Skip to main content

Tumor Necrosis Factor (TNF) Receptor-Associated Periodic Syndrome (TRAPS)

  • Chapter
  • First Online:
Textbook of Autoinflammation

Abstract

Tumor necrosis factor (TNF) receptor-associated periodic syndrome (TRAPS) is an autosomal dominant hereditary disease, caused by heterozygous mutations in TNFRSF1A, which encodes for TNF-receptor 1 (TNFR1). Most of the pathogenic mutations are single-nucleotide missense variants localized in extracellular, cysteine rich domains of the receptor. The pathogenesis of TRAPS is complex and likely involves several mutually non-exclusive molecular mechanisms, however, co-expression of the mutated and wild type of the receptor is required in all cases. The proposed mechanisms include abnormal TNFR1 cleavage; increased activation of nuclear factor kappa B (NF-κB)/mitogen-activated protein kinase; ligand-independent activation of mutant TNFR1; generation of mitochondrial reactive oxygen species (ROS) leading to enhanced activation of the NLRP3 inflammasome; TNFR1 misfolding and retention within the endoplasmic reticulum (ER) leading to activation of ER-associated endonuclease, inositol-requiring enzyme 1 (IRE-1) and resulting in hyper-responsiveness to lipopolysaccharide via selective degradation of microRNAs (miRs).

The majority of patients with TRAPS are symptomatic from childhood, with the median age of symptom onset reported to be about 4 years. Most patients report episodic attacks of fever, with serositis manifesting as abdominal and/or chest pain, myalgia with or without typical overlying migratory rash, arthralgia and arthritis. The minority of patients will have continuous symptoms, and many will have biochemical evidence of systemic inflammatory response even in the absence of symptoms. Prior to effective therapies, systemic amyloidosis was found in up to 15% of patients. The diagnosis of TRAPS still depends on molecular genetic analysis for conformation since formal diagnostic criteria have yet to be developed. Anti-interleukin (IL)-1 biological agents are currently the first choice of treatment for patients who require ongoing therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3-MA:

3-Methyladenine

ADAM:

A disintegrin and metalloproteinase

CAPS:

Cryopyrin-associated periodic syndrome

CRD:

Cysteine-rich domains

CRP:

C-reactive protein.

DF:

Dermal fibroblasts

DMARDs:

Disease-modifying anti-rheumatic drugs

ER:

Endoplasmic reticulum

FHF:

Familial Hibernian fever

FMF:

Familial Mediterranean fever

IĸB:

I kappa beta

IKK:

I kappa B kinase

IL:

Interleukin

IRE1:

Inositol-requiring enzyme 1

JNK:

c-Jun N-terminal kinase

LPS:

Lipopolysaccharide

MAPK:

Mitogen-activated protein kinase

miR:

MicroRNA

MKD:

Mevalonate kinase deficiency

mROS:

Mitochondrial ROS

NADPH:

Nicotinamide adenine dinucleotide phosphate

NF-ĸB:

Nuclear factor-κB

NLRP3:

NACHT, LRR and PYD domains-containing protein 3

NOX:

NADPH oxidases

NSAIDs:

Nonsteroidal anti-inflammatory drugs

OXPHOS:

Oxidative phosphorylation

PCR:

Polymerase chain reaction

PERK:

Protein kinase (PKR)-like endoplasmic reticulum kinase

PFAPA:

Periodic fever, aphthous stomatitis, pharyngitis, cervical adenitis

PGA:

Physician global assessment

RIP:

Receptor-interacting protein

ROS:

Reactive oxygen species

SAA:

Serum amyloid A

TACE:

TNF-alpha converting enzyme

TLR:

Toll-like receptor

TNF:

Tumor necrosis factor

TNFR1:

TNF receptor 1

UPR:

Unfolded protein response

XBP1:

X-box binding protein 1

References

  1. Williamson LM, Hull D, Mehta R, et al. Familial Hibernian fever. Q J Med. 1982;51:469–80.

    CAS  PubMed  Google Scholar 

  2. McDermott MF, Ogunkolade BW, McDermott EM, et al. Linkage of familial Hibernian fever to chromosome 12p13. Am J Hum Genet. 1998;62:1446–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mulley J, Saar K, Hewitt G, et al. Gene localization for an autosomal dominant familial periodic fever to 12p13. Am J Hum Genet. 1998;62:884–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. McDermott MF, Aksentijevich I, Galon J, et al. Germline mutations in the extracellular domains of the 55 kDa TNF receptor, TNFR1, define a family of dominantly inherited autoinflammatory syndromes. Cell. 1999;97:133–44.

    Article  CAS  PubMed  Google Scholar 

  5. Lachmann HJ. Clinical immunology review series: an approach to the patient with a periodic fever syndrome. Clin Exp Immunol. 2011;165:301–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Aksentijevich I, Galon J, Soares M, et al. The tumor-necrosis-factor receptor-associated periodic syndrome: new mutations in TNFRSF1A, ancestral origins, genotype-phenotype studies, and evidence for further genetic heterogeneity of periodic fevers. Am J Hum Genet. 2001;69:301–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dode C, Andre M, Bienvenu T, et al. The enlarging clinical, genetic, and population spectrum of tumor necrosis factor receptor-associated periodic syndrome. Arthritis Rheum. 2002;46:2181–8.

    Article  CAS  PubMed  Google Scholar 

  8. Ravet N, Rouaghe S, Dode C, et al. Clinical significance of P46L and R92Q substitutions in the tumour necrosis factor superfamily 1A gene. Ann Rheum Dis. 2006;65:1158–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wajant H, Scheurich P. TNFR1-induced activation of the classical NF-kappaB pathway. FEBS J. 2011;278:862–76.

    Article  CAS  PubMed  Google Scholar 

  10. Micheau O, Tschopp J. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell. 2003;114:181–90.

    Article  CAS  PubMed  Google Scholar 

  11. Xanthoulea S, Pasparakis M, Kousteni S, et al. Tumor necrosis factor (TNF) receptor shedding controls thresholds of innate immune activation that balance opposing TNF functions in infectious and inflammatory diseases. J Exp Med. 2004;200:367–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chan FK. Three is better than one: pre-ligand receptor assembly in the regulation of TNF receptor signaling. Cytokine. 2007;37:101–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Black RA. Tumor necrosis factor-alpha converting enzyme. Int J Biochem Cell Biol. 2002;34:1–5.

    Article  CAS  PubMed  Google Scholar 

  14. Aganna E, Hammond L, Hawkins PN, et al. Heterogeneity among patients with tumor necrosis factor receptor-associated periodic syndrome phenotypes. Arthritis Rheum. 2003;48:2632–44.

    Article  CAS  PubMed  Google Scholar 

  15. Drewe E, Huggins ML, Morgan AG, Cassidy MJ, Powell RJ. Treatment of renal amyloidosis with etanercept in tumour necrosis factor receptor-associated periodic syndrome. Rheumatology (Oxford). 2004;43:1405–8.

    Article  CAS  Google Scholar 

  16. Nowlan ML, Drewe E, Bulsara H, et al. Systemic cytokine levels and the effects of etanercept in TNF receptor-associated periodic syndrome (TRAPS) involving a C33Y mutation in TNFRSF1A. Rheumatology (Oxford). 2006;45:31–7.

    Article  CAS  Google Scholar 

  17. Simon A, Park H, Maddipati R, et al. Concerted action of wild-type and mutant TNF receptors enhances inflammation in TNF receptor 1-associated periodic fever syndrome. Proc Natl Acad Sci U S A. 2010;107:9801–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nedjai B, Hitman GA, Yousaf N, et al. Abnormal tumor necrosis factor receptor I cell surface expression and NF-kappaB activation in tumor necrosis factor receptor-associated periodic syndrome. Arthritis Rheum. 2008;58:273–83.

    Article  CAS  PubMed  Google Scholar 

  19. Todd I, Radford PM, Draper-Morgan KA, et al. Mutant forms of tumour necrosis factor receptor I that occur in TNF-receptor-associated periodic syndrome retain signalling functions but show abnormal behaviour. Immunology. 2004;113:65–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lobito AA, Kimberley FC, Muppidi JR, et al. Abnormal disulfide-linked oligomerization results in ER retention and altered signaling by TNFR1 mutants in TNFR1-associated periodic fever syndrome (TRAPS). Blood. 2006;108:1320–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dickie LJ, Aziz AM, Savic S, et al. Involvement of X-box binding protein 1 and reactive oxygen species pathways in the pathogenesis of tumour necrosis factor receptor-associated periodic syndrome. Ann Rheum Dis. 2012;71:2035–43.

    Article  CAS  PubMed  Google Scholar 

  22. Martinon F, Chen X, Lee AH, Glimcher LH. TLR activation of the transcription factor XBP1 regulates innate immune responses in macrophages. Nat Immunol. 2010;11:411–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tirasophon W, Lee K, Callaghan B, Welihinda A, Kaufman RJ. The endoribonuclease activity of mammalian IRE1 autoregulates its mRNA and is required for the unfolded protein response. Genes Dev. 2000;14:2725–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Maurel M, Chevet E, Tavernier J, Gerlo S. Getting RIDD of RNA: IRE1 in cell fate regulation. Trends Biochem Sci. 2014;39:245–54.

    Article  CAS  PubMed  Google Scholar 

  25. Schulte LN, Westermann AJ, Vogel J. Differential activation and functional specialization of miR-146 and miR-155 in innate immune sensing. Nucleic Acids Res. 2013;41:542–53.

    Article  CAS  PubMed  Google Scholar 

  26. Harrison SR, Scambler T, Oubussad L, et al. Inositol-requiring enzyme 1-mediated downregulation of MicroRNA (miR)-146a and miR-155 in primary dermal fibroblasts across three TNFRSF1A mutations results in hyperresponsiveness to lipopolysaccharide. Front Immunol. 2018;9:173.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Pearce EL, Pearce EJ. Metabolic pathways in immune cell activation and quiescence. Immunity. 2013;38:633–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. O’Neill LA. Glycolytic reprogramming by TLRs in dendritic cells. Nat Immunol. 2014;15:314–5.

    Article  PubMed  CAS  Google Scholar 

  29. O’Neill LA, Kishton RJ, Rathmell J. A guide to immunometabolism for immunologists. Nat Rev Immunol. 2016;16:553–65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Pearce EL, Poffenberger MC, Chang CH, Jones RG. Fueling immunity: insights into metabolism and lymphocyte function. Science. 2013;342:1242454.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Bulua AC, Simon A, Maddipati R, et al. Mitochondrial reactive oxygen species promote production of proinflammatory cytokines and are elevated in TNFR1-associated periodic syndrome (TRAPS). J Exp Med. 2011;208:519–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kamata H, Honda S, Maeda S, Chang L, Hirata H, Karin M. Reactive oxygen species promote TNFalpha-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell. 2005;120:649–61.

    Article  CAS  PubMed  Google Scholar 

  33. Bachetti T, Chiesa S, Castagnola P, et al. Autophagy contributes to inflammation in patients with TNFR-associated periodic syndrome (TRAPS). Ann Rheum Dis. 2013;72:1044–52.

    Article  CAS  PubMed  Google Scholar 

  34. Bachetti T, Ceccherini I. Tumor necrosis factor receptor-associated periodic syndrome as a model linking autophagy and inflammation in protein aggregation diseases. J Mol Med (Berl). 2014;92:583–94.

    Article  CAS  Google Scholar 

  35. Moscat J, Diaz-Meco MT. p62 at the crossroads of autophagy, apoptosis, and cancer. Cell. 2009;137:1001–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Schmaltz R, Vogt T, Reichrath J. Skin manifestations in tumor necrosis factor receptor-associated periodic syndrome (TRAPS). Dermatoendocrinol. 2010;2:26–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Toro JR, Aksentijevich I, Hull K, Dean J, Kastner DL. Tumor necrosis factor receptor-associated periodic syndrome: a novel syndrome with cutaneous manifestations. Arch Dermatol. 2000;136:1487–94.

    CAS  PubMed  Google Scholar 

  38. Rigante D, Cantarini L. Monogenic autoinflammatory syndromes at a dermatological level. Arch Dermatol Res. 2011;303:375–80.

    Article  CAS  PubMed  Google Scholar 

  39. Hull KM, Wong K, Wood GM, Chu WS, Kastner DL. Monocytic fasciitis: a newly recognized clinical feature of tumor necrosis factor receptor dysfunction. Arthritis Rheum. 2002;46:2189–94.

    Article  CAS  PubMed  Google Scholar 

  40. Quillinan N, Mohammad A, Mannion G, et al. Imaging evidence for persistent subclinical fasciitis and arthritis in tumour necrosis factor receptor-associated periodic syndrome (TRAPS) between febrile attacks. Ann Rheum Dis. 2010;69:1408–9.

    Article  CAS  PubMed  Google Scholar 

  41. Cantarini L, Lucherini OM, Cimaz R, Brizi MG, Galeazzi M. Serosal involvement in adult-onset autoinflammatory disorders. Respiration. 2010;80:260–1; author reply 262.

    Article  PubMed  Google Scholar 

  42. Cantarini L, Lucherini OM, Baldari CT, Laghi Pasini F, Galeazzi M. Familial clustering of recurrent pericarditis may disclose tumour necrosis factor receptor-associated periodic syndrome. Clin Exp Rheumatol. 2010;28:405–7.

    PubMed  Google Scholar 

  43. Cantarini L, Lucherini OM, Cimaz R, Baldari CT, Laghi Pasini F, Galeazzi M. Sacroileitis and pericarditis: atypical presentation of tumor necrosis factor receptor-associated periodic syndrome and response to etanercept therapy. Clin Exp Rheumatol. 2010;28:290–1.

    CAS  PubMed  Google Scholar 

  44. Minden K, Aganna E, McDermott MF, Zink A. Tumour necrosis factor receptor associated periodic syndrome (TRAPS) with central nervous system involvement. Ann Rheum Dis. 2004;63:1356–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wildemann B, Rudofsky G Jr, Kress B, Jarius S, Konig F, Schwenger V. The tumor-necrosis-factor-associated periodic syndrome, the brain, and tumor-necrosis-factor-alpha antagonists. Neurology. 2007;68:1742–4.

    Article  CAS  PubMed  Google Scholar 

  46. Lachmann HJ, Papa R, Gerhold K, et al. The phenotype of TNF receptor-associated autoinflammatory syndrome (TRAPS) at presentation: a series of 158 cases from the Eurofever/EUROTRAPS international registry. Ann Rheum Dis. 2014;73:2160–7.

    Article  CAS  PubMed  Google Scholar 

  47. Cantarini L, Rigante D, Merlini G, et al. The expanding spectrum of low-penetrance TNFRSF1A gene variants in adults presenting with recurrent inflammatory attacks: clinical manifestations and long-term follow-up. Semin Arthritis Rheum. 2014;43:818–23.

    Article  CAS  PubMed  Google Scholar 

  48. Hernandez-Rodriguez J, Ruiz-Ortiz E, Tome A, et al. Clinical and genetic characterization of the autoinflammatory diseases diagnosed in an adult reference center. Autoimmun Rev. 2016;15:9–15.

    Article  PubMed  Google Scholar 

  49. Ruiz-Ortiz E, Iglesias E, Soriano A, et al. Disease phenotype and outcome depending on the age at disease onset in patients carrying the R92Q low-penetrance variant in TNFRSF1A gene. Front Immunol. 2017;8:299.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Pelagatti MA, Meini A, Caorsi R, et al. Long-term clinical profile of children with the low-penetrance R92Q mutation of the TNFRSF1A gene. Arthritis Rheum. 2011;63:1141–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jawaheer D, Seldin MF, Amos CI, et al. A genomewide screen in multiplex rheumatoid arthritis families suggests genetic overlap with other autoimmune diseases. Am J Hum Genet. 2001;68:927–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Amoura Z, Dode C, Hue S, et al. Association of the R92Q TNFRSF1A mutation and extracranial deep vein thrombosis in patients with Behcet’s disease. Arthritis Rheum. 2005;52:608–11.

    Article  CAS  PubMed  Google Scholar 

  53. Touitou I, Kone-Paut I. Autoinflammatory diseases. Best Pract Res Clin Rheumatol. 2008;22:811–29.

    Article  CAS  PubMed  Google Scholar 

  54. Federici S, Sormani MP, Ozen S, et al. Evidence-based provisional clinical classification criteria for autoinflammatory periodic fevers. Ann Rheum Dis. 2015;74:799–805.

    Article  PubMed  Google Scholar 

  55. Gattorno M, Sormani MP, D’Osualdo A, et al. A diagnostic score for molecular analysis of hereditary autoinflammatory syndromes with periodic fever in children. Arthritis Rheum. 2008;58:1823–32.

    Article  CAS  PubMed  Google Scholar 

  56. Tanaka N, Izawa K, Saito MK, et al. High incidence of NLRP3 somatic mosaicism in patients with chronic infantile neurologic, cutaneous, articular syndrome: results of an International Multicenter Collaborative Study. Arthritis Rheum. 2011;63:3625–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Nakagawa K, Gonzalez-Roca E, Souto A, et al. Somatic NLRP3 mosaicism in Muckle-Wells syndrome. A genetic mechanism shared by different phenotypes of cryopyrin-associated periodic syndromes. Ann Rheum Dis. 2015;74:603–10.

    Article  CAS  PubMed  Google Scholar 

  58. Zhou Q, Aksentijevich I, Wood GM, et al. Brief report: cryopyrin-associated periodic syndrome caused by a myeloid-restricted somatic NLRP3 mutation. Arthritis Rheumatol. 2015;67:2482–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Rowczenio DM, Gomes SM, Arostegui JI, et al. Late-onset cryopyrin-associated periodic syndromes caused by somatic NLRP3 mosaicism-UK single center experience. Front Immunol. 2017;8:1410.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Rowczenio DM, Trojer H, Omoyinmi E, et al. Brief report: association of tumor necrosis factor receptor-associated periodic syndrome with gonosomal mosaicism of a novel 24-nucleotide TNFRSF1A deletion. Arthritis Rheumatol. 2016;68:2044–9.

    Article  CAS  PubMed  Google Scholar 

  61. ter Haar NM, Oswald M, Jeyaratnam J, et al. Recommendations for the management of autoinflammatory diseases. Ann Rheum Dis. 2015;74:1636–44.

    Article  CAS  PubMed  Google Scholar 

  62. Ter Haar N, Lachmann H, Ozen S, et al. Treatment of autoinflammatory diseases: results from the Eurofever Registry and a literature review. Ann Rheum Dis. 2013;72:678–85.

    Article  PubMed  Google Scholar 

  63. Bulua AC, Mogul DB, Aksentijevich I, et al. Efficacy of etanercept in the tumor necrosis factor receptor-associated periodic syndrome: a prospective, open-label, dose-escalation study. Arthritis Rheum. 2012;64:908–13.

    Article  CAS  PubMed  Google Scholar 

  64. Simsek I, Kaya A, Erdem H, Pay S, Yenicesu M, Dinc A. No regression of renal amyloid mass despite remission of nephrotic syndrome in a patient with TRAPS following etanercept therapy. J Nephrol. 2010;23:119–23.

    PubMed  Google Scholar 

  65. Ozen S, Kuemmerle-Deschner JB, Cimaz R, et al. International retrospective chart review of treatment patterns in severe familial mediterranean fever, tumor necrosis factor receptor-associated periodic syndrome, and mevalonate kinase deficiency/hyperimmunoglobulinemia D syndrome. Arthritis Care Res (Hoboken). 2017;69:578–86.

    Article  CAS  Google Scholar 

  66. Nedjai B, Quillinan N, Coughlan RJ, et al. Lessons from anti-TNF biologics: infliximab failure in a TRAPS family with the T50M mutation in TNFRSF1A. Adv Exp Med Biol. 2011;691:409–19.

    Article  CAS  PubMed  Google Scholar 

  67. Church LD, Churchman SM, Hawkins PN, McDermott MF. Hereditary auto-inflammatory disorders and biologics. Springer Semin Immunopathol. 2006;27:494–508.

    Article  CAS  PubMed  Google Scholar 

  68. Nedjai B, Hitman GA, Quillinan N, et al. Proinflammatory action of the antiinflammatory drug infliximab in tumor necrosis factor receptor-associated periodic syndrome. Arthritis Rheum. 2009;60:619–25.

    Article  CAS  PubMed  Google Scholar 

  69. Simon A, Bodar EJ, van der Hilst JC, et al. Beneficial response to interleukin 1 receptor antagonist in traps. Am J Med. 2004;117:208–10.

    Article  CAS  PubMed  Google Scholar 

  70. Sacre K, Brihaye B, Lidove O, et al. Dramatic improvement following interleukin 1beta blockade in tumor necrosis factor receptor-1-associated syndrome (TRAPS) resistant to anti-TNF-alpha therapy. J Rheumatol. 2008;35:357–8.

    CAS  PubMed  Google Scholar 

  71. Gattorno M, Pelagatti MA, Meini A, et al. Persistent efficacy of anakinra in patients with tumor necrosis factor receptor-associated periodic syndrome. Arthritis Rheum. 2008;58:1516–20.

    Article  CAS  PubMed  Google Scholar 

  72. Obici L, Meini A, Cattalini M, et al. Favourable and sustained response to anakinra in tumour necrosis factor receptor-associated periodic syndrome (TRAPS) with or without AA amyloidosis. Ann Rheum Dis. 2011;70:1511–2.

    Article  CAS  PubMed  Google Scholar 

  73. Gattorno M, Obici L, Cattalini M, et al. Canakinumab treatment for patients with active recurrent or chronic TNF receptor-associated periodic syndrome (TRAPS): an open-label, phase II study. Ann Rheum Dis. 2017;76:173–8.

    Article  CAS  PubMed  Google Scholar 

  74. De Benedetti F, Gattorno M, Anton J, et al. Canakinumab for the treatment of autoinflammatory recurrent fever syndromes. N Engl J Med. 2018;378:1908–19.

    Article  PubMed  Google Scholar 

  75. La Torre F, Muratore M, Vitale A, Moramarco F, Quarta L, Cantarini L. Canakinumab efficacy and long-term tocilizumab administration in tumor necrosis factor receptor-associated periodic syndrome (TRAPS). Rheumatol Int. 2015;35:1943–7.

    Article  PubMed  CAS  Google Scholar 

  76. Savic S, Ouboussad L, Dickie LJ, et al. The role of IL-6 and LPS in pathogenesis of TRAPS. Pediatr Rheumatol. 2013;11:A153.

    Article  Google Scholar 

  77. Akasbi N, Soyfoo MS. Successful treatment of tumor necrosis factor receptor-associated periodic syndrome (TRAPS) with tocilizumab: a case report. Eur J Rheumatol. 2015;2:35–6.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Vaitla PM, Radford PM, Tighe PJ, et al. Role of interleukin-6 in a patient with tumor necrosis factor receptor-associated periodic syndrome: assessment of outcomes following treatment with the anti-interleukin-6 receptor monoclonal antibody tocilizumab. Arthritis Rheum. 2011;63:1151–5.

    Article  PubMed  Google Scholar 

  79. Coll RC, Robertson AA, Chae JJ, et al. A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat Med. 2015;21:248–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Youm YH, Nguyen KY, Grant RW, et al. The ketone metabolite beta-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease. Nat Med. 2015;21:263–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Panayi GS, Corrigall VM. Immunoglobulin heavy-chain-binding protein (BiP): a stress protein that has the potential to be a novel therapy for rheumatoid arthritis. Biochem Soc Trans. 2014;42:1752–5.

    Article  CAS  PubMed  Google Scholar 

  82. Kirkham B, Chaabo K, Hall C, et al. Safety and patient response as indicated by biomarker changes to binding immunoglobulin protein in the phase I/IIA RAGULA clinical trial in rheumatoid arthritis. Rheumatology (Oxford). 2016;55:1993–2000.

    Article  CAS  Google Scholar 

  83. Qiu Q, Zheng Z, Chang L, et al. Toll-like receptor-mediated IRE1alpha activation as a therapeutic target for inflammatory arthritis. EMBO J. 2013;32:2477–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Izumi S, Nakasa T, Miyaki S, Ochi M. STF-083010, the inhibitor of ER stress transducer IRE-1, suppresses rheumatoid synovitis. Arthritis Rheum. 2015;67(Suppl 10).

    Google Scholar 

  85. Savic S, Ouboussad L, Dickie LJ, et al. TLR dependent XBP-1 activation induces an autocrine loop in rheumatoid arthritis synoviocytes. J Autoimmun. 2014;50:59–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. McDermott EM, Smillie DM, Powell RJ. Clinical spectrum of familial Hibernian fever: a 14-year follow-up study of the index case and extended family. Mayo Clin Proc. 1997;72:806–17.

    Article  CAS  PubMed  Google Scholar 

  87. Obici L, Merlini G. Amyloidosis in autoinflammatory syndromes. Autoimmun Rev. 2012;12:14–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sinisa Savic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Savic, S., McDermott, M.F. (2019). Tumor Necrosis Factor (TNF) Receptor-Associated Periodic Syndrome (TRAPS). In: Hashkes, P., Laxer, R., Simon, A. (eds) Textbook of Autoinflammation. Springer, Cham. https://doi.org/10.1007/978-3-319-98605-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98605-0_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98604-3

  • Online ISBN: 978-3-319-98605-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics