Cryopyrin-Associated Periodic Syndromes (CAPS)

  • Hal M. HoffmanEmail author
  • Jasmin B. Kuemmerle-Deschner
  • Raphaela Goldbach-Mansky


The cryopyrin-associated periodic syndromes (CAPS) include familial cold autoinflammatory syndrome (FCAS), Muckle-Wells syndrome (MWS) and neonatal-onset multisystem inflammatory disease (NOMID) with shared and unique clinical features. Most patients possess heterozygous NLRP3 mutations leading to a hyperactive inflammasome, subsequent overproduction of interleukin (IL)-1β and inflammatory symptoms. Diagnostic challenges include a heterogeneous multi-systemic clinical presentation, somatic mosaicism, and low penetrance mutations. IL-1 targeted therapy has become the standard of care for CAPS based on its clinical efficacy and safety.



Autoinflammatory Disease Activity Index


Apoptosis-associated speck like protein containing a caspase recruitment domain


Cryopyrin-associated periodic syndromes


Caspase activating and recruitment domain


Chronic infantile neurologic cutaneous and articular


Central nervous system


C-reactive protein


Disease activity scale


Erythrocyte sedimentation rate


Familial cold autoinflammatory syndrome


Familial Mediterranean fever






Leucine-rich repeat


Mevalonate kinase deficiency


Muckle-Wells syndrome


NOD-like receptor


Nucleotide binding and oligomerization domain, leucine rich repeat, pyrin 3


Nucleotide-binding and oligomerization domain


Neonatal-onset multisystem inflammatory disease


Non-steroidal anti-inflammatory drug


Prostaglandin E


Protein kinase A


Pyrin domain


Serum amyloid A


Tumor necrosis factor receptor-associated periodic syndrome


Visual analog scale


  1. 1.
    Aksentijevich I, Putnam CD, Remmers EF, et al. The clinical continuum of cryopyrinopathies: novel CIAS1 mutations in North American patients and a new cryopyrin model. Arthritis Rheum. 2007;56:1273–85.CrossRefGoogle Scholar
  2. 2.
    Neven B, Callebaut I, Prieur AM, et al. Molecular basis of the spectral expression of CIAS1 mutations associated with phagocytic cell-mediated autoinflammatory disorders CINCA/NOMID, MWS, and FCU. Blood. 2004;103:2809–15.CrossRefGoogle Scholar
  3. 3.
    Kile RM, Rusk HA. A case of cold urticaria with an unusual family history. JAMA. 1940;114:1067–8.Google Scholar
  4. 4.
    Muckle TJ, Wells SM. Urticaria, deafness, and amyloidosis: a new heredo-familial syndrome. Q J Med. 1962;31:235–48.Google Scholar
  5. 5.
    Prieur AM, Griscelli C. Arthropathy with rash, chronic meningitis, eye lesions, and mental retardation. J Pediatr. 1981;99:79–83.CrossRefGoogle Scholar
  6. 6.
    Aksentijevich I, Nowak M, Mallah M, et al. De novo CIAS1 mutations, cytokine activation, and evidence for genetic heterogeneity in patients with neonatal-onset multisystem inflammatory disease (NOMID): a new member of the expanding family of pyrin-associated autoinflammatory diseases. Arthritis Rheum. 2002;46:3340–8.CrossRefGoogle Scholar
  7. 7.
    Feldmann J, Prieur AM, Quartier P, et al. Chronic infantile neurological cutaneous and articular syndrome is caused by mutations in CIAS1, a gene highly expressed in polymorphonuclear cells and chondrocytes. Am J Hum Genet. 2002;71:198–203.CrossRefGoogle Scholar
  8. 8.
    Hoffman HM, Mueller JL, Broide DH, Wanderer AA, Kolodner RD. Mutation of a new gene encoding a putative pyrin-like protein causes familial cold autoinflammatory syndrome and Muckle-Wells syndrome. Nat Genet. 2001;29:301–5.CrossRefGoogle Scholar
  9. 9.
    Saito M, Fujisawa A, Nishikomori R, et al. Somatic mosaicism of CIAS1 in a patient with chronic infantile neurologic, cutaneous, articular syndrome. Arthritis Rheum. 2005;52:3579–85.CrossRefGoogle Scholar
  10. 10.
    Tanaka N, Izawa K, Saito MK, et al. High incidence of NLRP3 somatic mosaicism in patients with chronic infantile neurologic, cutaneous, articular syndrome: results of an International Multicenter Collaborative Study. Arthritis Rheum. 2011;63:3625–32.CrossRefGoogle Scholar
  11. 11.
    Zhou Q, Aksentijevich I, Wood GM, et al. Brief report: cryopyrin-associated periodic syndrome caused by a myeloid-restricted somatic NLRP3 mutation. Arthritis Rheumatol. 2015;67:2482–6.CrossRefGoogle Scholar
  12. 12.
    Kuemmerle-Deschner JB, Verma D, Endres T, et al. Clinical and molecular phenotypes of low-penetrance variants of NLRP3: diagnostic and therapeutic challenges. Arthritis Rheumatol. 2017;69:2233–40.CrossRefGoogle Scholar
  13. 13.
    Agostini L, Martinon F, Burns K, McDermott MF, Hawkins PN, Tschopp J. NALP3 forms an IL-1beta-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder. Immunity. 2004;20:319–25.CrossRefGoogle Scholar
  14. 14.
    Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell. 2002;10:417–26.CrossRefGoogle Scholar
  15. 15.
    Wang L, Manji GA, Grenier JM, et al. PYPAF7, a novel PYRIN-containing Apaf1-like protein that regulates activation of NF-kappa B and caspase-1-dependent cytokine processing. J Biol Chem. 2002;277:29874–80.CrossRefGoogle Scholar
  16. 16.
    Tassi S, Carta S, Delfino L, et al. Altered redox state of monocytes from cryopyrin-associated periodic syndromes causes accelerated IL-1beta secretion. Proc Natl Acad Sci U S A. 2010;107:9789–94.CrossRefGoogle Scholar
  17. 17.
    Rosengren S, Mueller JL, Anderson JP, et al. Monocytes from familial cold autoinflammatory syndrome patients are activated by mild hypothermia. J Allergy Clin Immunol. 2007;119:991–6.CrossRefGoogle Scholar
  18. 18.
    McGeough MD, Wree A, Inzaugarat ME, et al. TNF regulates transcription of NLRP3 inflammasome components and inflammatory molecules in cryopyrinopathies. J Clin Invest. 2017;127:4488–97.CrossRefGoogle Scholar
  19. 19.
    Goldbach-Mansky R, Dailey NJ, Canna SW, et al. Neonatal-onset multisystem inflammatory disease responsive to interleukin-1beta inhibition. N Engl J Med. 2006;355:581–92.CrossRefGoogle Scholar
  20. 20.
    Hawkins PN, Lachmann HJ, McDermott MF. Interleukin-1-receptor antagonist in the Muckle-Wells syndrome. N Engl J Med. 2003;348:2583–4.CrossRefGoogle Scholar
  21. 21.
    Hoffman HM, Rosengren S, Boyle DL, et al. Prevention of cold-associated acute inflammation in familial cold autoinflammatory syndrome by interleukin-1 receptor antagonist. Lancet. 2004;364:1779–85.CrossRefGoogle Scholar
  22. 22.
    Levy R, Gerard L, Kuemmerle-Deschner J, et al. Phenotypic and genotypic characteristics of cryopyrin-associated periodic syndrome: a series of 136 patients from the Eurofever Registry. Ann Rheum Dis. 2015;74:2043–9.CrossRefGoogle Scholar
  23. 23.
    Yadlapati S, Efthimiou P. Impact of IL-1 inhibition on fatigue associated with autoinflammatory syndromes. Mod Rheumatol. 2016;26:3–8.CrossRefGoogle Scholar
  24. 24.
    Hoffman HM, Wanderer AA, Broide DH. Familial cold autoinflammatory syndrome: phenotype and genotype of an autosomal dominant periodic fever. J Allergy Clin Immunol. 2001;108:615–20.CrossRefGoogle Scholar
  25. 25.
    Aubert P, Suarez-Farinas M, Mitsui H, et al. Homeostatic tissue responses in skin biopsies from NOMID patients with constitutive overproduction of IL-1beta. PLoS One. 2012;7:e49408.CrossRefGoogle Scholar
  26. 26.
    Hill SC, Namde M, Dwyer A, Poznanski A, Canna S, Goldbach-Mansky R. Arthropathy of neonatal onset multisystem inflammatory disease (NOMID/CINCA). Pediatr Radiol. 2007;37:145–52.CrossRefGoogle Scholar
  27. 27.
    Sibley CH, Plass N, Snow J, et al. Sustained response and prevention of damage progression in patients with neonatal-onset multisystem inflammatory disease treated with anakinra: a cohort study to determine three- and five-year outcomes. Arthritis Rheum. 2012;64:2375–86.CrossRefGoogle Scholar
  28. 28.
    Almeida MQ, Tsang KM, Cheadle C, et al. Protein kinase A regulates caspase-1 via Ets-1 in bone stromal cell-derived lesions: a link between cyclic AMP and pro-inflammatory pathways in osteoblast progenitors. Hum Mol Genet. 2011;20:165–75.CrossRefGoogle Scholar
  29. 29.
    Neven B, Prieur AM, Quartier dit Maire P. Cryopyrinopathies: update on pathogenesis and treatment. Nat Clin Pract Rheumatol. 2008;4:481–9.CrossRefGoogle Scholar
  30. 30.
    Dollfus H, Hafner R, Hofmann HM, et al. Chronic infantile neurological cutaneous and articular/neonatal onset multisystem inflammatory disease syndrome: ocular manifestations in a recently recognized chronic inflammatory disease of childhood. Arch Ophthalmol. 2000;118:1386–92.CrossRefGoogle Scholar
  31. 31.
    Kawai M, Yoshikawa T, Nishikomori R, Heike T, Takahashi K. Obvious optic disc swelling in a patient with cryopyrin-associated periodic syndrome. Clin Ophthalmol. 2013;7:1581–5.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Ahmadi N, Brewer CC, Zalewski C, et al. Cryopyrin-associated periodic syndromes: otolaryngologic and audiologic manifestations. Otolaryngol Head Neck Surg. 2011;145:295–302.CrossRefGoogle Scholar
  33. 33.
    Kuemmerle-Deschner JB, Koitschev A, Ummenhofer K, et al. Hearing loss in Muckle-Wells syndrome. Arthritis Rheum. 2013;65:824–31.CrossRefGoogle Scholar
  34. 34.
    Lachmann HJ, Kone-Paut I, Kuemmerle-Deschner JB, et al. Use of canakinumab in the cryopyrin-associated periodic syndrome. N Engl J Med. 2009;360:2416–25.CrossRefGoogle Scholar
  35. 35.
    Hawkins PN, Lachmann HJ, Aganna E, McDermott MF. Spectrum of clinical features in Muckle-Wells syndrome and response to anakinra. Arthritis Rheum. 2004;50:607–12.CrossRefGoogle Scholar
  36. 36.
    Lachmann HJ, Goodman HJ, Gilbertson JA, et al. Natural history and outcome in systemic AA amyloidosis. N Engl J Med. 2007;356:2361–71.CrossRefGoogle Scholar
  37. 37.
    Nirmala N, Grom A, Gram H. Biomarkers in systemic juvenile idiopathic arthritis: a comparison with biomarkers in cryopyrin-associated periodic syndromes. Curr Opin Rheumatol. 2014;26:543–52.CrossRefGoogle Scholar
  38. 38.
    Wittkowski H, Kuemmerle-Deschner JB, Austermann J, et al. MRP8 and MRP14, phagocyte-specific danger signals, are sensitive biomarkers of disease activity in cryopyrin-associated periodic syndromes. Ann Rheum Dis. 2011;70:2075–81.CrossRefGoogle Scholar
  39. 39.
    Goldbach-Mansky R. Current status of understanding the pathogenesis and management of patients with NOMID/CINCA. Curr Rheumatol Rep. 2011;13:123–31.CrossRefGoogle Scholar
  40. 40.
    Stych B, Dobrovolny D. Familial cold auto-inflammatory syndrome (FCAS): characterization of symptomatology and impact on patients’ lives. Curr Med Res Opin. 2008;24:1577–82.CrossRefGoogle Scholar
  41. 41.
    Fye KH, Siegel DH, Connolly MK. Diagnosis of Muckle-Wells syndrome—33 years later. J Rheumatol. 2007;34:2505–6.PubMedGoogle Scholar
  42. 42.
    Piram M, Frenkel J, Gattorno M, et al. A preliminary score for the assessment of disease activity in hereditary recurrent fevers: results from the AIDAI (Auto-Inflammatory Diseases Activity Index) Consensus Conference. Ann Rheum Dis. 2011;70:309–14.CrossRefGoogle Scholar
  43. 43.
    Cuisset LJI, Dumont B, Fabre A, et al for the French CAPS study group. Mutations in the autoinflammatory cryopyrin-associated periodic syndrome gene: epidemiological study and lessons from eight years of genetic analysis in France. Ann Rheum Dis. 2011;70:495–9.CrossRefGoogle Scholar
  44. 44.
    Kuemmerle-Deschner JB, Ozen S, Tyrrell PN, et al. Diagnostic criteria for cryopyrin-associated periodic syndrome (CAPS). Ann Rheum Dis. 2017;76:942–7.CrossRefGoogle Scholar
  45. 45.
    Hoffman HM, Throne ML, Amar NJ, et al. Efficacy and safety of rilonacept (interleukin-1 Trap) in patients with cryopyrin-associated periodic syndromes: results from two sequential placebo-controlled studies. Arthritis Rheum. 2008;58:2443–52.CrossRefGoogle Scholar
  46. 46.
    Sibley CH, Chioato A, Felix S, et al. A 24-month open-label study of canakinumab in neonatal-onset multisystem inflammatory disease. Ann Rheum Dis. 2015;74:1714–9.CrossRefGoogle Scholar
  47. 47.
    Rodriguez-Smith J, Lin YC, Tsai WL, et al. Cerebrospinal fluid cytokines correlate with aseptic meningitis and blood-brain barrier function in neonatal-onset multisystem inflammatory disease: central nervous system biomarkers in neonatal-onset multisystem inflammatory disease correlate with central nervous system inflammation. Arthritis Rheumatol. 2017;69:1325–36.CrossRefGoogle Scholar
  48. 48.
    Goldbach-Mansky R. Blocking interleukin-1 in rheumatic diseases. Ann N Y Acad Sci. 2009;1182:111–23.CrossRefGoogle Scholar
  49. 49.
    Kuemmerle-Deschner JB, Wittkowski H, Tyrrell PN, et al. Treatment of Muckle-Wells syndrome: analysis of two IL-1-blocking regimens. Arthritis Res Ther. 2013;15:R64.CrossRefGoogle Scholar
  50. 50.
    Neven B, Marvillet I, Terrada C, et al. Long-term efficacy of the interleukin-1 receptor antagonist anakinra in ten patients with neonatal-onset multisystem inflammatory disease/chronic infantile neurologic, cutaneous, articular syndrome. Arthritis Rheum. 2010;62:258–67.CrossRefGoogle Scholar
  51. 51.
    Goldbach-Mansky R, Shroff SD, Wilson M, et al. A pilot study to evaluate the safety and efficacy of the long-acting interleukin-1 inhibitor rilonacept (interleukin-1 trap) in patients with familial cold autoinflammatory syndrome. Arthritis Rheum. 2008;58:2432–42.CrossRefGoogle Scholar
  52. 52.
    Kuemmerle-Deschner JB, Hachulla E, Cartwright R, et al. Two-year results from an open-label, multicentre, phase III study evaluating the safety and efficacy of canakinumab in patients with cryopyrin-associated periodic syndrome across different severity phenotypes. Ann Rheum Dis. 2011;70:2095–102.CrossRefGoogle Scholar
  53. 53.
    LaRock CN, Todd J, LaRock DL, et al. IL-1beta is an innate immune sensor of microbial proteolysis. Sci Immunol. 2016;1:eaah3539.CrossRefGoogle Scholar
  54. 54.
    Jaeger VK, Hoffman HM, van der Poll T, et al. Safety of vaccinations in patients with cryopyrin-associated periodic syndromes: a prospective registry based study. Rheumatology (Oxford). 2017;56:1484–91.CrossRefGoogle Scholar
  55. 55.
    Shao BZ, Xu ZQ, Han BZ, Su DF, Liu C. NLRP3 inflammasome and its inhibitors: a review. Front Pharmacol. 2015;6:262.CrossRefGoogle Scholar
  56. 56.
    Aganna E, Martinon F, Hawkins PN, et al. Association of mutations in the NALP3/CIAS1/PYPAF1 gene with a broad phenotype including recurrent fever, cold sensitivity, sensorineural deafness, and AA amyloidosis. Arthritis Rheum. 2002;46:2445–52.CrossRefGoogle Scholar
  57. 57.
    Prieur AM, Griscelli C, Lampert F, et al. A chronic, infantile, neurological, cutaneous and articular (CINCA) syndrome. A specific entity analysed in 30 patients. Scand J Rheumatol Suppl. 1987;66:57–68.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Hal M. Hoffman
    • 1
    Email author
  • Jasmin B. Kuemmerle-Deschner
    • 2
  • Raphaela Goldbach-Mansky
    • 3
  1. 1.Division of Pediatric Allergy, Immunology, and RheumatologyUniversity of California at San Diego and Rady Children’s HospitalSan DiegoUSA
  2. 2.Division of Paediatric Rheumatology, Department of Paediatrics and Autoinflammation Reference Center TuebingenUniversity Hospital TuebingenTuebingenGermany
  3. 3.Translational Autoinflammatory Disease Section (TADS), National Institute of Allergy and Infectious Diseases, NIHBethesdaUSA

Personalised recommendations