMed  Google Scholar 

  60. Lurain JR. Gestational trophoblastic disease I: epidemiology, pathology, clinical presentation and diagnosis of gestational trophoblastic disease, and management of hydatidiform mole. Am J Obstet Gynecol. 2010;203:531–9.

    Article  PubMed  Google Scholar 

  61. Lurain JR. Gestational trophoblastic disease II: classification and management of gestational trophoblastic neoplasia. Am J Obstet Gynecol. 2011;204:11–8.

    Article  PubMed  Google Scholar 

  62. FIGO Oncology Committee. FIGO staging for gestational trophoblastic neoplasia 2000. FIGO Oncology Committee. Int J Gynaecol Obstet. 2002;77:285–7.

    Article  Google Scholar 

  63. Boufaied N, et al. Identification of genes expressed in a mesenchymal subset regulating prostate organogenesis using tissue and single cell transcriptomics. Sci Rep. 2017;7:16385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bolze PA, et al. Formalised consensus of the European Organisation for Treatment of Trophoblastic Diseases on management of gestational trophoblastic diseases. Eur J Cancer. 2015;51:1725–31.

    Article  PubMed  Google Scholar 

  65. Mangili G, et al. Trophoblastic disease review for diagnosis and management: a joint report from the International Society for the Study of Trophoblastic Disease, European Organisation for the Treatment of Trophoblastic Disease, and the Gynecologic Cancer InterGroup. Int J Gynecol Cancer. 2014;24:S109–16.

    Article  PubMed  Google Scholar 

  66. Moodley M, Tunkyi K, Moodley J. Gestational trophoblastic syndrome: an audit of 112 patients. A South African experience. Int J Gynecol Cancer. 2003;13:234–9.

    Article  CAS  Google Scholar 

  67. Seckl MJ, Sebire NJ, Berkowitz RS. Gestational trophoblastic disease. Lancet. 2010;376:717–29.

    Article  Google Scholar 

  68. Bolze PA, et al. Mortality rate of gestational trophoblastic neoplasia with a FIGO score of ≥13. Am J Obstet Gynecol. 2016;214(390):e391–8.

    Article  Google Scholar 

Download references

Acknowledgements

NMPN was supported by fellowships from the Réseau Québécois en Reproduction, McGill Faculty of Medicine, RI-MUHC Desjardins Studentship in Child Health Research, and CRRD. This work was supported by the Canadian Institute of Health Research [MOP-130364] to RS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rima Slim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nguyen, N.M.P., Bolze, PA., Slim, R. (2019). Hydatidiform Moles. In: Hashkes, P., Laxer, R., Simon, A. (eds) Textbook of Autoinflammation. Springer, Cham. https://doi.org/10.1007/978-3-319-98605-0_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98605-0_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98604-3

  • Online ISBN: 978-3-319-98605-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics