Systemic Amyloidosis

  • Tamer Rezk
  • Philip N. HawkinsEmail author


Amyloidosis describes a group of rare diseases caused by abnormal fibrillar protein aggregation within the interstitium of tissues and organs throughout the body. This chapter focuses upon the pathogenesis, epidemiology, diagnosis and management of these heterogeneous disorders. AA amyloidosis is one of the most feared complications of autoinflammatory syndromes but it is becoming increasingly rare with the advent of effective anti-inflammatory therapy. The most common of the systemic amyloidoses are immunoglobulin light chain (AL) type and wildtype transthyretin (wtATTR) amyloidosis, the latter a probably much underdiagnosed cause of heart failure in the elderly. Precise diagnosis, confirmation of amyloid type, evaluation of amyloidotic organ involvement and associated underlying disorders are imperative for optimal patient care. Although histology has long been the diagnostic gold standard, new technologies including mass spectrometry of tiny tissue samples and highly specific imaging comprising; I123 labelled serum amyloid P (SAP) component scintigraphy, 99mTc-labeled 3,3-diphosphono-1,2-propanodicarboxylic acid (99mTc-DPD) scintigraphy and cardiac MRI (CMR), have lately transformed the evaluation of patients. A multidisciplinary approach to management is key. Treatment comprises support of failing amyloidotic organs, measures to reduce production of the respective amyloid fibril protein such as suppression of serum amyloid A (SAA) in systemic AA amyloidosis, and recently, novel therapies aimed at enhancing clearing of existing amyloid deposits.


Amyloidosis Autoinflammatory Systemic Suppression Nephrotic syndrome Heart failure Chemotherapy Neuropathy 



Angiotensin-converting enzyme


Amyloid-enhancing factor


Angiotensin receptor blockers


Autologous stem cell transplantation


Bence Jones proteinuria


Cryopyrin-associated autoinflammatory syndrome


Chronic inflammatory neurological cutaneous articular


Chronic kidney disease


Cardiac MRI


((R)-1-(6-[(R)-2-carboxy-pyrrolidin-1-yl]-6-oxo-hexa-noyl) pyrrolidine-2 carboxylic acid), a novel bis (D-proline)


99mTc-labeled 3,3-diphosphono-1,2-propanodicarboxylic acid (99mTc-DPD)


Estimated glomerular filtration rate


End stage renal disease


End stage renal failure


Familial amyloid polyneuropathy


Familial cold autoinflammatory syndrome


Free light chains


Familial Mediterranean fever






Interventricular septal diameter


Monoclonal gammopathy of unknown significance


Mevalonate kinase deficiency


Multiple myeloma


Muckle-Wells syndrome


National Amyloidosis Centre


Neonatal onset multisystem inflammatory disease


N terminal pro brain natriuretic peptide


Serum amyloid A


Serum amyloid P


Tumor necrosis factor


TNF receptor-associated periodic syndrome




United Kingdom


United States of America


  1. 1.
    Lachmann HJ, Hawkins PN. Systemic amyloidosis. Curr Opin Pharmacol. 2006;6:214–20.PubMedCrossRefGoogle Scholar
  2. 2.
    Pepys MB. Amyloidosis. In: Frank MM, Austen KF, Claman HN, Unanue ER, editors. Samter’s immunologic diseases. 5th ed. Boston: Little, Brown and Company; 1994. p. 637–55.Google Scholar
  3. 3.
    Sipe JD, Benson MD, Buxbaum JN, et al. Nomenclature 2014: Amyloid fibril proteins and clinical classification of the amyloidosis. Amyloid. 2014;21:221–4.PubMedCrossRefGoogle Scholar
  4. 4.
    Pepys MB. Amyloidosis. Annu Rev Med. 2006;57:223–41.PubMedCrossRefGoogle Scholar
  5. 5.
    Bonar L, Cohen AS, Skinner MM. Characterization of the amyloid fibril as a cross-beta protein. Proc Soc Exp Biol Med. 1969;131:1373–5.PubMedCrossRefGoogle Scholar
  6. 6.
    Glenner GG, Eanes ED, Bladen HA, Linke RP, Termine JD. β-pleated sheet fibrils. A comparison of native amyloid with synthetic protein fibrils. Prog Histochem Cytochem. 1974;22:1141–58.CrossRefGoogle Scholar
  7. 7.
    Jaroniec CP, MacPhee CE, Bajaj VS, McMahon MT, Dobson CM, Griffin RG. High-resolution molecular structure of a peptide in an amyloid fibril determined by magic angle spinning NMR spectroscopy. Proc Natl Acad Sci U S A. 2004;101:711–6.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Pepys MB, Rademacher TW, Amatayakul-Chantler S, et al. Human serum amyloid P component is an invariant constituent of amyloid deposits and has a uniquely homogeneous glycostructure. Proc Natl Acad Sci U S A. 1994;91:5602–6.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Botto M, Hawkins PN, Bickerstaff MCM, et al. Amyloid deposition is delayed in mice with targeted deletion of the serum amyloid P component gene. Nat Med. 1997;3:855–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Reixach N, Deechongkit S, Jiang X, Kelly JW, Buxbaum JN. Tissue damage in the amyloidoses: transthyretin monomers and nonnative oligomers are the major cytotoxic species in tissue culture. Proc Natl Acad Sci U S A. 2004;101:2817–22.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Lundmark K, Westermark GT, Nystrom S, Murphy CL, Solomon A, Westermark P. Transmissibility of systemic amyloidosis by a prion-like mechanism. Proc Natl Acad Sci U S A. 2002;99:6979–84.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Lachmann HJ, Goodman HJB, Gilbertson JA, et al. Natural history and outcome in systemic AA amyloidosis. N Engl J Med. 2007;356:2361–71.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Stangou AJ, Hawkins PN, Heaton ND, et al. Progressive cardiac amyloidosis following liver transplantation for familial amyloid polyneuropathy: implications for amyloid fibrillogenesis. Transplantation. 1998;66:229–33.CrossRefGoogle Scholar
  14. 14.
    Hawkins PN. Studies with radiolabelled serum amyloid P component provide evidence for turnover and regression of amyloid deposits in vivo. Clin Sci. 1994;87:289–95.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Van Rooijen N, Sanders A. Liposome mediated depletion of macrophages: mechanism of action, preparation of liposomes and applications. J Immunol Methods. 1994;174:83–93.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Pepys MB. Pathogenesis, diagnosis and treatment of systemic amyloidosis. Philos Trans R Soc Lond Ser B Biol Sci. 2001;356:203–10; discussion 10–1.CrossRefGoogle Scholar
  17. 17.
    Pinney JH, Smith CJ, Taube JB, et al. Systemic amyloidosis in England: an epidemiological study. Br J Haematol. 2013;161:525–32.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Tanskanen M, Peuralinna T, Polvikoski T, et al. Senile systemic amyloidosis affects 25% of the very aged and associates with genetic variation in alpha2-macroglobulin and tau: a population-based autopsy study. Ann Med. 2008;40:232–9.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Hawkins PN. Systemic amyloidosis. In: Weinsten WM, Hawkey CJ, Bosch J, editors. Clinical gastroenterology and hepatology. 1st ed. London: Elseiver Health Sciences; 2005. p. 853–8.Google Scholar
  20. 20.
    Livneh A, Langevitz P, Zemer D, et al. Criteria for the diagnosis of familial Mediterranean fever. Arthritis Rheum. 1997;40:1879–85.CrossRefGoogle Scholar
  21. 21.
    Sipe J. Revised nomenclature for serum amyloid A (SAA). Nomenclature Committee of the International Society of Amyloidosis. Part 2. Amyloid. 1999;6:67–70.PubMedCrossRefGoogle Scholar
  22. 22.
    Sun L, Ye RD. Serum amyloid A1: structure, function and gene polymorphism. Gene. 2016;583:48–57.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Nakamura T, Higashi S, Tomoda K, Tsukano M, Baba S, Shono M. Significance of SAA1.3 allele genotype in Japanese patients with amyloidosis secondary to rheumatoid arthritis. Rheumatology (Oxford). 2006;45:43–9.CrossRefGoogle Scholar
  24. 24.
    Akar N, Hasipek M, Akar E, Ekim M, Yalcinkaya F, Cakar N. Serum amyloid A1 and tumor necrosis factor-alpha alleles in Turkish familial Mediterranean fever patients with and without amyloidosis. Amyloid. 2003;10:12–6.PubMedCrossRefGoogle Scholar
  25. 25.
    Touitou I. The spectrum of familial Mediterranean fever (FMF) mutations. Eur J Hum Genet. 2001;9:473–83.PubMedCrossRefGoogle Scholar
  26. 26.
    Mukhin NA, Kozlovskaya LV, Bogdanova MV, Rameev VV, Moiseev SV, Simonyan A. Predictors of AA amyloidosis in familial Mediterranean fever. Rheumatol Int. 2015;35:1257–61.PubMedCrossRefGoogle Scholar
  27. 27.
    Touitou I, Sarkisian T, Medlej-Hashim M, et al. Country as the primary risk factor for renal amyloidosis in familial Mediterranean fever. Arthritis Rheum. 2007;56:1706–12.PubMedCrossRefGoogle Scholar
  28. 28.
    Lachmann HJ, Papa R, Gerhold K, et al. The phenotype of TNF receptor-associated autoinflammatory syndrome (TRAPS) at presentation: a series of 158 cases from the Eurofever/EUROTRAPS international registry. Ann Rheum Dis. 2014;73:2160–7.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Georgin-Lavialle S, Stankovic Stojanovic K, Buob D, et al. French Amyloidosis CAPS study: AA Amyloidosis complicating cryopyrin-associated periodic syndrome: a study on 14 cases and review of 53 cases from literature. Pediatr Rheumatol Online J. 2015;13(Suppl 1):P32.PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Lovat LB, Persey MR, Madhoo S, Pepys MB, Hawkins PN. The liver in systemic amyloidosis: insights from 123I serum amyloid P component scintigraphy in 484 patients. Gut. 1998;42:727–34.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Kyle RA, Linos A, Beard CM, et al. Incidence and natural history of primary systemic amyloidosis in Olmsted County, Minnesota, 1950 through 1989. Blood. 1992;79:1817–22.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Kyle RA, Bayrd ED. Amyloidosis: review of 236 cases. Medicine. 1975;54:271–99.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Sattianayagam PT, Hawkins PN, Gillmore JD. Systemic amyloidosis and the gastrointestinal tract. Nat Rev Gastroenterol Hepatol. 2009;6:608–17.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Dwulet FE, Benson MD. Primary structure of an amyloid prealbumin and its plasma precursor in a heredofamilial polyneuropathy of Swedish origin. Proc Natl Acad Sci U S A. 1984;81:694–8.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Suhr O, Danielsson A, Holmgren G, Steen L. Malnutrition and gastrointestinal dysfunction as prognostic factors for survival in familial amyloidotic polyneuropathy. J Intern Med. 1994;235:479–85.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Marcoux J, Mangione PP, Porcari R, et al. A novel mechano-enzymatic cleavage mechanism underlies transthyretin amyloidogenesis. EMBO Mol Med. 2015;7:1337–49.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Gillmore JD, Lachmann HJ, Rowczenio D, et al. Diagnosis, pathogenesis, treatment, and prognosis of hereditary fibrinogen A alpha-chain amyloidosis. J Am Soc Nephrol. 2009;20:444–51.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Westermark P, Sletten K, Johansson B, Cornwell GG. Fibril in senile systemic amyloidosis is derived from normal transthyretin. Proc Natl Acad Sci U S A. 1990;87:2843–5.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Westermark P, Bergstrom J, Solomon A, Murphy C, Sletten K. Transthyretin-derived senile systemic amyloidosis: clinicopathologic and structural considerations. Amyloid. 2003;10(Suppl 1):48–54.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Youngstein T, Gilbertson JA, Hutt DF, et al. Carpal Tunnel biopsy identifying transthyretin amyloidosis. Arthritis Rheumatol (Hoboken, NJ). 2017;69:2051.CrossRefGoogle Scholar
  41. 41.
    Puchtler H, Sweat F, Levine M. On the binding of Congo red by amyloid. J Histochem Cytochem. 1962;10:355–64.CrossRefGoogle Scholar
  42. 42.
    van Gameren II, Hazenberg BP, Bijzet J, van Rijswijk MH. Diagnostic accuracy of subcutaneous abdominal fat tissue aspiration for detecting systemic amyloidosis and its utility in clinical practice. Arthritis Rheum. 2006;54:2015–21.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Guy CD, Jones CK. Abdominal fat pad aspiration biopsy for tissue confirmation of systemic amyloidosis: specificity, positive predictive value, and diagnostic pitfalls. Diagn Cytopathol. 2001;24:181–5.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Ebert EC, Nagar M. Gastrointestinal manifestations of amyloidosis. Am J Gastroenterol. 2008;103:776–87.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Quarta CC, Gonzalez-Lopez E, Gilbertson JA, et al. Diagnostic sensitivity of abdominal fat aspiration in cardiac amyloidosis. Eur Heart J. 2017;38:1905–8.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Silver MM, Hearn SA, Walton JC, Lines LA, Walley VM. Immunogold quantitation of immunoglobulin light chains in renal amyloidosis and kappa light chain nephropathy. Am J Pathol. 1990;136:997–1007.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Gilbertson JA, Theis JD, Vrana JA, et al. A comparison of immunohistochemistry and mass spectrometry for determining the amyloid fibril protein from formalin-fixed biopsy tissue. J Clin Pathol. 2015;68:314–7.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Vrana JA, Gamez JD, Madden BJ, Theis JD, Bergen HR 3rd, Dogan A. Classification of amyloidosis by laser microdissection and mass spectrometry-based proteomic analysis in clinical biopsy specimens. Blood. 2009;114:4957–9.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Vrana JA, Theis JD, Dasari S, et al. Clinical diagnosis and typing of systemic amyloidosis in subcutaneous fat aspirates by mass spectrometry-based proteomics. Haematologica. 2014;99:1239–47.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Mangione PP, Mazza G, Gilbertson JA, et al. Increasing the accuracy of proteomic typing by decellularisation of amyloid tissue biopsies. J Proteome. 2017;165:113–8.CrossRefGoogle Scholar
  51. 51.
    Lachmann HJ, Booth DR, Booth SE, et al. Misdiagnosis of hereditary amyloidosis as AL (primary) amyloidosis. N Engl J Med. 2002;346:1786–91.PubMedCrossRefGoogle Scholar
  52. 52.
    Landau HJ, Comenzo RL, Zhou P, et al. Al amyloidosis in a patient with a T60A TTR mutation. XIth International Symposium on Amyloidosis 2008:160–2.Google Scholar
  53. 53.
    Kyle RA, Therneau TM, Rajkumar SV, et al. Prevalence of monoclonal gammopathy of undetermined significance. N Engl J Med. 2006;354:1362–9.PubMedCrossRefGoogle Scholar
  54. 54.
    Hawkins PN, Lavender JP, Pepys MB. Evaluation of systemic amyloidosis by scintigraphy with 123I-labeled serum amyloid P component. N Engl J Med. 1990;323:508–13.PubMedCrossRefGoogle Scholar
  55. 55.
    Richards DB, Cookson LM, Berges AC, et al. Therapeutic clearance of amyloid by antibodies to serum amyloid P component. N Engl J Med. 2015;373:1106–14.PubMedCrossRefGoogle Scholar
  56. 56.
    Wechalekar AD, Schonland SO, Kastritis E, et al. A European collaborative study of treatment outcomes in 346 patients with cardiac stage III AL amyloidosis. Blood. 2013;121:3420–7.PubMedCrossRefGoogle Scholar
  57. 57.
    Gertz MA, Comenzo R, Falk RH, et al. Definition of organ involvement and treatment response in immunoglobulin light chain amyloidosis (AL): a consensus opinion from the 10th International Symposium on Amyloid and Amyloidosis. Am J Hematol. 2005;79:319–28.PubMedCrossRefGoogle Scholar
  58. 58.
    Falk RH. Diagnosis and management of the cardiac amyloidoses. Circulation. 2005;112:2047–60.PubMedCrossRefGoogle Scholar
  59. 59.
    Perugini E, Rapezzi C, Piva T, et al. Non-invasive evaluation of the myocardial substrate of cardiac amyloidosis by gadolinium cardiac magnetic resonance. Heart. 2006;92:343–9.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Martinez-Naharro A, Treibel TA, Abdel-Gadir A, et al. Magnetic resonance in transthyretin cardiac amyloidosis. J Am Coll Cardiol. 2017;70:466–77.PubMedCrossRefGoogle Scholar
  61. 61.
    Murtagh B, Hammill SC, Gertz MA, Kyle RA, Tajik AJ, Grogan M. Electrocardiographic findings in primary systemic amyloidosis and biopsy-proven cardiac involvement. Am J Cardiol. 2005;95:535–7.PubMedCrossRefGoogle Scholar
  62. 62.
    Dubrey SW, Cha K, Anderson J, et al. The clinical features of immunoglobulin light-chain (AL) amyloidosis with heart involvement. QJM. 1998;91:141–57.PubMedCrossRefGoogle Scholar
  63. 63.
    Sayed RH, Rogers D, Khan F, et al. A study of implanted cardiac rhythm recorders in advanced cardiac AL amyloidosis. Eur Heart J. 2015;36:1098–105.PubMedCrossRefGoogle Scholar
  64. 64.
    Rapezzi C, Merlini G, Quarta CC, et al. Systemic cardiac amyloidoses: disease profiles and clinical courses of the 3 main types. Circulation. 2009;120:1203–12.PubMedCrossRefGoogle Scholar
  65. 65.
    Gillmore JD, Damy T, Fontana M, et al. A new staging system for cardiac transthyretin amyloidosis. Eur Heart J. 2018;39:2799–806.PubMedCrossRefGoogle Scholar
  66. 66.
    Lachmann HJ, Gallimore R, Gillmore JD, et al. Outcome in systemic AL amyloidosis in relation to changes in concentration of circulating free immunoglobulin light chains following chemotherapy. Br J Haematol. 2003;122:78–84.PubMedCrossRefGoogle Scholar
  67. 67.
    Gillmore JD, Maurer MS, Falk RH, et al. Nonbiopsy diagnosis of cardiac transthyretin amyloidosis. Circulation. 2016;133:2404–12.PubMedCrossRefGoogle Scholar
  68. 68.
    Bochtler T, Hegenbart U, Kunz C, et al. Prognostic impact of cytogenetic aberrations in AL amyloidosis patients after high-dose melphalan: a long-term follow-up study. Blood. 2016;128:594–602.PubMedCrossRefGoogle Scholar
  69. 69.
    Bahlis NJ, Lazarus HM. Multiple myeloma-associated AL amyloidosis: is a distinctive therapeutic approach warranted? Bone Marrow Transplant. 2006;38:7–15.PubMedCrossRefGoogle Scholar
  70. 70.
    Derlin T, Bannas P. Imaging of multiple myeloma: current concepts. World J Orthop. 2014;5:272–82.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Dispenzieri A, Gertz M, Kyle R, et al. Serum cardiac troponins and N-terminal pro-brain natriuretic peptide: a staging system for primary systemic amyloidosis. J Clin Oncol. 2004;22:3751–7.PubMedCrossRefGoogle Scholar
  72. 72.
    Mannu GS. The non-cardiac use and significance of cardiac troponins. Scott Med J. 2014;59:172–8.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Palladini G, Foli A, Milani P, et al. Best use of cardiac biomarkers in patients with AL amyloidosis and renal failure. Am J Hematol. 2012;87:465–71.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Sanders PW. Mechanisms of light chain injury along the tubular nephron. J Am Soc Nephrol. 2012;23:1777–81.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Sattianayagam PT. The pathogenesis, investigation and management of systemic amyloidosis. London: UCL Medical School; 2012.Google Scholar
  76. 76.
    Brater DC. Diuretic therapy. N Engl J Med. 1998;339:387–95.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Ruggenenti P, Mosconi L, Vendramin G, et al. ACE inhibition improves glomerular size selectivity in patients with idiopathic membranous nephropathy and persistent nephrotic syndrome. Am J Kidney Dis. 2000;35:381–91.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Odabas AR, Cetinkaya R, Selcuk Y, Bilen H. Effect of losartan treatment on the proteinuria in normotensive patients having proteinuria due to secondary amyloidosis. Ups J Med Sci. 2001;106:183–8.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Rezk T, Whelan CJ, Lachmann HJ, et al. Role of implantable intracardiac defibrillators in patients with cardiac immunoglobulin light chain amyloidosis. Br J Haematol. 2018;182:145–8.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Gillmore JD, Lachmann HJ, Wechalekar A, Hawkins PN. Hereditary fibrinogen A alpha-chain amyloidosis: clinical phenotype and role of liver transplantation. Blood. 2010;115:4313; author reply 4–5.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Lane T, Loeffler JM, Rowczenio DM, et al. AA amyloidosis complicating the hereditary periodic fever syndromes. Arthritis Rheum 2013;65(4):1116–1121.Google Scholar
  82. 82.
    Ugurlu S, Ergezen B, Hacioglu A, Ozdogan H. Anti-interleukin 1 therapy in FMF amyloidosis: a single center experience (Case Series). Ann Rheum Dis. 2017;76:412.Google Scholar
  83. 83.
    Lane T, Gillmore JD, Wechalekar AD, Hawkins PN, Lachmann HJ. Therapeutic blockade of interleukin-6 by tocilizumab in the management of AA amyloidosis and chronic inflammatory disorders: a case series and review of the literature. Clin Exp Rheumatol. 2015;33(Suppl 94):46–53.Google Scholar
  84. 84.
    Ugurlu S, Hacioglu A, Adibnia Y, Hamuryudan V, Ozdogan H. Tocilizumab in the treatment of twelve cases with aa amyloidosis secondary to familial Mediterranean fever. Orphanet J Rare Dis. 2017;12:105.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Pinney JH, Lachmann HJ, Sattianayagam PT, et al. Renal transplantation in systemic amyloidosis-importance of amyloid fibril type and precursor protein abundance. Am J Transplant. 2013;13:433–41.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Moser C, Pohl G, Haslinger I, et al. Successful treatment of familial Mediterranean fever with anakinra and outcome after renal transplantation. Nephrol Dial Transplant. 2009;24:676–8.PubMedCrossRefGoogle Scholar
  87. 87.
    Kisilevsky R, Ancsin JB, Szarek WA, Petanceska S. Heparan sulfate as a therapeutic target in amyloidogenesis: prospects and possible complications. Amyloid. 2007;14:21–32.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Dember LM, Hawkins PN, Hazenberg BPC, et al. Eprodisate for the treatment of renal disease in AA amyloidosis. N Engl J Med. 2007;356:2349–60.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Comenzo RL, Reece D, Palladini G, et al. Consensus guidelines for the conduct and reporting of clinical trials in systemic light-chain (AL) amyloidosis. Leukemia. 2012;26:2317–25.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Palladini G, Dispenzieri A, Gertz MA, et al. New criteria for response to treatment in immunoglobulin light chain amyloidosis based on free light chain measurement and cardiac biomarkers: impact on survival outcomes. J Clin Oncol. 2012;30:4541–9.PubMedCrossRefGoogle Scholar
  91. 91.
    Dimopoulos MA, Kastritis E. Bortezomib for AL amyloidosis: moving forward. Blood. 2011;118:827–8.PubMedCrossRefGoogle Scholar
  92. 92.
    Venner CP, Lane T, Foard D, et al. Cyclophosphamide, bortezomib and dexamethasone therapy in AL amyloidosis is associated with high clonal response rates and prolonged progression free survival. Blood. 2012;119:4387–90.PubMedCrossRefGoogle Scholar
  93. 93.
    Venner CP, Lane T, Foard D, et al. Stringent patient selection improves outcomes in patients with AL amyloidosis undergoing autologous stem cell transplantation. International Society of Amyloidosis; XIIIth International Symposium on Amyloidosis from misfolded proteins to well-designed treatment. 2012;PC58(May):211.Google Scholar
  94. 94.
    Wechalekar AD, Gillmore JD, Hawkins PN. Systemic amyloidosis. Lancet. 2016;387:2641–54.PubMedCrossRefGoogle Scholar
  95. 95.
    Coelho T, Maia LF, Martins da Silva A, et al. Tafamidis for transthyretin familial amyloid polyneuropathy: a randomized, controlled trial. Neurology. 2012;79:785–92.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Sekijima Y, Dendle MA, Kelly JW. Orally administered diflunisal stabilizes transthyretin against dissociation required for amyloidogenesis. Amyloid. 2006;13:236–49.PubMedCrossRefGoogle Scholar
  97. 97.
    Berk JL, Suhr OB, Obici L, et al. Repurposing diflunisal for familial amyloid polyneuropathy: a randomized clinical trial. JAMA. 2013;310:2658–67.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Coelho T, Adams D, Silva A, et al. Safety and efficacy of RNAi therapy for transthyretin amyloidosis. N Engl J Med. 2013;369:819–29.PubMedCrossRefGoogle Scholar
  99. 99.
    Adams D, Suhr OB, Dyck PJ, et al. Trial design and rationale for APOLLO, a Phase 3, placebo-controlled study of patisiran in patients with hereditary ATTR amyloidosis with polyneuropathy. BMC Neurol. 2017;17:181.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Edwards CV, Gould J, Langer AL, et al. Interim analysis of the phase 1a/b study of chimeric fibril-reactive monoclonal antibody 11-1F4 in patients with AL amyloidosis. Amyloid. 2017;24(suppl 1):58–9.PubMedCrossRefGoogle Scholar
  101. 101.
    Edwards CV, Gould J, Langer AL, et al. Final analysis of the phase 1a/b study of chimeric fibril-reactive monoclonal antibody 11-1f4 in patients with relapsed or refractory AL amyloidosis. Blood. 2017;130:509.Google Scholar
  102. 102.
    Tennent GA, Lovat LB, Pepys MB. Serum amyloid P component prevents proteolysis of the amyloid fibrils of Alzheimer’s disease and systemic amyloidosis. Proc Natl Acad Sci U S A. 1995;92:4299–303.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.National Amyloidosis Centre, UCL Division of Medicine, Royal Free CampusLondonUK
  2. 2.UCL Centre for Nephrology, Division of MedicineUniversity College London, Royal Free CampusLondonUK

Personalised recommendations