Skip to main content

Genetic Causes of Inflammatory Bone Disease

  • Chapter
  • First Online:
Textbook of Autoinflammation

Abstract

This chapter focuses on monogenic autoinflammatory disorders that affect bone. The presence of sterile bone inflammation may be accompanied by inflammation of the skin and intestinal tract. The pathophysiology varies by syndrome and includes dysregulation of the IL-1 pathway or aberrant intracellular signaling defects leading to activation of innate immune cells including osteoclasts. These are rare disorders with variable outcomes. IL-1 inhibitors have been used successfully to decrease inflammation in Majeed syndrome, deficiency of the interleukin receptor antagonist and for non-osseous manifestations of neonatal onset multisystem inflammatory disease. For other disorders such as cherubism, treatment remains challenging. Recognition of additional monogenic autoinflammatory is likely as this is a very new field of investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADP:

Adenosine diphosphate

ASC:

Apoptosis-associated speck-like protein containing a carboxy-terminal CARD

c-ABL:

Abelson murine leukemia viral oncogene homolog 1

CDA:

Congenital dyserythropoietic anemia (CDA)

CNO:

Chronic non-bacterial osteomyelitis

CRMO:

Chronic recurrent multifocal osteomyelitis

CRP:

C-reactive protein

Csk:

C-terminal Src kinase

DIRA:

Deficiency of the interleukin-1 receptor antagonist

ERK:

Extracellular signal-regulated kinase

ESR:

Erythrocyte sedimentation rate

FBLIM1:

Filamin binding LIM protein 1 gene

FBLP1:

Filamin binding LIM protein 1

HPGD:

15-hydroxyprostaglandin dehydrogenase

IL:

Interleukin

IL-1AcP:

IL-1 receptor accessory protein

IL-1RI:

IL-1 receptor I

IL1RN:

Interleukin-1 receptor antagonist gene symbol

IRAK4:

Interleukin 1 receptor associated kinase 4

LPIN2:

Lipin2 gene symbol

MAPK:

MAP kinase

M-CSF:

Macrophage colony-stimulating factor

MRI:

Magnetic resonance imaging

MyD88:

Myeloid differentiation primary response 88

NFAT:

Nuclear factor of activated T-cells

NLRP3:

NLR family pyrin domain containing 3

NOMID:

Neonatal onset multisystem inflammatory disease

NR4A2:

Nuclear receptor subfamily 4 group A member 2

NSAID:

Non-steroidal anti-inflammatory drugs

P2X7R:

Purinergic receptor P2X 7

PAP:

Phosphatidate phosphatase

PHO:

Primary hypertrophic osteoarthropathy

Pstpip2:

Proline-serine-threonine phosphatase interacting protein 2

PTP PEST:

 Protein-tyrosine phosphatase with proline (P), glutamic acid (E), serine (S), and threonine (T) motif

RANKL:

Receptor activator of nuclear factor kappa-Β ligand

SH3BP2:

SH3 binding protein 2

SHIP1:

Phosphatidylinositol-3,4,5-trisphosphate 5-phosphatase 1

STAT:

Signal transducer and activator of transcription

STIR:

Short tau inversion recovery

Syk:

Spleen tyrosine kinase

TNF:

Tumor necrosis factor

References

  1. Majeed HA, Kalaawi M, Mohanty D, et al. Congenital dyserythropoietic anemia and chronic recurrent multifocal osteomyelitis in three related children and the association with Sweet syndrome in two siblings. J Pediatr. 1989;115(5 Pt 1):730–4.

    Article  CAS  PubMed  Google Scholar 

  2. Majeed HA, El-Shanti H, Al-Rimawi H, Al-Masri N. On mice and men: an autosomal recessive syndrome of chronic recurrent multifocal osteomyelitis and congenital dyserythropoietic anemia. J Pediatr. 2000;137(3):441–2.

    Article  CAS  PubMed  Google Scholar 

  3. Majeed HA, Al-Tarawna M, El-Shanti H, Kamel B, Al-Khalaileh F. The syndrome of chronic recurrent multifocal osteomyelitis and congenital dyserythropoietic anaemia. Report of a new family and a review. Eur J Pediatr. 2001;160(12):705–10.

    Article  CAS  PubMed  Google Scholar 

  4. Al-Mosawi ZS, Al-Saad KK, Ijadi-Maghsoodi R, El-Shanti HI, Ferguson PJ. A splice site mutation confirms the role of LPIN2 in Majeed syndrome. Arthritis Rheum. 2007;56(3):960–4. PubMed PMID: 17330256.

    Article  CAS  PubMed  Google Scholar 

  5. Herlin T, Fiirgaard B, Bjerre M, et al. Efficacy of anti-IL-1 treatment in Majeed syndrome. Ann Rheum Dis. 2013;72(3):410–3. PubMed PMID: 23087183. Pubmed Central PMCID: 3660147. Epub 2012/10/23. eng.

    Article  CAS  PubMed  Google Scholar 

  6. Rao AP, Gopalakrishna DB, Bing X, Ferguson PJ. Phenotypic variability in Majeed syndrome. J Rheumatol. 2016;43(6):1258–9. PubMed PMID: 27252506. Pubmed Central PMCID: 4898189.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Moussa T, Bhat V, Kini V, Fathalla BM. Clinical and genetic association, radiological findings and response to biological therapy in seven children from Qatar with non-bacterial osteomyelitis. Int J Rheum Dis. 2017;20(9):1286–96. PubMed PMID: 27860302.

    Article  CAS  PubMed  Google Scholar 

  8. Pinto-Fernandez C, Seoane-Reula ME. Efficacy of treatment with IL-1RA in Majeed syndrome. Allergol Immunopathol. 2017;45(1):99–101. PubMed PMID: 27480788

    Article  CAS  Google Scholar 

  9. Ferguson PJ, Chen S, Tayeh MK, et al. Homozygous mutations in LPIN2 are responsible for the syndrome of chronic recurrent multifocal osteomyelitis and congenital dyserythropoietic anaemia (Majeed syndrome). J Med Genet. 2005;42(7):551–7. PubMed PMID: 15994876. Pubmed Central PMCID: 1736104. Epub 2005/07/05. eng.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. El-Shanti HI, Ferguson PJ. Chronic recurrent multifocal osteomyelitis: a concise review and genetic update. Clin Orthop Relat Res. 2007;462:11–9. PubMed PMID: 17496555.

    Article  PubMed  Google Scholar 

  11. Cox AJ, Zhao Y, Ferguson PJ. Chronic recurrent multifocal osteomyelitis and related diseases-update on pathogenesis. Curr Rheumatol Rep. 2017;19(4):18. PubMed PMID: 28361334.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Bjorksten B, Boquist L. Histopathological aspects of chronic recurrent multifocal osteomyelitis. J Bone Joint Surg Br. 1980;62(3):376–80.

    Article  Google Scholar 

  13. Stern SM, Ferguson PJ. Autoinflammatory bone diseases. Rheum Dis Clin N Am. 2013;39(4):735–49. PubMed PMID: 24182852. Pubmed Central PMCID: 3823499.

    Article  Google Scholar 

  14. Girschick HJ, Huppertz HI, Harmsen D, Krauspe R, Muller-Hermelink HK, Papadopoulos T. Chronic recurrent multifocal osteomyelitis in children: diagnostic value of histopathology and microbial testing. Hum Pathol. 1999;30(1):59–65.

    Article  CAS  PubMed  Google Scholar 

  15. Phan J, Peterfy M, Reue K. Lipin expression preceding peroxisome proliferator-activated receptor-gamma is critical for adipogenesis in vivo and in vitro. J Biol Chem. 2004;279(28):29558–64. PubMed PMID: 15123608.

    Article  CAS  PubMed  Google Scholar 

  16. Peterfy M, Phan J, Xu P, Reue K. Lipodystrophy in the fld mouse results from mutation of a new gene encoding a nuclear protein, lipin. Nat Genet. 2001;27(1):121–4. PubMed PMID: 11138012.

    Article  CAS  PubMed  Google Scholar 

  17. Donkor J, Sariahmetoglu M, Dewald J, Brindley DN, Reue K. Three mammalian lipins act as phosphatidate phosphatases with distinct tissue expression patterns. J Biol Chem. 2007;282(6):3450–7. PubMed PMID: 17158099.

    Article  CAS  PubMed  Google Scholar 

  18. Donkor J, Zhang P, Wong S, et al. A conserved serine residue is required for the phosphatidate phosphatase activity but not the transcriptional coactivator functions of lipin-1 and lipin-2. J Biol Chem. 2009;284(43):29968–78. PubMed PMID: 19717560. Pubmed Central PMCID: 2785625. Epub 2009/09/01. eng.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lorden G, Sanjuan-Garcia I, de Pablo N, et al. Lipin-2 regulates NLRP3 inflammasome by affecting P2X7 receptor activation. J Exp Med. 2017;214(2):511–28. PubMed PMID: 28031477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cox AJ, Darbro BW, Laxer RM, et al. Recessive coding and regulatory mutations in FBLIM1 underlie the pathogenesis of chronic recurrent multifocal osteomyelitis (CRMO). PLoS One. 2017;12(3):e0169687. PubMed PMID: 28301468. Pubmed Central PMCID: 5354242.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Xiao G, Cheng H, Cao H, et al. Critical role of filamin-binding LIM protein 1 (FBLP-1)/migfilin in regulation of bone remodeling. J Biol Chem. 2012;287(25):21450–60. PubMed PMID: 22556421. Pubmed Central PMCID: 3375566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hamel J, Paul D, Gahr M, Hedrich CM. Pilot study: possible association of IL10 promoter polymorphisms with CRMO. Rheumatol Int. 2011;15. PubMed PMID: 21240493. Epub 2011/01/18. Eng.

    Google Scholar 

  23. Hofmann SR, Schwarz T, Moller JC, et al. Chronic non-bacterial osteomyelitis is associated with impaired Sp1 signaling, reduced IL10 promoter phosphorylation, and reduced myeloid IL-10 expression. Clin Immunol. 2011;141(3):317–27. PubMed PMID: 21925952. Epub 2011/09/20. eng.

    Article  CAS  PubMed  Google Scholar 

  24. Hutchins AP, Poulain S, Miranda-Saavedra D. Genome-wide analysis of STAT3 binding in vivo predicts effectors of the anti-inflammatory response in macrophages. Blood. 2012;119(13):e110–9. PubMed PMID: 22323479.

    Article  CAS  PubMed  Google Scholar 

  25. Wu C. Migfilin and its binding partners: from cell biology to human diseases. J Cell Sci. 2005;118(Pt 4):659–64. PubMed PMID: 15701922.

    Article  CAS  PubMed  Google Scholar 

  26. Tu Y, Wu S, Shi X, Chen K, Wu C. Migfilin and Mig-2 link focal adhesions to filamin and the actin cytoskeleton and function in cell shape modulation. Cell. 2003;113(1):37–47. PubMed PMID: 12679033.

    Article  CAS  PubMed  Google Scholar 

  27. Ithychanda SS, Das M, Ma YQ, et al. Migfilin, a molecular switch in regulation of integrin activation. J Biol Chem. 2009;284(7):4713–22. PubMed PMID: 19074766. Pubmed Central PMCID: 2640964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Das M, Ithychanda SS, Qin J, Plow EF. Migfilin and filamin as regulators of integrin activation in endothelial cells and neutrophils. PLoS One. 2011;6(10):e26355. PubMed PMID: 22043318. Pubmed Central PMCID: 3197140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Reddy S, Jia S, Geoffrey R, et al. An autoinflammatory disease due to homozygous deletion of the IL1RN locus. N Engl J Med. 2009;360(23):2438–44. PubMed PMID: 19494219. Epub 2009/06/06. eng.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Aksentijevich I, Masters SL, Ferguson PJ, et al. An autoinflammatory disease with deficiency of the interleukin-1-receptor antagonist. N Engl J Med. 2009;360(23):2426–37. PubMed PMID: 19494218. Pubmed Central PMCID: 2876877. Epub 2009/06/06. eng.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Thacker PG, Binkovitz LA, Thomas KB. Deficiency of interleukin-1-receptor antagonist syndrome: a rare auto-inflammatory condition that mimics multiple classic radiographic findings. Pediatr Radiol. 2012;42(4):495–8. PubMed PMID: 21789664.

    Article  PubMed  Google Scholar 

  32. Jesus AA, Osman M, Silva CA, et al. A novel mutation of IL1RN in the deficiency of interleukin-1 receptor antagonist syndrome: description of two unrelated cases from Brazil. Arthritis Rheum. 2011;63(12):4007–17. PubMed PMID: 22127713. Epub 2011/12/01. eng.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Altiok E, Aksoy F, Perk Y, et al. A novel mutation in the interleukin-1 receptor antagonist associated with intrauterine disease onset. Clin Immunol. 2012;145(1):77–81. PubMed PMID: WOS:000310094600012. English.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mendonca LO, Malle L, Donovan FX, et al. Deficiency of interleukin-1 receptor antagonist (DIRA): report of the first indian patient and a novel deletion affecting IL1RN. J Clin Immunol. 2017;37(5):445–51. PubMed PMID: 28503715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Stenerson M, Dufendach K, Aksentijevich I, Brady J, Austin J, Reed AM. The first reported case of compound heterozygous IL1RN mutations causing deficiency of the interleukin-1 receptor antagonist. Arthritis Rheum. 2011;63(12):4018–22. PubMed PMID: 21792839. Epub 2011/07/28. eng.

    Article  CAS  PubMed  Google Scholar 

  36. Minkis K, Aksentijevich I, Goldbach-Mansky R, et al. Interleukin 1 receptor antagonist deficiency presenting as infantile pustulosis mimicking infantile pustular psoriasis. Arch Dermatol. 2012;148(6):747–52. PubMed PMID: 22431714. Pubmed Central PMCID: 3474848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Marrakchi S, Guigue P, Renshaw BR, et al. Interleukin-36-receptor antagonist deficiency and generalized pustular psoriasis. N Engl J Med. 2011;365(7):620–8. PubMed PMID: 21848462.

    Article  CAS  PubMed  Google Scholar 

  38. Onoufriadis A, Simpson MA, Pink AE, et al. Mutations in IL36RN/IL1F5 are associated with the severe episodic inflammatory skin disease known as generalized pustular psoriasis. Am J Hum Genet. 2011;89(3):432–7. PubMed PMID: 21839423. Pubmed Central PMCID: 3169817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Aksentijevich I, Kastner DL. Genetics of monogenic autoinflammatory diseases: past successes, future challenges. Nat Rev Rheumatol. 2011;7(8):469–78. PubMed PMID: 21727933.

    Article  CAS  PubMed  Google Scholar 

  40. Chole RA, Faddis BT, Tinling SP. In vivo inhibition of localized bone resorption by human recombinant interleukin-1 receptor antagonist. J Bone Miner Res. 1995;10(2):281–4. PubMed PMID: 7754808.

    Article  CAS  PubMed  Google Scholar 

  41. Gowen M, Meikle MC, Reynolds JJ. Stimulation of bone resorption in vitro by a non-prostanoid factor released by human monocytes in culture. Biochim Biophys Acta. 1983;762(3):471–4. PubMed PMID: 6849988.

    Article  CAS  PubMed  Google Scholar 

  42. Kimble RB, Kitazawa R, Vannice JL, Pacifici R. Persistent bone-sparing effect of interleukin-1 receptor antagonist: a hypothesis on the role of IL-1 in ovariectomy-induced bone loss. Calcif Tissue Int. 1994;55(4):260–5. PubMed PMID: 7820776.

    Article  CAS  PubMed  Google Scholar 

  43. Pacifici R, Rifas L, Teitelbaum S, et al. Spontaneous release of interleukin 1 from human blood monocytes reflects bone formation in idiopathic osteoporosis. Proc Natl Acad Sci U S A. 1987;84(13):4616–20. PubMed PMID: 3496597. Pubmed Central PMCID: 305141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Thomson BM, Saklatvala J, Chambers TJ. Osteoblasts mediate interleukin 1 stimulation of bone resorption by rat osteoclasts. J Exp Med. 1986;164(1):104–12. PubMed PMID: 3487611. Pubmed Central PMCID: 2188199.

    Article  CAS  PubMed  Google Scholar 

  45. Jones WA, Gerrie J, Pritchard J. Cherubism–familial fibrous dysplasia of the jaws. J Bone Joint Surg. 1950;32-B(3):334–47. PubMed PMID: 14778852.

    Google Scholar 

  46. Von Wowern N. Cherubism: a 36-year long-term follow-up of 2 generations in different families and review of the literature. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2000;90(6):765–72. PubMed PMID: 11113824.

    Article  Google Scholar 

  47. Meng XM, Yu SF, Yu GY. Clinicopathologic study of 24 cases of cherubism. Int J Oral Maxillofac Surg. 2005;34(4):350–6. PubMed PMID: 16053841.

    Article  PubMed  Google Scholar 

  48. Jain V, Sharma R. Radiographic, CT and MRI features of cherubism. Pediatr Radiol. 2006;36(10):1099–104. PubMed PMID: 16847596.

    Article  PubMed  Google Scholar 

  49. Perez-Sayans M, Barros-Angueira F, Suarez-Penaranda JE, Garcia-Garcia A. Variable expressivity familial cherubism: woman transmitting cherubism without suffering the disease. Head Face Med. 2013;9:33. PubMed PMID: 24382142. Pubmed Central PMCID: 3842775.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Southgate J, Sarma U, Townend JV, Barron J, Flanagan AM. Study of the cell biology and biochemistry of cherubism. J Clin Pathol. 1998;51(11):831–7. PubMed PMID: 10193324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mangion J, Rahman N, Edkins S, et al. The gene for cherubism maps to chromosome 4p16.3. Am J Hum Genet. 1999;65(1):151–7. PubMed PMID: 10364527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tiziani V, Reichenberger E, Buzzo CL, et al. The gene for cherubism maps to chromosome 4p16. Am J Hum Genet. 1999;65(1):158–66. PubMed PMID: 10364528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ueki Y, Tiziani V, Santanna C, et al. Mutations in the gene encoding c-Abl-binding protein SH3BP2 cause cherubism. Nat Genet. 2001;28(2):125–6. PubMed PMID: 11381256.

    Article  CAS  PubMed  Google Scholar 

  54. Lo B, Faiyaz-Ul-Haque M, Kennedy S, Aviv R, Tsui LC, Teebi AS. Novel mutation in the gene encoding c-Abl-binding protein SH3BP2 causes cherubism. Am J Med Genet A. 2003;121(1):37–40. PubMed PMID: 12900899.

    Article  Google Scholar 

  55. Bell SM, Shaw M, Jou YS, Myers RM, Knowles MA. Identification and characterization of the human homologue of SH3BP2, an SH3 binding domain protein within a common region of deletion at 4p16.3 involved in bladder cancer. Genomics. 1997;44(2):163–70. PubMed PMID: 9299232.

    Article  CAS  PubMed  Google Scholar 

  56. Levaot N, Voytyuk O, Dimitriou I, et al. Loss of Tankyrase-mediated destruction of 3BP2 is the underlying pathogenic mechanism of cherubism. Cell. 2011;147(6):1324–39. PubMed PMID: 22153076. Pubmed Central PMCID: 3475183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ueki Y, Lin CY, Senoo M, et al. Increased myeloid cell responses to M-CSF and RANKL cause bone loss and inflammation in SH3BP2 “cherubism” mice. Cell. 2007;128(1):71–83. PubMed PMID: 17218256.

    Article  CAS  PubMed  Google Scholar 

  58. Hero M, Suomalainen A, Hagstrom J, et al. Anti-tumor necrosis factor treatment in cherubism–clinical, radiological and histological findings in two children. Bone. 2013;52(1):347–53. PubMed PMID: 23069372.

    Article  CAS  PubMed  Google Scholar 

  59. Pagnini I, Simonini G, Mortilla M, Giani T, Pascoli L, Cimaz R. Ineffectiveness of tumor necrosis factor-alpha inhibition in association with bisphosphonates for the treatment of cherubism. Clin Exp Rheumatol. 2011;29(1):147. PubMed PMID: 21345303.

    PubMed  Google Scholar 

  60. Aliprantis AO, Ueki Y, Sulyanto R, et al. NFATc1 in mice represses osteoprotegerin during osteoclastogenesis and dissociates systemic osteopenia from inflammation in cherubism. J Clin Invest. 2008;118(11):3775–89. PubMed PMID: 18846253. Pubmed Central PMCID: 2564610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kadlub N, Vazquez MP, Galmiche L, et al. The calcineurin inhibitor tacrolimus as a new therapy in severe cherubism. J Bone Miner Res. 2015;30(5):878–85. PubMed PMID: 25491283.

    Article  CAS  PubMed  Google Scholar 

  62. Byrd L, Grossmann M, Potter M, Shen-Ong GL. Chronic multifocal osteomyelitis, a new recessive mutation on chromosome 18 of the mouse. Genomics. 1991;11(4):794–8.

    Article  CAS  PubMed  Google Scholar 

  63. Ferguson PJ, Bing X, Vasef MA, et al. A missense mutation in pstpip2 is associated with the murine autoinflammatory disorder chronic multifocal osteomyelitis. Bone. 2006;38(1):41–7. PubMed PMID: 16122996. Epub 2005/08/27. eng.

    Article  CAS  PubMed  Google Scholar 

  64. Wu Y, Dowbenko D, Lasky LA. PSTPIP2, a second tyrosine phosphorylated, cytoskeletal-associated protein that binds a PEST-type protein-tyrosine phosphatase. J Biol Chem. 1998;273(46):30487–96.

    Article  CAS  PubMed  Google Scholar 

  65. Drobek A, Kralova J, Skopcova T, et al. PSTPIP2, a protein associated with autoinflammatory disease, interacts with inhibitory enzymes SHIP1 and Csk. J Immunol. 2015;195(7):3416–26. PubMed PMID: 26304991.

    Article  CAS  PubMed  Google Scholar 

  66. Sztacho M, Segeletz S, Sanchez-Fernandez MA, Czupalla C, Niehage C, Hoflack B. BAR proteins PSTPIP1/2 regulate podosome dynamics and the resorption activity of osteoclasts. PLoS One. 2016;11(10):e0164829. PubMed PMID: 27760174. Pubmed Central PMCID: 5070766.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Tsujita K, Kondo A, Kurisu S, Hasegawa J, Itoh T, Takenawa T. Antagonistic regulation of F-BAR protein assemblies controls actin polymerization during podosome formation. J Cell Sci. 2013;126(Pt 10):2267–78. PubMed PMID: 23525018.

    Article  CAS  PubMed  Google Scholar 

  68. Grosse J, Chitu V, Marquardt A, et al. Mutation of mouse Mayp/Pstpip2 causes a macrophage autoinflammatory disease. Blood. 2006;107(8):3350–8. PubMed PMID: 16397132. Pubmed Central PMCID: 1895761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Liao HJ, Chyuan IT, Wu CS, et al. Increased neutrophil infiltration, IL-1 production and a SAPHO syndrome-like phenotype in PSTPIP2-deficient mice. Rheumatology (Oxford). 2015;54(7):1317–26. PubMed PMID: 25602062.

    Article  CAS  Google Scholar 

  70. Chen TC, Wu JJ, Chang WP, Hsu PN, Hsieh ST, Shyu BC. Spontaneous inflammatory pain model from a mouse line with N-ethyl-N-nitrosourea mutagenesis. J Biomed Sci. 2012;19:55. PubMed PMID: 22646813. Pubmed Central PMCID: 3414809.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Chitu V, Ferguson PJ, de Bruijn R, et al. Primed innate immunity leads to autoinflammatory disease in PSTPIP2-deficient cmo mice. Blood. 2009;114(12):2497–505. PubMed PMID: 19608749. Pubmed Central PMCID: 2746474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Cassel SL, Janczy JR, Bing X, et al. Inflammasome-independent IL-1beta mediates autoinflammatory disease in Pstpip2-deficient mice. Proc Natl Acad Sci U S A. 2014;111(3):1072–7. PubMed PMID: 24395802. Pubmed Central PMCID: 3903222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lukens JR, Gross JM, Calabrese C, et al. Critical role for inflammasome-independent IL-1beta production in osteomyelitis. Proc Natl Acad Sci U S A. 2014;111(3):1066–71. PubMed PMID: 24395792. Pubmed Central PMCID: 3903206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lukens JR, Gurung P, Vogel P, et al. Dietary modulation of the microbiome affects autoinflammatory disease. Nature. 2014;516(7530):246–9. PubMed PMID: 25274309. Pubmed Central PMCID: 4268032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. de Koning HD. Schnitzler’s syndrome: lessons from 281 cases. Clin Transl Allergy. 2014;4:41. PubMed PMID: 25905009. Pubmed Central PMCID: 4405827.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Simon A, Asli B, Braun-Falco M, et al. Schnitzler’s syndrome: diagnosis, treatment, and follow-up. Allergy. 2013;68(5):562–8. PubMed PMID: 23480774.

    Article  CAS  PubMed  Google Scholar 

  77. de Koning HD, van Gijn ME, Stoffels M, et al. Myeloid lineage-restricted somatic mosaicism of NLRP3 mutations in patients with variant Schnitzler syndrome. J Allergy Clin Immunol. 2015;135(2):561–4. PubMed PMID: 25239704.

    Article  CAS  PubMed  Google Scholar 

  78. Matucci-Cerinic M, Lotti T, Jajic I, Pignone A, Bussani C, Cagnoni M. The clinical spectrum of pachydermoperiostosis (primary hypertrophic osteoarthropathy). Medicine (Baltimore). 1991;70(3):208–14. PubMed PMID: 2030644.

    Article  CAS  Google Scholar 

  79. Jajic Z, Jajic I. Radiological changes of short and flat bones in primary hypertrophic osteoarthropathy. Ann Rheum Dis. 1998;57(12):747–8. PubMed PMID: 10070276. Pubmed Central PMCID: 1752522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Giancane G, Diggle CP, Legger EG, et al. Primary hypertrophic osteoarthropathy: an update on patient features and treatment. J Rheumatol. 2015;42(11):2211–4. PubMed PMID: 26523041.

    Article  CAS  PubMed  Google Scholar 

  81. Levin SE, Harrisberg JR, Govendrageloo K. Familial primary hypertrophic osteoarthropathy in association with congenital cardiac disease. Cardiol Young. 2002;12(3):304–7. PubMed PMID: 12365184.

    Article  PubMed  Google Scholar 

  82. Younes M, Touzi M, Bejia I, et al. Primary hypertrophic osteoarthropathy with bilateral destructive hip arthritis. Joint Bone Spine. 2006;73(4):477–9. PubMed PMID: 16626991.

    Article  PubMed  Google Scholar 

  83. Uppal S, Diggle CP, Carr IM, et al. Mutations in 15-hydroxyprostaglandin dehydrogenase cause primary hypertrophic osteoarthropathy. Nat Genet. 2008;40(6):789–93. PubMed PMID: 18500342.

    Article  CAS  PubMed  Google Scholar 

  84. Martinez-Ferrer A, Peris P, Alos L, Morales-Ruiz M, Guanabens N. Prostaglandin E2 and bone turnover markers in the evaluation of primary hypertrophic osteoarthropathy (pachydermoperiostosis): a case report. Clin Rheumatol. 2009;28(10):1229–33. PubMed PMID: 19455364.

    Article  CAS  PubMed  Google Scholar 

  85. Busch J, Frank V, Bachmann N, et al. Mutations in the prostaglandin transporter SLCO2A1 cause primary hypertrophic osteoarthropathy with digital clubbing. J Invest Dermatol. 2012;132(10):2473–6. PubMed PMID: 22696055.

    Article  CAS  PubMed  Google Scholar 

  86. Seifert W, Kuhnisch J, Tuysuz B, Specker C, Brouwers A, Horn D. Mutations in the prostaglandin transporter encoding gene SLCO2A1 cause primary hypertrophic osteoarthropathy and isolated digital clubbing. Hum Mutat. 2012;33(4):660–4. PubMed PMID: 22331663.

    Article  CAS  PubMed  Google Scholar 

  87. Zhang Z, Xia W, He J, et al. Exome sequencing identifies SLCO2A1 mutations as a cause of primary hypertrophic osteoarthropathy. Am J Hum Genet. 2012;90(1):125–32. PubMed PMID: 22197487. Pubmed Central PMCID: 3257902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Miyaura C, Inada M, Matsumoto C, et al. An essential role of cytosolic phospholipase A2alpha in prostaglandin E2-mediated bone resorption associated with inflammation. J Exp Med. 2003;197(10):1303–10. PubMed PMID: 12743173. Pubmed Central PMCID: 2193787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Paralkar VM, Borovecki F, Ke HZ, et al. An EP2 receptor-selective prostaglandin E2 agonist induces bone healing. Proc Natl Acad Sci U S A. 2003;100(11):6736–40. PubMed PMID: 12748385. Pubmed Central PMCID: 164516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ha H, Lee JH, Kim HN, et al. alpha-Lipoic acid inhibits inflammatory bone resorption by suppressing prostaglandin E2 synthesis. J Immunol. 2006;176(1):111–7. PubMed PMID: 16365401.

    Article  CAS  PubMed  Google Scholar 

  91. Minamizaki T, Yoshiko Y, Kozai K, Aubin JE, Maeda N. EP2 and EP4 receptors differentially mediate MAPK pathways underlying anabolic actions of prostaglandin E2 on bone formation in rat calvaria cell cultures. Bone. 2009;44(6):1177–85. PubMed PMID: 19233324.

    Article  CAS  PubMed  Google Scholar 

  92. Ramirez-Yanez GO, Seymour GJ, Walsh LJ, Forwood MR, Symons AL. Prostaglandin E2 enhances alveolar bone formation in the rat mandible. Bone. 2004;35(6):1361–8. PubMed PMID: 15589217.

    Article  CAS  PubMed  Google Scholar 

  93. Hill SC, Namde M, Dwyer A, Poznanski A, Canna S, Goldbach-Mansky R. Arthropathy of neonatal onset multisystem inflammatory disease (NOMID/CINCA). Pediatr Radiol. 2007;37(2):145–52. PubMed PMID: 17136361.

    Article  PubMed  Google Scholar 

  94. Zaki FM, Sridharan R, Pei TS, Ibrahim S, Ping TS. NOMID: the radiographic and MRI features and review of literature. J Radiol Case Rep. 2012;6(3):1–8. PubMed PMID: 22690285. Pubmed Central PMCID: 3370707.

    PubMed  PubMed Central  Google Scholar 

  95. De Cunto CL, Liberatore DI, San Roman JL, Goldberg JC, Morandi AA, Feldman G. Infantile-onset multisystem inflammatory disease: a differential diagnosis of systemic juvenile rheumatoid arthritis. J Pediatr. 1997;130(4):551–6. PubMed PMID: 9108852.

    Article  PubMed  Google Scholar 

  96. Sibley CH, Plass N, Snow J, et al. Sustained response and prevention of damage progression in patients with neonatal-onset multisystem inflammatory disease treated with anakinra: a cohort study to determine three- and five-year outcomes. Arthritis Rheum. 2012;64(7):2375–86. PubMed PMID: 22294344. Pubmed Central PMCID: 3474541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Neven B, Marvillet I, Terrada C, et al. Long-term efficacy of the interleukin-1 receptor antagonist anakinra in ten patients with neonatal-onset multisystem inflammatory disease/chronic infantile neurologic, cutaneous, articular syndrome. Arthritis Rheum. 2010;62(1):258–67. PubMed PMID: 20039428. Epub 2009/12/30. eng.

    Article  CAS  PubMed  Google Scholar 

  98. Rigante D, Leone A, Marrocco R, Laino ME, Stabile A. Long-term response after 6-year treatment with anakinra and onset of focal bone erosion in neonatal-onset multisystem inflammatory disease (NOMID/CINCA). Rheumatol Int. 2011;31(12):1661–4. PubMed PMID: 21240490.

    Article  PubMed  Google Scholar 

  99. Fujisawa A, Kambe N, Saito M, et al. Disease-associated mutations in CIAS1 induce cathepsin B-dependent rapid cell death of human THP-1 monocytic cells. Blood. 2007;109(7):2903–11. PubMed PMID: 17164343.

    CAS  PubMed  Google Scholar 

  100. Ellebedy AH, Lupfer C, Ghoneim HE, DeBeauchamp J, Kanneganti TD, Webby RJ. Inflammasome-independent role of the apoptosis-associated speck-like protein containing CARD (ASC) in the adjuvant effect of MF59. Proc Natl Acad Sci U S A. 2011;108(7):2927–32. PubMed PMID: 21270336. Pubmed Central PMCID: 3041074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Qu C, Bonar SL, Hickman-Brecks CL, et al. NLRP3 mediates osteolysis through inflammation-dependent and -independent mechanisms. FASEB J. 2015;29(4):1269–79. PubMed PMID: 25477279. Pubmed Central PMCID: 4396608.

    Article  CAS  PubMed  Google Scholar 

  102. Almeida MQ, Tsang KM, Cheadle C, et al. Protein kinase A regulates caspase-1 via Ets-1 in bone stromal cell-derived lesions: a link between cyclic AMP and pro-inflammatory pathways in osteoblast progenitors. Hum Mol Genet. 2011;20(1):165–75. PubMed PMID: 20940146. Pubmed Central PMCID: 3000682.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Polly J. Ferguson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Verbsky, J., Ferguson, P.J. (2019). Genetic Causes of Inflammatory Bone Disease. In: Hashkes, P., Laxer, R., Simon, A. (eds) Textbook of Autoinflammation. Springer, Cham. https://doi.org/10.1007/978-3-319-98605-0_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98605-0_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98604-3

  • Online ISBN: 978-3-319-98605-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics