Skip to main content

Osteolysis After Total Hip Arthroplasty: Basic Science

  • Chapter
  • First Online:
Acetabular Revision Surgery in Major Bone Defects

Abstract

Total hip replacement has become one of the most successful interventions achieved in modern medicine, with excellent technical outcomes and benefits for patients suffering end-stage joint diseases. In-service degradation of prosthetic materials results in the production and accumulation of wear debris particles with devastating effects for the peri-implant tissues. Exposure to wear debris induces a localized inflammatory response and periprosthetic osteolysis, leading to aseptic loosening and failure of the implant. In order to solve this clinical problem, efforts have been focused on improving the tribological properties of biomaterials and elucidating the biological response to wear debris. Unravelling the cellular and molecular mechanisms involved in this pathology will aid to identify diagnostic biomarkers and therapeutic targets.

This chapter provides a general overview of the biological events that govern the etiology of periprosthetic osteolysis, illustrating current knowledge about particles produced by the most commonly used artificial joint articulating surfaces. A brief summary outlines the current and future state of preventive and therapeutic strategies to handle the adverse biological response to wear particles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Learmonth ID, Young C, Rorabeck C. The operation of the century: total hip replacement. Lancet. 2007;370:1508–19.

    Article  PubMed  Google Scholar 

  2. Apostu D, Lucaciu O, Berce C, Lucaciu D, Cosma D. Current methods of preventing aseptic loosening and improving osseointegration of titanium implants in cementless total hip arthroplasty: a review. J Int Med Res. 2017; https://doi.org/10.1177/0300060517732697.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bitar D, Parvizi J. Biological response to prosthetic debris. World J Orthop. 2015;6:172–89. https://doi.org/10.5312/wjo.v6.i2.172.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Singh JA. Epidemiology of knee and hip arthroplasty: a systematic review. Open Orthop J. 2011;5:80–5. https://doi.org/10.2174/1874325001105010080.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kremers HM, Larson DR, Crowson CS, Kremers WK, Washington RE, Steiner CA, et al. Prevalence of total hip and knee replacement in the United States. J Bone Joint Surg Am. 2015;97:1386–97. https://doi.org/10.2106/JBJS.N.01141.

    Article  PubMed  Google Scholar 

  6. Dobzyniak M, Fehring TK, Odum S. Early failure in total hip arthroplasty. Clin Orthop Relat Res. 2006;447:76–8.

    Article  PubMed  Google Scholar 

  7. Melvin JS, Karthikeyan T, Cope R, Fehring TK. Early failures in total hip arthroplasty – a changing paradigm. J Arthroplast. 2014;29:1285–8. https://doi.org/10.1016/j.arth.2013.12.024.

    Article  Google Scholar 

  8. Cherian JJ, Jauregui JJ, Banerjee S, Pierce T, Mont MA. What host factors affect aseptic loosening after THA and TKA? Clin Orthop Relat Res. 2015;473:2700–9. https://doi.org/10.1007/s11999-015-4220-2.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Gibon E, Amanatullah DF, Loi F, Pajarinen J, Nabeshima A, Yao Z, et al. The biological response to orthopaedic implants for joint replacement: part I: metals. J Biomed Mater Res B Appl Biomater. 2017;105:2162–73. https://doi.org/10.1002/jbm.b.33734.

    Article  CAS  PubMed  Google Scholar 

  10. Jansen P, Mumme T, Randau T, Gravius S, Hermanns-Sachweh B. Endoglin (CD105) expression differentiates between aseptic loosening and periprosthetic joint infection after total joint arthroplasty. Springerplus. 2014;3:561. https://doi.org/10.1186/2193-1801-3-561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mäkelä KT, Eskelinen A, Pulkkinen P, Paavolainen P, Remes V. Results of 3,668 primary total hip replacements for primary osteoarthritis in patients under the age of 55 years. Acta Orthop. 2011;82:521–9. https://doi.org/10.3109/17453674.2011.618908.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Landgraeber S, Jäger M, Jacobs JJ, Hallab NJ. The pathology of orthopedic implant failure is mediated by innate immune system cytokines. Mediat Inflamm. 2014;2014:185150. https://doi.org/10.1155/2014/185150.

    Article  CAS  Google Scholar 

  13. Sukur E, Akman YE, Ozturkmen Y, Kucukdurmaz F. Particle disease: a current review of the biological mechanisms in periprosthetic osteolysis after hip arthroplasty. Open Orthop J. 2016;10:241–51. https://doi.org/10.2174/1874325001610010241.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Pajarinen J, Lin TH, Nabeshima A, Jämsen E, Lu L, Nathan K, et al. Mesenchymal stem cells in the aseptic loosening of total joint replacements. J Biomed Mater Res A. 2017;105:1195–207. https://doi.org/10.1002/jbm.a.35978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. MacInnes SJ, Gordon A, Wilkinson JM. Risk factors for aseptic loosening following Total hip arthroplasty. Recent Adv Arthroplast. 2012; https://doi.org/10.5772/26975.

    Google Scholar 

  16. Veronesi F, Tschon M, Fini M. Gene expression in osteolysis: review on the identification of altered molecular pathways in preclinical and clinical studies. Int J Mol Sci. 2017;25:18. https://doi.org/10.3390/ijms18030499.

    Article  CAS  Google Scholar 

  17. Nich C, Takakubo Y, Pajarinen J, Ainola M, Salem A, Sillat T, et al. Macrophages-key cells in the response to wear debris from joint replacements. J Biomed Mater Res A. 2013;101:3033–45. https://doi.org/10.1002/jbm.a.34599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gallo J, Goodman SB, Konttinen YT, Raska M. Particle disease: biologic mechanisms of periprosthetic osteolysis in total hip arthroplasty. Innate Immun. 2013;19:213–24. https://doi.org/10.1177/1753425912451779.

    Article  CAS  PubMed  Google Scholar 

  19. Camuzard O, Breuil V, Carle GF, Pierrefite-Carle V. Targeting autophagy to inhibit wear debris-induced osteolysis. AME Med J. 2017;2:5.

    Article  Google Scholar 

  20. Yan Y, Hu J, Lu H, Wang W. Genetic susceptibility to total hip arthroplasty failure: a case-control study on the influence of MMP 1 gene polymorphism. Diagn Pathol. 2014;9:177. https://doi.org/10.1186/s13000-014-0177-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Towle KM, Monnot AD. An assessment of gender-specific risk of implant revision after primary total hip arthroplasty: a systematic review and meta-analysis. J Arthroplast. 2016;31:2941–8. https://doi.org/10.1016/j.arth.2016.07.047.

    Article  Google Scholar 

  22. Gu Q, Shi Q, Yang H. The role of TLR and chemokine in wear particle-induced aseptic loosening. J Biomed Biotechnol. 2012;2012:596870. https://doi.org/10.1155/2012/596870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hallab NJ, Jacobs JJ. Biologic effects of implant debris. Bull NYU Hosp Jt Dis. 2009;67:182–8.

    PubMed  Google Scholar 

  24. Terkawi MA, Hamasaki M, Takahashi D, Ota M, Kadoya K, Yutani T, et al. Transcriptional profile of human macrophages stimulated by ultra-high molecular weight polyethylene particulate debris of orthopedic implants uncovers a common gene expression signature of rheumatoid arthritis. Acta Biomater. 2018;65:417–25. https://doi.org/10.1016/j.actbio.2017.11.001.

    Article  CAS  PubMed  Google Scholar 

  25. Ulrich SD, Seyler TM, Bennett D, Delanois RE, Saleh KJ, Thongtrangan I, et al. Total hip arthroplasties: what are the reasons for revision? Int Orthop. 2008;32:597–604.

    Article  PubMed  Google Scholar 

  26. Howie DW, Neale SD, Haynes DR, Holubowycz OT, McGee MA, Solomon LB, et al. Periprosthetic osteolysis after total hip replacement: molecular pathology and clinical management. Inflammopharmacology. 2013;21:389–96. https://doi.org/10.1007/s10787-013-0192-6.

    Article  PubMed  Google Scholar 

  27. Iorio R, Robb WJ, Healy WL, Berry DJ, Hozack WJ, Kyle RF, et al. Orthopaedic surgeon workforce and volume assessment for total hip and knee replacement in the United States: preparing for an epidemic. J Bone Joint Surg Am. 2008;90:1598–605.

    Article  PubMed  Google Scholar 

  28. McGrory BJ, Etkin CD, Lewallen DG. Comparing contemporary revision burden among hip and knee joint replacement registries. Arthroplast Today. 2016;2:83–6. https://doi.org/10.1016/j.artd.2016.04.003.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Nich C, Goodman SB. Role of macrophages in the biological reaction to wear debris from joint replacements. J Long-Term Eff Med Implants. 2014;24:259–65.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Girard J, Glorion C, Bonnomet F, Fron D, Migaud H. Risk factors for revision of hip arthroplasties in patients younger than 30 years. Clin Orthop Relat Res. 2011;469:1141–7. https://doi.org/10.1007/s11999-010-1669-x.

    Article  PubMed  Google Scholar 

  31. McGonagle L, Siney PD, Raut VV. Fate of the unrevised cemented stem following cup only revision: 227 hips at an average of 6 years follow-up. Orthop Traumatol Surg Res. 2015;101:781–4. https://doi.org/10.1016/j.otsr.2015.08.005.

    Article  CAS  PubMed  Google Scholar 

  32. Magone K, Luckenbill D, Goswami T. Metal ions as inflammatory initiators of osteolysis. Arch Orthop Trauma Surg. 2015;135:683–95. https://doi.org/10.1007/s00402-015-2196-8.

    Article  PubMed  Google Scholar 

  33. Jiang Y, Jia T, Wooley PH, Yang SY. Current research in the pathogenesis of aseptic implant loosening associated with particulate wear debris. Acta Orthop Belg. 2013;79:1–9.

    PubMed  Google Scholar 

  34. Pajarinen J, Gallo J, Takagi M, Goodman SB, Mjöberg B. Particle disease really does exist. Acta Orthop. 2018;89:133–6. https://doi.org/10.1080/17453674.2017.1402463.

    Article  PubMed  Google Scholar 

  35. Bordini B, Stea S, De Clerico M, Strazzari S, Sasdelli A, Toni A. Factors affecting aseptic loosening of 4750 total hip arthroplasties: multivariate survival analysis. BMC Musculoskelet Disord. 2007;24(8):69.

    Article  Google Scholar 

  36. Engh CA, Ho H, Powers CC, Huynh C, Beykirch SE, Hopper RH Jr. Osteolysis propensity among bilateral total hip arthroplasty patients. J Arthroplast. 2011;26:555–61. https://doi.org/10.1016/j.arth.2010.05.014.

    Article  Google Scholar 

  37. Stelmach P, Kauther MD, Fuest L, Kurscheid G, Gehrke T, Klenke S, et al. Relationship between GNAS1 T393C polymorphism and aseptic loosening after total hip arthroplasty. Eur J Med Res. 2017;22:29. https://doi.org/10.1186/s40001-017-0271-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. MacInnes SJ, Del Vescovo E, Kiss-Toth E, Ollier WE, Kay PR, Gordon A, et al. Genetic variation in inflammatory and bone turnover pathways and risk of osteolytic responses to prosthetic materials. J Orthop Res. 2015;33:193–8. https://doi.org/10.1002/jor.22755.

    Article  CAS  PubMed  Google Scholar 

  39. Kolundzić R, Orlić D, Trkulja V, Pavelić K, Troselj KG. Single nucleotide polymorphisms in the interleukin-6 gene promoter, tumor necrosis factor-alpha gene promoter, and transforming growth factor-beta1 gene signal sequence as predictors of time to onset of aseptic loosening after total hip arthroplasty: preliminary study. J Orthop Sci. 2006;11:592–600.

    Article  PubMed  Google Scholar 

  40. Gallo J, Mrazek F, Petrek M. Variation in cytokine genes can contribute to severity of acetabular osteolysis and risk for revision in patients with ABG 1 total hip arthroplasty: a genetic association study. BMC Med Genet. 2009;10:109. https://doi.org/10.1186/1471-2350-10-109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Malik MH, Jury F, Bayat A, Ollier WE, Kay PR. Genetic susceptibility to total hip arthroplasty failure: a preliminary study on the influence of matrix metalloproteinase 1, interleukin 6 polymorphisms and vitamin D receptor. Ann Rheum Dis. 2007;66:1116–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kremers HM, Lewallen EA, van Wijnen AJ, Lewallen DG. Clinical factors, disease parameters, and molecular therapies affecting osseointegration of orthopedic implants. Curr Mol Biol Rep. 2016;2:123–32. https://doi.org/10.1007/s40610-016-0042-6.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ollivere B, Wimhurst JA, Clark IM, Donell ST. Current concepts in osteolysis. J Bone Joint Surg Br. 2012;94:10–5. https://doi.org/10.1302/0301-620X.94B1.28047.

    Article  CAS  PubMed  Google Scholar 

  44. Ries MD, Link TM. Monitoring and risk of progression of osteolysis after total hip arthroplasty. J Bone Joint Surg Am. 2012;94:2097–105.

    PubMed  PubMed Central  Google Scholar 

  45. Revell PA. The combined role of wear particles, macrophages and lymphocytes in the loosening of total joint prostheses. J R Soc Interface. 2008;5:1263–78. https://doi.org/10.1098/rsif.2008.0142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kumar N, Arora GN, Datta B. Bearing surfaces in hip replacement – evolution and likely future. Med J Armed Forces India. 2014;70:371–6. https://doi.org/10.1016/j.mjafi.2014.04.015.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Callaghan JJ, Pedersen DR, Johnston RC, Brown TD. Clinical biomechanics of wear in total hip arthroplasty. Iowa Orthop J. 2003;23:1–12.

    PubMed  PubMed Central  Google Scholar 

  48. Noordin S, Masri B. Periprosthetic osteolysis: genetics, mechanisms and potential therapeutic interventions. Can J Surg. 2012;55:408–17. https://doi.org/10.1503/cjs.003711.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Sundfeldt M, Carlsson LV, Johansson CB, Thomsen P, Gretzer C. Aseptic loosening, not only a question of wear: a review of different theories. Acta Orthop. 2006;77:177–97.

    Article  PubMed  Google Scholar 

  50. Kapasa ER, Giannoudis PV, Jia X, Hatton PV, Yang XB. The effect of RANKL/OPG balance on reducing implant complications. J Funct Biomater. 2017;8(4):E42. https://doi.org/10.3390/jfb8040042.

    Article  PubMed  Google Scholar 

  51. Kandahari AM, Yang X, Laroche KA, Dighe AS, Pan D, Cui Q. A review of UHMWPE wear-induced osteolysis: the role for early detection of the immune response. Bone Res. 2016;4:16014. https://doi.org/10.1038/boneres.2016.14.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Vallés G, Gil-Garay E, Munuera L, Vilaboa N. Modulation of the cross-talk between macrophages and osteoblasts by titanium-based particles. Biomaterials. 2008;29:2326–35. https://doi.org/10.1016/j.biomaterials.2008.02.011.

    Article  CAS  PubMed  Google Scholar 

  53. Vallés G, González-Melendi P, Saldaña L, Rodriguez M, Munuera L, Vilaboa N. Rutile and titanium particles differentially affect the production of osteoblastic local factors. J Biomed Mater Res A. 2008;84:324–36.

    Article  PubMed  Google Scholar 

  54. Vallés G, González-Melendi P, González-Carrasco JL, Saldaña L, Sánchez-Sabaté E, Munuera L, et al. Differential inflammatory macrophage response to rutile and titanium particles. Biomaterials. 2006;27:5199–211.

    Article  PubMed  Google Scholar 

  55. Kobayashi A, Freeman MA, Bonfield W, Kadoya Y, Yamac T, Al-Saffar N, et al. Number of polyethylene particles and osteolysis in total joint replacements. A quantitative study using a tissue-digestion method. J Bone Joint Surg Br. 1997;79:844–8.

    Article  CAS  PubMed  Google Scholar 

  56. Lähdeoja T, Pajarinen J, Kouri VP, Sillat T, Salo J, Konttinen YT. Toll-like receptors and aseptic loosening of hip endoprosthesis-a potential to respond against danger signals? J Orthop Res. 2010;28:184–90. https://doi.org/10.1002/jor.20979.

    Article  PubMed  Google Scholar 

  57. Xing Z, Pabst MJ, Hasty KA, Smith RA. Accumulation of LPS by polyethylene particles decreases bone attachment to implants. J Orthop Res. 2006;24:959–66.

    Article  CAS  PubMed  Google Scholar 

  58. Alley C, Haggard W, Smith R. Effect of UHMWPE particle size, dose, and endotoxin on in vitro macrophage response. J Long-Term Eff Med Implants. 2014;24:45–56.

    Article  CAS  PubMed  Google Scholar 

  59. Zaveri TD, Dolgova NV, Lewis JS, Hamaker K, Clare-Salzler MJ, Keselowsky BG. Macrophage integrins modulate response to ultra-high molecular weight polyethylene particles and direct particle-induced osteolysis. Biomaterials. 2017;115:128–40. https://doi.org/10.1016/j.biomaterials.2016.10.038.

    Article  CAS  PubMed  Google Scholar 

  60. Gibon E, Córdova LA, Lu L, Lin TH, Yao Z, Hamadouche M, et al. The biological response to orthopedic implants for joint replacement. II: polyethylene, ceramics, PMMA, and the foreign body reaction. J Biomed Mater Res B Appl Biomater. 2017;105:1685–91. https://doi.org/10.1002/jbm.b.33676.

    Article  CAS  PubMed  Google Scholar 

  61. Maitra R, Clement CC, Scharf B, Crisi GM, Chitta S, Paget D, et al. Endosomal damage and TLR2 mediated inflammasome activation by alkane particles in the generation of aseptic osteolysis. Mol Immunol. 2009;47:175–84. https://doi.org/10.1016/j.molimm.2009.09.023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Goodman SB, Ma T. Cellular chemotaxis induced by wear particles from joint replacements. Biomaterials. 2010;31:5045–50. https://doi.org/10.1016/j.biomaterials.2010.03.046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gibon E, Ma T, Ren PG, Fritton K, Biswal S, Yao Z, et al. Selective inhibition of the MCP-1-CCR2 ligand-receptor axis decreases systemic trafficking of macrophages in the presence of UHMWPE particles. J Orthop Res. 2012;30:547–53. https://doi.org/10.1002/jor.21548.

    Article  CAS  PubMed  Google Scholar 

  64. Liu A, Richards L, Bladen CL, Ingham E, Fisher J, Tipper JL. The biological response to nanometre-sized polymer particles. Acta Biomater. 2015;23:38–51. https://doi.org/10.1016/j.actbio.2015.05.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kauther MD, Xu J, Wedemeyer C. Alpha-calcitonin gene-related peptide can reverse the catabolic influence of UHMWPE particles on RANKL expression in primary human osteoblasts. Int J Biol Sci. 2010;6:525–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Atkins GJ, Welldon KJ, Holding CA, Haynes DR, Howie DW, Findlay DM. The induction of a catabolic phenotype in human primary osteoblasts and osteocytes by polyethylene particles. Biomaterials. 2009;30:3672–81. https://doi.org/10.1016/j.biomaterials.2009.03.035.

    Article  CAS  PubMed  Google Scholar 

  67. Chiu R, Ma T, Smith RL, Goodman SB. Ultrahigh molecular weight polyethylene wear debris inhibits osteoprogenitor proliferation and differentiation in vitro. J Biomed Mater Res A. 2009;89:242–7. https://doi.org/10.1002/jbm.a.32001.

    Article  CAS  PubMed  Google Scholar 

  68. Ormsby RT, Cantley M, Kogawa M, Solomon LB, Haynes DR, Findlay DM, Atkins GJ. Evidence that osteocyte perilacunar remodelling contributes to polyethylene wear particle induced osteolysis. Acta Biomater. 2016;33:242–51. https://doi.org/10.1016/j.actbio.2016.01.016.

    Article  CAS  PubMed  Google Scholar 

  69. Sartori M, Vincenzi F, Ravani A, Cepollaro S, Martini L, Varani K, et al. RAW 264.7 co-cultured with ultra-high molecular weight polyethylene particles spontaneously differentiate into osteoclasts: an in vitro model of periprosthetic osteolysis. J Biomed Mater Res A. 2017;105:510–20. https://doi.org/10.1002/jbm.a.35912.

    Article  CAS  PubMed  Google Scholar 

  70. Pan X, Mao X, Cheng T, Peng X, Zhang X, Liu Z, et al. Up-regulated expression of MIF by interfacial membrane fibroblasts and macrophages around aseptically loosened implants. J Surg Res. 2012;176:484–9. https://doi.org/10.1016/j.jss.2011.09.047.

    Article  CAS  PubMed  Google Scholar 

  71. Rao AJ, Nich C, Dhulipala LS, Gibon E, Valladares R, Zwingenberger S, et al. Local effect of IL-4 delivery on polyethylene particle induced osteolysis in the murine calvarium. J Biomed Mater Res A. 2013;101:1926–34. https://doi.org/10.1002/jbm.a.34486.

    Article  CAS  PubMed  Google Scholar 

  72. Du Z, Zhu Z, Wang Y. The degree of peri-implant osteolysis induced by PEEK, CoCrMo, and HXLPE wear particles: a study based on a porous Ti6Al4V implant in a rabbit model. J Orthop Surg Res. 2018;13:23. https://doi.org/10.1186/s13018-018-0736-y.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Vallés G, García-Cimbrelo E, Vilaboa N. Involvement of extracellular Hsp72 in wear particle-mediated osteolysis. Acta Biomater. 2012;8:1146–55. https://doi.org/10.1016/j.actbio.2011.12.001.

    Article  CAS  PubMed  Google Scholar 

  74. Vaculova J, Gallo J, Hurnik P, Motyka O, Goodman SB, Dvorackova J. Low intrapatient variability of histomorphological findings in periprosthetic tissues from revised metal/ceramic on polyethylene joint arthroplasties. J Biomed Mater Res B Appl Biomater. 2017; https://doi.org/10.1002/jbm.b.33990.

    Article  PubMed  Google Scholar 

  75. Hirayama T, Tamaki Y, Takakubo Y, Iwazaki K, Sasaki K, Ogino T, et al. Toll-like receptors and their adaptors are regulated in macrophages after phagocytosis of lipopolysaccharide-coated titanium particles. J Orthop Res. 2011;29:984–92. https://doi.org/10.1002/jor.21369.

    Article  CAS  PubMed  Google Scholar 

  76. Dapunt U, Giese T, Lasitschka F, Reinders J, Lehner B, Kretzer JP, et al. On the inflammatory response in metal-on-metal implants. J Transl Med. 2014;12:74. https://doi.org/10.1186/1479-5876-12-74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Drynda A, Singh G, Buchhorn GH, Awiszus F, Ruetschi M, Feuerstein B, et al. Metallic wear debris may regulate CXCR4 expression in vitro and in vivo. J Biomed Mater Res A. 2015;103:1940–8. https://doi.org/10.1002/jbm.a.35330.

    Article  CAS  PubMed  Google Scholar 

  78. Geng D, Xu Y, Yang H, Wang J, Zhu X, Zhu G, et al. Protection against titanium particle induced osteolysis by cannabinoid receptor 2 selective antagonist. Biomaterials. 2010;31:1996–2000. https://doi.org/10.1016/j.biomaterials.2009.11.069.

    Article  CAS  PubMed  Google Scholar 

  79. Hallab NJ, Jacobs JJ. Chemokines associated with pathologic responses to orthopedic implant debris. Front Endocrinol (Lausanne). 2017;8:5. https://doi.org/10.3389/fendo.2017.00005.

    Article  Google Scholar 

  80. Chen M, Chen PM, Dong QR, Huang Q, She C, Xu W. p38 signaling in titanium particle-induced MMP-2 secretion and activation in differentiating MC3T3-E1 cells. J Biomed Mater Res A. 2014;102:2824–32. https://doi.org/10.1002/jbm.a.34956.

    Article  CAS  PubMed  Google Scholar 

  81. Qiu S, Zhao F, Tang X, Pei F, Dong H, Zhu L, et al. Type-2 cannabinoid receptor regulates proliferation, apoptosis, differentiation, and OPG/RANKL ratio of MC3T3-E1 cells exposed to titanium particles. Mol Cell Biochem. 2015;399:131–41. https://doi.org/10.1007/s11010-014-2240-y.

    Article  CAS  PubMed  Google Scholar 

  82. Fu C, Xie J, Hu N, Liang X, Chen R, Wang C, et al. Titanium particles up-regulate the activity of matrix metalloproteinase-2 in human synovial cells. Int Orthop. 2014;38:1091–8. https://doi.org/10.1007/s00264-013-2190-0.

    Article  PubMed  Google Scholar 

  83. Obando-Pereda GA, Fischer L, Stach-Machado DR. Titanium and zirconia particle-induced pro-inflammatory gene expression in cultured macrophages and osteolysis, inflammatory hyperalgesia and edema in vivo. Life Sci. 2014;97:96–106. https://doi.org/10.1016/j.lfs.2013.11.008.

    Article  CAS  PubMed  Google Scholar 

  84. Greenfield EM, Beidelschies MA, Tatro JM, Goldberg VM, Hise AG. Bacterial pathogen-associated molecular patterns stimulate biological activity of orthopaedic wear particles by activating cognate Toll-like receptors. J Biol Chem. 2010;285:32378–84. https://doi.org/10.1074/jbc.M110.136895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Pajarinen J, Kouri VP, Jämsen E, Li TF, Mandelin J, Konttinen YT. The response of macrophages to titanium particles is determined by macrophage polarization. Acta Biomater. 2013;9:9229–40. https://doi.org/10.1016/j.actbio.2013.06.027.

    Article  CAS  PubMed  Google Scholar 

  86. Preedy EC, Perni S, Prokopovich P. Cobalt, titanium and PMMA bone cement debris influence on mouse osteoblast cell elasticity, spring constant and calcium production activity. RSC Adv. 2015;5:83885–98.

    Article  CAS  PubMed  Google Scholar 

  87. Howie DW, Vernon-Roberts B. Synovial macrophage response to aluminium oxide ceramic and cobalt-chrome alloy wear particles in rats. Biomaterials. 1988;9:442–8.

    Article  CAS  PubMed  Google Scholar 

  88. Devitt BM, Queally JM, Vioreanu M, Butler JS, Murray D, Doran PP, et al. Cobalt ions induce chemokine secretion in a variety of systemic cell lines. Acta Orthop. 2010;81:756–64. https://doi.org/10.3109/17453674.2010.537806.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Jonitz-Heincke A, Tillmann J, Klinder A, Krueger S, Kretzer JP, Høl PJ, et al. The impact of metal ion exposure on the cellular behavior of human osteoblasts and PBMCs: in vitro analyses of osteolytic processes. Materials (Basel). 2017;10:E734. https://doi.org/10.3390/ma10070734.

    Article  Google Scholar 

  90. Rakow A, Schoon J, Dienelt A, John T, Textor M, Duda G, Perka C, Schulze F, Ode A. Influence of particulate and dissociated metal-on-metal hip endoprosthesis wear on mesenchymal stromal cells in vivo and in vitro. Biomaterials. 2016;98:31–40. https://doi.org/10.1016/j.biomaterials.2016.04.023.

    Article  CAS  PubMed  Google Scholar 

  91. Potnis PA, Dutta DK, Wood SC. Toll-like receptor 4 signaling pathway mediates proinflammatory immune response to cobalt-alloy particles. Cell Immunol. 2013;282:53–65. https://doi.org/10.1016/j.cellimm.2013.04.003.

    Article  CAS  PubMed  Google Scholar 

  92. Raghunathan VK, Devey M, Hawkins S, Hails L, Davis SA, Mann S, et al. Influence of particle size and reactive oxygen species on cobalt chrome nanoparticle-mediated genotoxicity. Biomaterials. 2013;34:3559–70. https://doi.org/10.1016/j.biomaterials.2013.01.085.

    Article  CAS  PubMed  Google Scholar 

  93. Papageorgiou I, Brown C, Schins R, Singh S, Newson R, Davis S, Fisher J, Ingham E, Case CP. The effect of nano- and micron-sized particles of cobalt-chromium alloy on human fibroblasts in vitro. Biomaterials. 2007;28:2946–58.

    Article  CAS  PubMed  Google Scholar 

  94. Liu G, Guo T, Zhang Y, Liu N, Chen J, Chen J, Zhang J, Zhao J. Apoptotic pathways of macrophages within osteolytic interface membrane in periprosthestic osteolysis after total hip replacement. APMIS. 2017;125:565–78. https://doi.org/10.1111/apm.12679.

    Article  CAS  PubMed  Google Scholar 

  95. Lewis AC, Ladon D, Heard PJ, Peto L, Learmonth I. The role of the surface chemistry of CoCr alloy particles in the phagocytosis and DNA damage of fibroblast cells. J Biomed Mater Res A. 2007;82:363–72.

    Article  CAS  PubMed  Google Scholar 

  96. Athanasou NA. The pathobiology and pathology of aseptic implant failure. Bone Joint Res. 2016;5:162–8. https://doi.org/10.1302/2046-3758.55.BJR-2016-0086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Daniel J, Holland J, Quigley L, Sprague S, Bhandari M. Pseudotumors associated with total hip arthroplasty. J Bone Joint Surg Am. 2012;94:86–93. https://doi.org/10.2106/JBJS.J.01612.

    Article  PubMed  Google Scholar 

  98. Catelas I, Lehoux EA, Ning Z, Figeys D, Baskey SJ, Beaulé PE. Differential proteomic analysis of synovial fluid from hip arthroplasty patients with a pseudotumor vs. periprosthetic osteolysis. J Orthop Res. 2018; https://doi.org/10.1002/jor.23858.

    Article  CAS  Google Scholar 

  99. McCarthy CL, Uchihara Y, Vlychou M, Grammatopoulos G, Athanasou NA. Development of malignant lymphoma after metal-on-metal hip replacement: a case report and review of the literature. Skelet Radiol. 2017;46:831–6. https://doi.org/10.1007/s00256-017-2612-y.

    Article  CAS  Google Scholar 

  100. Gallo J, Goodman SB, Lostak J, Janout M. Advantages and disadvantages of ceramic on ceramic total hip arthroplasty: a review. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2012;156:204–12. https://doi.org/10.5507/bp.2012.063.

    Article  PubMed  Google Scholar 

  101. Mehmood S, Jinnah RH, Pandit H. Review on ceramic-on-ceramic total hip arthroplasty. J Surg Orthop Adv. 2008;17:45–50.

    CAS  PubMed  Google Scholar 

  102. Tateiwa T, Clarke IC, Williams PA, Garino J, Manaka M, Shishido T, Yamamoto K, Imakiire A. Ceramic total hip arthroplasty in the United States: safety and risk issues revisited. Am J Orthop (Belle Mead NJ). 2008;37:E26–31.

    Google Scholar 

  103. Howard DP, Wall PDH, Fernandez MA, Parsons H, Howard PW. Ceramic-on-ceramic bearing fractures in total hip arthroplasty: an analysis of data from the National Joint Registry. Bone Joint J. 2017;99-B:1012–9. https://doi.org/10.1302/0301-620X.99B8.BJJ-2017-0019.R1.

    Article  CAS  PubMed  Google Scholar 

  104. Lee YK, Yoon BH, Choi YS, Jo WL, Ha YC, Koo KH. Metal on metal or ceramic on ceramic for cementless total hip arthroplasty: a meta-analysis. J Arthroplast. 2016;31:2637–45. https://doi.org/10.1016/j.arth.2016.04.014.

    Article  Google Scholar 

  105. Mochida Y, Boehler M, Salzer M, Bauer TW. Debris from failed ceramic-on-ceramic and ceramic-on-polyethylene hip prostheses. Clin Orthop Relat Res. 2001;389:113–25.

    Article  Google Scholar 

  106. Hatton A, Nevelos JE, Nevelos AA, Banks RE, Fisher J, Ingham E. Alumina-alumina artificial hip joints. Part I: a histological analysis and characterisation of wear debris by laser capture microdissection of tissues retrieved at revision. Biomaterials. 2002;23:3429–40.

    Article  CAS  PubMed  Google Scholar 

  107. Bylski D, Wedemeyer C, Xu J, Sterner T, Löer F, von Knoch M. Alumina ceramic particles, in comparison with titanium particles, hardly affect the expression of RANK-, TNF-alpha-, and OPG-mRNA in the THP-1 human monocytic cell line. J Biomed Mater Res A. 2009;89:707–16. https://doi.org/10.1002/jbm.a.31956.

    Article  CAS  PubMed  Google Scholar 

  108. Savarino L, Baldini N, Ciapetti G, Pellacani A, Giunti A. Is wear debris responsible for failure in alumina-on-alumina implants? Acta Orthop. 2009;80:162–7. https://doi.org/10.3109/17453670902876730.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Man K, Jiang LH, Foster R, Yang XB. Immunological responses to total hip arthroplasty. J Funct Biomater. 2017;8:E33. https://doi.org/10.3390/jfb8030033.

    Article  PubMed  Google Scholar 

  110. Wooley PH. How has the introduction of new bearing surfaces altered the biological reactions to byproducts of wear and modularity? Clin Orthop Relat Res. 2014;472:3699–708. https://doi.org/10.1007/s11999-014-3725-4.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Warashina H, Sakano S, Kitamura S, Yamauchi KI, Yamaguchi J, Ishiguro N, et al. Biological reaction to alumina, zirconia, titanium and polyethylene particles implanted onto murine calvaria. Biomaterials. 2003;24:3655–61.

    Article  CAS  PubMed  Google Scholar 

  112. Kaufman AM, Alabre CI, Rubash HE, Shanbhag AS. Human macrophage response to UHMWPE, TiAlV, CoCr, and alumina particles: analysis of multiple cytokines using protein arrays. J Biomed Mater Res A. 2008;84:464–74.

    Article  PubMed  Google Scholar 

  113. Petit A, Catelas I, Antoniou J, Zukor DJ, Huk OL. Differential apoptotic response of J774 macrophages to alumina and ultra-high-molecular-weight polyethylene particles. J Orthop Res. 2002;20:9–15.

    Article  CAS  PubMed  Google Scholar 

  114. Germain MA, Hatton A, Williams S, Matthews JB, Stone MH, Fisher J, et al. Comparison of the cytotoxicity of clinically relevant cobalt-chromium and alumina ceramic wear particles in vitro. Biomaterials. 2003;24:469–79.

    Article  CAS  PubMed  Google Scholar 

  115. Gutwein LG, Webster TJ. Increased viable osteoblast density in the presence of nanophase compared to conventional alumina and titania particles. Biomaterials. 2004;25:4175–83.

    Article  CAS  PubMed  Google Scholar 

  116. Lerouge S, Huk O, Yahia LH, Sedel L. Characterization of in vivo wear debris from ceramic-ceramic total hip arthroplasties. J Biomed Mater Res. 1996;32:627–33.

    Article  CAS  PubMed  Google Scholar 

  117. Liagre B, Moalic S, Vergne P, Charissoux JL, Bernache-Assollant D, Beneytout JL. Effects of alumina and zirconium dioxide particles on arachidonic acid metabolism and proinflammatory interleukin production in osteoarthritis and rheumatoid synovial cells. J Bone Joint Surg Br. 2002;84:920–30.

    Article  CAS  PubMed  Google Scholar 

  118. Catelas I, Huk OL, Petit A, Zukor DJ, Marchand R, Yahia L. Flow cytometric analysis of macrophage response to ceramic and polyethylene particles: effects of size, concentration, and composition. J Biomed Mater Res. 1998;41:600–7.

    Article  CAS  PubMed  Google Scholar 

  119. Lucarelli M, Gatti AM, Savarino G, Quattroni P, Martinelli L, Monari E, et al. Innate defence functions of macrophages can be biased by nano-sized ceramic and metallic particles. Eur Cytokine Netw. 2004;15:339–46.

    CAS  PubMed  Google Scholar 

  120. Pasold J, Markhoff J, Tillmann J, Krogull M, Pisowocki P, Bader R. Direct influence of titanium and zirconia particles on the morphology and functionality of mature human osteoclasts. J Biomed Mater Res A. 2017;105:2608–15. https://doi.org/10.1002/jbm.a.36114.

    Article  CAS  PubMed  Google Scholar 

  121. Lohmann CH, Dean DD, Köster G, Casasola D, Buchhorn GH, Fink U, Schwartz Z, Boyan BD. Ceramic and PMMA particles differentially affect osteoblast phenotype. Biomaterials. 2002;23:1855–63.

    Article  CAS  PubMed  Google Scholar 

  122. Rodrigo AM, Martinez ME, Saldaña L, Vallés G, Martinez P, González-Carrasco JL, et al. Effects of polyethylene and alpha-alumina particles on IL-6 expression and secretion in primary cultures of human osteoblastic cells. Biomaterials. 2002;23:901–8.

    Article  CAS  PubMed  Google Scholar 

  123. Rodrigo AM, Martínez ME, Martínez P, Escudero ML, Ruíz J, Saldaña L, et al. Effects of MA 956 superalloy and alpha-alumina particles on some markers of human osteoblastic cells in primary culture. J Biomed Mater Res. 2001;54:30–6.

    Article  CAS  PubMed  Google Scholar 

  124. Rodrigo A, Vallés G, Saldaña L, Rodríguez M, Martínez ME, Munuera L, Vilaboa N. Alumina particles influence the interactions of cocultured osteoblasts and macrophages. J Orthop Res. 2006;24:46–54.

    Article  CAS  PubMed  Google Scholar 

  125. Granchi D, Ciapetti G, Amato I, Pagani S, Cenni E, Savarino L, Avnet S, Peris JL, Pellacani A, Baldini N, Giunti A. The influence of alumina and ultra-high molecular weight polyethylene particles on osteoblast-osteoclast cooperation. Biomaterials. 2004;25:4037–45.

    Article  CAS  PubMed  Google Scholar 

  126. Vaishya R, Chauhan M, Vaish A. Bone cement. J Clin Orthop Trauma. 2013;4:157–63. https://doi.org/10.1016/j.jcot.2013.11.005.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Saleh KJ, El Othmani MM, Tzeng TH, Mihalko WM, Chambers MC, Grupp TM. Acrylic bone cement in total joint arthroplasty: a review. J Orthop Res. 2016;34:737–44. https://doi.org/10.1002/jor.23184.

    Article  CAS  PubMed  Google Scholar 

  128. Sagbas B, Durakbasa MN. Third-body wear behavior of orthopedic biopolymers. Int J Min Mater Metall Eng (IJMMME). 2016;2:1–7.

    Google Scholar 

  129. Morawietz L, Classen RA, Schröder JH, Dynybil C, Perka C, Skwara A, et al. Proposal for a histopathological consensus classification of the periprosthetic interface membrane. J Clin Pathol. 2006;59:591–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Burton L, Paget D, Binder NB, Bohnert K, Nestor BJ, Sculco TP, Santambrogio L, Ross FP, Goldring SR, Purdue PE. Orthopedic wear debris mediated inflammatory osteolysis is mediated in part by NALP3 inflammasome activation. J Orthop Res. 2013;31:73–80. https://doi.org/10.1002/jor.22190.

    Article  CAS  PubMed  Google Scholar 

  131. Pandey R, Quinn J, Joyner C, Murray DW, Triffitt JT, Athanasou NA. Arthroplasty implant biomaterial particle associated macrophages differentiate into lacunar bone resorbing cells. Ann Rheum Dis. 1996;55:388–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Ren PG, Lee SW, Biswal S, Goodman SB. Systemic trafficking of macrophages induced by bone cement particles in nude mice. Biomaterials. 2008;29:4760–5. https://doi.org/10.1016/j.biomaterials.2008.09.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Yang SY, Zhang K, Bai L, Song Z, Yu H, McQueen DA, et al. Polymethylmethacrylate and titanium alloy particles activate peripheral monocytes during periprosthetic inflammation and osteolysis. J Orthop Res. 2011;29:781–6. https://doi.org/10.1002/jor.21287.

    Article  CAS  PubMed  Google Scholar 

  134. Nakashima Y, Sun DH, Trindade MC, Chun LE, Song Y, Goodman SB, Schurman DJ, Maloney WJ, Smith RL. Induction of macrophage C-C chemokine expression by titanium alloy and bone cement particles. J Bone Joint Surg Br. 1999;81:155–62.

    Article  CAS  PubMed  Google Scholar 

  135. Huang Z, Ma T, Ren PG, Smith RL, Goodman SB. Effects of orthopedic polymer particles on chemotaxis of macrophages and mesenchymal stem cells. J Biomed Mater Res A. 2010;94:1264–9. https://doi.org/10.1002/jbm.a.32803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Yaszay B, Trindade MC, Lind M, Goodman SB, Smith RL. Fibroblast expression of C-C chemokines in response to orthopaedic biomaterial particle challenge in vitro. J Orthop Res. 2001;19:970–6.

    Article  CAS  PubMed  Google Scholar 

  137. Lin TH, Tamaki Y, Pajarinen J, Waters HA, Woo DK, Yao Z, Goodman SB. Chronic inflammation in biomaterial-induced periprosthetic osteolysis: NF-κB as a therapeutic target. Acta Biomater. 2014;10:1–10. https://doi.org/10.1016/j.actbio.2013.09.034.

    Article  CAS  PubMed  Google Scholar 

  138. Shen Y, Wang W, Li X, Markel DC, Ren W. Mitigative effect of erythromycin on PMMA challenged preosteoblastic MC3T3-E1 cells. Sci World J. 2014;2014:107196. https://doi.org/10.1155/2014/107196.

    Article  CAS  Google Scholar 

  139. Antonios JK, Yao Z, Li C, Rao AJ, Goodman SB. Macrophage polarization in response to wear particles in vitro. Cell Mol Immunol. 2013;10:471–82. https://doi.org/10.1038/cmi.2013.39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Pearle AD, Crow MK, Rakshit DS, Wohlgemuth J, Nestor BJ. Distinct inflammatory gene pathways induced by particles. Clin Orthop Relat Res. 2007;458:194–201.

    PubMed  Google Scholar 

  141. Sabokbar A, Pandey R, Quinn JM, Athanasou NA. Osteoclastic differentiation by mononuclear phagocytes containing biomaterial particles. Arch Orthop Trauma Surg. 1998;117:136–40.

    Article  CAS  PubMed  Google Scholar 

  142. Li N, Xu Z, Wooley PH, Zhang J, Yang SY. Therapeutic potentials of naringin on polymethylmethacrylate induced osteoclastogenesis and osteolysis, in vitro and in vivo assessments. Drug Des Devel Ther. 2013;8:1–11. https://doi.org/10.2147/DDDT.S52714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Yamanaka Y, Abu-Amer Y, Faccio R, Clohisy JC. Map kinase c-JUN N-terminal kinase mediates PMMA induction of osteoclasts. J Orthop Res. 2006;24:1349–57.

    Article  CAS  PubMed  Google Scholar 

  144. Yamanaka Y, Abu-Amer W, Foglia D, Otero J, Clohisy JC, Abu-Amer Y. NFAT2 is an essential mediator of orthopedic particle-induced osteoclastogenesis. J Orthop Res. 2008;26:1577–84. https://doi.org/10.1002/jor.20714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Zhang H, Ricciardi BF, Yang X, Shi Y, Camacho NP, Bostrom MG. Polymethylmethacrylate particles stimulate bone resorption of mature osteoclasts in vitro. Acta Orthop. 2008;79:281–8. https://doi.org/10.1080/17453670710015166.

    Article  PubMed  Google Scholar 

  146. Rao AJ, Gibon E, Ma T, Yao Z, Smith RL, Goodman SB. Revision joint replacement, wear particles, and macrophage polarization. Acta Biomater. 2012;8:2815–23. https://doi.org/10.1016/j.actbio.2012.03.042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Chiu R, Smith KE, Ma GK, Ma T, Smith RL, Goodman SB. Polymethylmethacrylate particles impair osteoprogenitor viability and expression of osteogenic transcription factors Runx2, osterix, and Dlx5. J Orthop Res. 2010;28:571–7. https://doi.org/10.1002/jor.21035.

    Article  CAS  PubMed  Google Scholar 

  148. Chiu R, Ma T, Smith RL, Goodman SB. Polymethylmethacrylate particles inhibit osteoblastic differentiation of bone marrow osteoprogenitor cells. J Biomed Mater Res A. 2006;77:850–6.

    Article  PubMed  Google Scholar 

  149. Chiu R, Ma T, Smith RL, Goodman SB. Kinetics of polymethylmethacrylate particle-induced inhibition of osteoprogenitor differentiation and proliferation. J Orthop Res. 2007;25:450–7.

    Article  CAS  PubMed  Google Scholar 

  150. Ma GK, Chiu R, Huang Z, Pearl J, Ma T, Smith RL, et al. Polymethylmethacrylate particle exposure causes changes in p38 MAPK and TGF-beta signaling in differentiating MC3T3-E1 cells. J Biomed Mater Res A. 2010;94:234–40. https://doi.org/10.1002/jbm.a.32686.

    Article  CAS  PubMed  Google Scholar 

  151. Zambonin G, Colucci S, Cantatore F, Grano M. Response of human osteoblasts to polymethylmetacrylate in vitro. Calcif Tissue Int. 1998;62:362–5.

    Article  CAS  PubMed  Google Scholar 

  152. Lochner K, Fritsche A, Jonitz A, Hansmann D, Mueller P, Mueller-Hilke B, et al. The potential role of human osteoblasts for periprosthetic osteolysis following exposure to wear particles. Int J Mol Med. 2011;28:1055–63. https://doi.org/10.3892/ijmm.2011.778.

    Article  CAS  PubMed  Google Scholar 

  153. Sabokbar A, Fujikawa Y, Murray DW, Athanasou NA. Radio-opaque agents in bone cement increase bone resorption. J Bone Joint Surg Br. 1997;79:129–34.

    Article  CAS  PubMed  Google Scholar 

  154. Granchi D, Cenni E, Savarino L, Ciapetti G, Forbicini G, Vancini M, et al. Bone cement extracts modulate the osteoprotegerin/osteoprotegerin-ligand expression in MG63 osteoblast-like cells. Biomaterials. 2002;23:2359–65.

    Article  CAS  PubMed  Google Scholar 

  155. Pezzotti G, Yamamoto K. Artificial hip joints: the biomaterials challenge. J Mech Behav Biomed Mater. 2014;31:3–20. https://doi.org/10.1016/j.jmbbm.2013.06.001.

    Article  CAS  PubMed  Google Scholar 

  156. Ghalme SG, Mankar A, Bhalerao Y. Biomaterials in hip joint replacement. Int J Mater Sci Eng. 2016;4:113–25. https://doi.org/10.17706/ijmse.2016.4.2.113-125.

    Article  Google Scholar 

  157. Grieco PW, Pascal S, Newman JM, Shah NV, Stroud SG, Sheth NP, Maheshwari AV. New alternate bearing surfaces in total hip arthroplasty: a review of the current literature. J Clin Orthop Trauma. 2018;9:7–16. https://doi.org/10.1016/j.jcot.2017.10.013.

    Article  PubMed  Google Scholar 

  158. Zhang BG, Myers DE, Wallace GG, Brandt M, Choong PF. Bioactive coatings for orthopaedic implants-recent trends in development of implant coatings. Int J Mol Sci. 2014;15:11878–921. https://doi.org/10.3390/ijms150711878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Cooper HJ. Emerging applications of proteomics in hip and knee arthroplasty. Expert Rev Proteomics. 2014;11:5–8. https://doi.org/10.1586/14789450.2014.865522.

    Article  CAS  PubMed  Google Scholar 

  160. Zhang L, Tian Z, Li W, Wang X, Man Z, Sun S. Inhibitory effect of quercetin on titanium particle-induced endoplasmic reticulum stress (ERS)-related apoptosis and in vivo osteolysis. Biosci Rep. 2017;37:BSR20170961. https://doi.org/10.1042/BSR20170961.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  161. Goodman SB, Gibon E, Pajarinen J, Lin TH, Keeney M, Ren PG, et al. Novel biological strategies for treatment of wear particle-induced periprosthetic osteolysis of orthopaedic implants for joint replacement. J R Soc Interface. 2014;11:20130962. https://doi.org/10.1098/rsif.2013.0962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Mahon OR, O'Hanlon S, Cunningham CC, McCarthy GM, Hobbs C, Nicolosi V, et al. Orthopaedic implant materials drive M1 macrophage polarization in a spleen tyrosine kinase- and mitogen-activated protein kinase-dependent manner. Acta Biomater. 2018;65:426–35. https://doi.org/10.1016/j.actbio.2017.10.041.

    Article  CAS  PubMed  Google Scholar 

  163. Wang L, Guo X, Zhou W, Ding Y, Shi J, Wu X, et al. Protein phosphatase 2A as a new target for downregulating osteoclastogenesis and alleviating titanium particle-induced bone resorption. Acta Biomater. 2018; https://doi.org/10.1016/j.actbio.2018.04.013.

    Article  CAS  PubMed  Google Scholar 

  164. Geng D, Wu J, Shao H, Zhu S, Wang Y, Zhang W, et al. Pharmaceutical inhibition of glycogen synthetase kinase 3 beta suppresses wear debris-induced osteolysis. Biomaterials. 2015;69:12–21. https://doi.org/10.1016/j.biomaterials.2015.07.061.

    Article  CAS  PubMed  Google Scholar 

  165. Nam JS, Sharma AR, Jagga S, Lee DH, Sharma G, Nguyen LT, et al. Suppression of osteogenic activity by regulation of WNT and BMP signaling during titanium particle induced osteolysis. J Biomed Mater Res A. 2017;105:912–26. https://doi.org/10.1002/jbm.a.36004.

    Article  CAS  PubMed  Google Scholar 

  166. Drynda A, Ren Q, Buchhorn GH, Lohmann CH. The induction of CXCR4 expression in human osteoblast-like cells (MG63) by CoCr particles is regulated by the PLC-DAG-PKC pathway. J Biomed Mater Res B Appl Biomater. 2017;105:2326–32. https://doi.org/10.1002/jbm.b.33770.

    Article  CAS  PubMed  Google Scholar 

  167. Tian B, Jiang T, Shao Z, Zhai Z, Li H, Fan Q, et al. The prevention of titanium-particle-induced osteolysis by OA-14 through the suppression of the p38 signaling pathway and inhibition of osteoclastogenesis. Biomaterials. 2014;35:8937–50. https://doi.org/10.1016/j.biomaterials.2014.06.055.

    Article  CAS  PubMed  Google Scholar 

  168. Mediero A, Perez-Aso M, Wilder T, Cronstein BN. Brief report: methotrexate prevents wear particle-induced inflammatory osteolysis in mice via activation of adenosine A2A receptor. Arthritis Rheumatol. 2015;67:849–55. https://doi.org/10.1002/art.38971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Jiang C, Xiao F, Gu X, Zhai Z, Liu X, Wang W, et al. Inhibitory effects of ursolic acid on osteoclastogenesis and titanium particle-induced osteolysis are mediated primarily via suppression of NF-κB signaling. Biochimie. 2015;111:107–18. https://doi.org/10.1016/j.biochi.2015.02.002.

    Article  CAS  PubMed  Google Scholar 

  170. Huang J, Zhou L, Wu H, Pavlos N, Chim SM, Liu Q, et al. Triptolide inhibits osteoclast formation, bone resorption, RANKL-mediated NF-қB activation and titanium particle-induced osteolysis in a mouse model. Mol Cell Endocrinol. 2015;399:346–53. https://doi.org/10.1016/j.mce.2014.10.016.

    Article  CAS  PubMed  Google Scholar 

  171. Zhao S, Yan L, Li X, Zhang Z, Sun Y, Wang J. Notoginsenoside R1 suppresses wear particle-induced osteolysis and RANKL mediated osteoclastogenesis in vivo and in vitro. Int Immunopharmacol. 2017;47:118–25. https://doi.org/10.1016/j.intimp.2017.03.018.

    Article  CAS  PubMed  Google Scholar 

  172. Zhou CH, Shi ZL, Meng JH, Hu B, Zhao CC, Yang YT, et al. Sophocarpine attenuates wear particle-induced implant loosening by inhibiting osteoclastogenesis and bone resorption via suppression of the NF-κB signalling pathway in a rat model. Br J Pharmacol. 2018;175:859–76. https://doi.org/10.1111/bph.14092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Zhu L, Kang H, Guo CA, Fan WS, Wang YM, Deng LF, et al. Rifampin suppresses osteoclastogenesis and titanium particle-induced osteolysis via modulating RANKL signaling pathways. Biochem Biophys Res Commun. 2017;484:64–70. https://doi.org/10.1016/j.bbrc.2017.01.071.

    Article  CAS  PubMed  Google Scholar 

  174. Li Y, Li J, Li B, Qin H, Peng X, Zhao Y, et al. Anthocyanin suppresses CoCrMo particle-induced osteolysis by inhibiting IKKα/β mediated NF-κB signaling in a mouse calvarial model. Mol Immunol. 2017;85:27–34. https://doi.org/10.1016/j.molimm.2017.02.003.

    Article  CAS  PubMed  Google Scholar 

  175. Zhang Z, Zhao S, Li X, Zhuo X, Zhang W, Nie Q, et al. Amentoflavone inhibits osteoclastogenesis and wear debris-induced osteolysis via suppressing NF-κB and MAPKs signaling pathways. Planta Med. 2018;84:759–67. https://doi.org/10.1055/s-0043-124594.

    Article  CAS  PubMed  Google Scholar 

  176. Kim HJ, Ohk B, Yoon HJ, Kang WY, Seong SJ, Kim SY, et al. Docosahexaenoic acid signaling attenuates the proliferation and differentiation of bone marrow-derived osteoclast precursors and promotes apoptosis in mature osteoclasts. Cell Signal. 2017;29:226–32. https://doi.org/10.1016/j.cellsig.2016.11.007.

    Article  CAS  PubMed  Google Scholar 

  177. Wang Z, Xue K, Bai M, Deng Z, Gan J, Zhou G, et al. Probiotics protect mice from CoCrMo particles-induced osteolysis. Int J Nanomedicine. 2017;12:5387–97. https://doi.org/10.2147/IJN.S130485.

    Article  PubMed  PubMed Central  Google Scholar 

  178. Ping Z, Wang Z, Shi J, Wang L, Guo X, Zhou W, et al. Inhibitory effects of melatonin on titanium particle-induced inflammatory bone resorption and osteoclastogenesis via suppression of NF-κB signaling. Acta Biomater. 2017;62:362–71. https://doi.org/10.1016/j.actbio.2017.08.046.

    Article  CAS  PubMed  Google Scholar 

  179. Deng Z, Wang Z, Jin J, Wang Y, Bao N, Gao Q, et al. SIRT1 protects osteoblasts against particle-induced inflammatory responses and apoptosis in aseptic prosthesis loosening. Acta Biomater. 2017;49:541–54. https://doi.org/10.1016/j.actbio.2016.11.051.

    Article  CAS  PubMed  Google Scholar 

  180. Deng Z, Jin J, Wang Z, Wang Y, Gao Q, Zhao J. The metal nanoparticle-induced inflammatory response is regulated by SIRT1 through NF-κB deacetylation in aseptic loosening. Int J Nanomedicine. 2017;12:3617–36. https://doi.org/10.2147/IJN.S124661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Vallés G, Pérez C, Boré A, Martín-Saavedra F, Saldaña L, Vilaboa N. Simvastatin prevents the induction of interleukin-6 gene expression by titanium particles in human osteoblastic cells. Acta Biomater. 2013;9:4916–25. https://doi.org/10.1016/j.actbio.2012.08.027.

    Article  CAS  PubMed  Google Scholar 

  182. Ren K, Dusad A, Yuan F, Yuan H, Purdue PE, Fehringer EV, et al. Macromolecular prodrug of dexamethasone prevents particle-induced peri-implant osteolysis with reduced systemic side effects. J Control Release. 2014;175:1–9. https://doi.org/10.1016/j.jconrel.2013.11.024.

    Article  CAS  PubMed  Google Scholar 

  183. Rodrigues M, Perni SD, Sloan A, Prokopovich PD. Dexamethasone-loaded TiO2 nanoparticles to locally target wear-debris induced inflammation. Front Bioeng Biotechnol. Conference Abstract: 10th World Biomaterials Congress. 2016; https://doi.org/10.3389/conf.FBIOE.2016.01.01681.

  184. Carmody EE, Schwarz EM, Puzas JE, Rosier RN, O'Keefe RJ. Viral interleukin-10 gene inhibition of inflammation, osteoclastogenesis, and bone resorption in response to titanium particles. Arthritis Rheum. 2002;46:1298–308.

    Article  CAS  PubMed  Google Scholar 

  185. Yang SY, Wu B, Mayton L, Mukherjee P, Robbins PD, Evans CH, et al. Protective effects of IL-1Ra or vIL-10 gene transfer on a murine model of wear debris-induced osteolysis. Gene Ther. 2004;11:483–91.

    Article  CAS  PubMed  Google Scholar 

  186. Ulrich-Vinther M, Carmody EE, Goater JJ, S balle K, O'Keefe RJ, Schwarz EM. Recombinant adeno-associated virus-mediated osteoprotegerin gene therapy inhibits wear debris-induced osteolysis. J Bone Joint Surg Am. 2002;84-A:1405–12.

    Article  Google Scholar 

  187. Yang SY, Mayton L, Wu B, Goater JJ, Schwarz EM, Wooley PH. Adeno-associated virus-mediated osteoprotegerin gene transfer protects against particulate polyethylene-induced osteolysis in a murine model. Arthritis Rheum. 2002;46:2514–23.

    Article  CAS  PubMed  Google Scholar 

  188. Wang H, Jia TH, Zacharias N, Gong W, Du HX, Wooley PH, et al. Combination gene therapy targeting on interleukin-1β and RANKL for wear debris-induced aseptic loosening. Gene Ther. 2013;20:128–35. https://doi.org/10.1038/gt.2012.1.

    Article  CAS  PubMed  Google Scholar 

  189. Langlois J, Hamadouche M. New animal models of wear-particle osteolysis. Int Orthop. 2011;35:245–51. https://doi.org/10.1007/s00264-010-1143-0.

    Article  PubMed  Google Scholar 

  190. Qin CQ, Huang DS, Zhang C, Song B, Huang JB, Ding Y. Lentivirus-mediated short hairpin RNA interference targeting TNF-alpha in macrophages inhibits particle-induced inflammation and osteolysis in vitro and in vivo. BMC Musculoskelet Disord. 2016;17:431.

    Article  PubMed  PubMed Central  Google Scholar 

  191. Huang JB, Ding Y, Huang DS, Zeng WK, Guan ZP, Zhang ML. rna interference targeting p110β reduces tumor necrosis factor-alpha production in cellular response to wear particles in vitro and osteolysis in vivo. Inflammation. 2013;36:1041–54. https://doi.org/10.1007/s10753-013-9636-9.

    Article  CAS  PubMed  Google Scholar 

  192. Wang C, Liu Y, Wang Y, Li H, Zhang RX, He MS, et al. Adenovirus-mediated siRNA targeting CXCR2 attenuates titanium particle-induced osteolysis by suppressing osteoclast formation. Med Sci Monit. 2016;22:727–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Mertens MT, Singh JA. Biomarkers in arthroplasty: a systematic review. Open Orthop J. 2011;5:92–105. https://doi.org/10.2174/1874325001105010092.

    Article  PubMed  PubMed Central  Google Scholar 

  194. Illingworth KD, Wachter N, Maloney WJ, Paprosky WG, Ries MD, Saleh KJ. Advances in acetabular osteolysis: biomarkers, imaging, and pharmacologic management. Instr Course Lect. 2014;63:177–8.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Vilaboa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vallés, G., Vilaboa, N. (2019). Osteolysis After Total Hip Arthroplasty: Basic Science. In: García-Rey, E., García-Cimbrelo, E. (eds) Acetabular Revision Surgery in Major Bone Defects. Springer, Cham. https://doi.org/10.1007/978-3-319-98596-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98596-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98595-4

  • Online ISBN: 978-3-319-98596-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics