Skip to main content

Ultrasound as Mechanical Force

  • Chapter
  • First Online:
Organic Sonochemistry

Part of the book series: SpringerBriefs in Molecular Science ((ULSONO))

Abstract

Acoustic cavitation invariably combines chemical and mechanical effects that stem from bubble collapse in liquids. Strategies to harness preferentially the role of mechanochemistry in sonochemistry have been invented and developed in recent years, demonstrating enormous versatility from synthesis and catalysis to biology and analytical monitoring. Most cases involve polymers containing weak bonds that can be fragmented by sonication. The effects are dependent largely on both the nature of substrates and the strength of cavitational collapse.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Berkowski KL, Potisek SL, Hickenboth CR, Moore JS (2005) Ultrasound-induced site-specific cleavage of azo-functionalized poly(ethyleneglycol). Macromolecules 38:8975–8978

    Article  CAS  Google Scholar 

  • Boldyrev VV (1995) Mechanochemistry and sonochemistry. Ultrason Sonochem 2:S143–S145

    Article  CAS  Google Scholar 

  • Chalfie M (2009) Neurosensory mechanotransduction. Nat Rev Mol Cell Biol 10:44–52

    Article  CAS  Google Scholar 

  • Chen YL, Spiering AJH, Karthikeyan S, Peters GWM, Meijer EW, Sijbesma RP (2012) Mechanically induced chemiluminescence from polymers incorporating a 1,2-dioxetane unit in the main chain. Nat Chem 4:559–562

    Article  CAS  Google Scholar 

  • Chen ZX, Mercer JAM, Zhu XL, Romaniuk JAH, Pfattner R, Cegelski L, Martinez TJ, Burns NZ, Xia Y (2017) Mechanochemical unzipping of insulating polyladderene to semiconducting polyacetylene. Science 357:475–478

    Article  CAS  Google Scholar 

  • Cintas P, Cravotto G, Barge A, Martina K (2015) Interplay between mechanochemistry and sonochemistry. In: Boulatov R (ed) Polymer mechanochemistry, Top Curr Chem, vol 369. Springer, Heidelberg, pp 239–284

    Chapter  Google Scholar 

  • Cravotto G, Gaudino EC, Cintas P (2013) On the mechanochemical activation by ultrasound. Chem Soc Rev 42:7521–7534

    Article  CAS  Google Scholar 

  • Davis DA, Hamilton A, Yang J, Cremar LD, Gough DV, Potisek SL, Ong MT, Braun PV, Martinez TJ, White SR, Moore JS, Sottos NR (2009) Force-induced activation of covalent bonds in mechanoresponsive polymeric materials. Nature 459:68–72

    Article  CAS  Google Scholar 

  • Diesendruck C, Steinberg BD, Sugai N, Silberstein MN, Sottos NR, White SR, Braun PV, Moore JS (2012) Proton-coupled mechanochemical transduction: a mechanogenerated acid. J Am Chem Soc 134:12446–12449

    Article  CAS  Google Scholar 

  • Encina MV, Sarasúa M, Gargallo L, Radic D (1980) Ultrasonic degradation of polyvinylpyrrolidone: effect of peroxide linkages. J Polym Sci Polym Lett Ed 18:757–760

    Article  CAS  Google Scholar 

  • Fernández-Bertran JF (1999) Mechanochemistry: an overview. Pure Appl Chem 71:581–586

    Article  Google Scholar 

  • Garcia-Manyes S, Beedle AEM (2017) Steering chemical reactions with force. Nat Rev Chem 1:0083

    Article  CAS  Google Scholar 

  • Gillespie PG, Walker RG (2001) Molecular basis of mechanosensory transduction. Nature 413:194–202

    Article  CAS  Google Scholar 

  • Groote R, Jakobs RTM, Sijbesma RP (2012) Performance of mechanochemically activated catalysts is enhanced by suppression of the thermal effects of ultrasound. ACS Macro Lett 1:1012–1015

    Article  CAS  Google Scholar 

  • Hickenboth CR, Moore JS, White SR, Sottos NR, Baudry J, Wilson SR (2007) Biasing reaction pathways with mechanical force. Nature 446:423–427

    Article  CAS  Google Scholar 

  • Kaupp G (2009) Mechanochemistry: the varied applications of mechanical bond-breaking. CrystEngComm 11:388–403

    Article  CAS  Google Scholar 

  • Lavalle P, Boulmedais F, Schaaf P, Jierry L (2016) Soft-mechanochemistry: mechanochemistry inspired by nature. Langmuir 32:7265–7276

    Article  CAS  Google Scholar 

  • Lenhardt JM, Black AL, Craig SL (2009) gem-Dichlorocyclopropanes as abundant and efficient mechanophores in polybutadiene copolymers under mechanical stress. J Am Chem Soc 131:10818–10819

    Article  CAS  Google Scholar 

  • Lenhardt JM, Ong MT, Choe R, Evenhuis CR, Martinez TJ, Craig SL (2010) Trapping a diradical transition state by mechanochemical polymer extension. Science 329:1057–1060

    Article  CAS  Google Scholar 

  • Levy A, Wang F, Lang A, Galant O, Diesendruck CE (2017) Intramolecular cross-linking: addressing mechanochemistry with a bioinspired approach. Angew Chem Int Ed 56:6431–6434

    Article  CAS  Google Scholar 

  • Li J, Nagamani C, Moore JS (2015) Polymer mechanochemistry: from destructive to productive. Acc Chem Res 48:2181–2190

    Article  CAS  Google Scholar 

  • Mason TJ (1991) Practical sonochemistry. User’s guide to applications in chemistry and chemical engineering, ch 1. Ellis Horwood Ltd, Chichester, p 23

    Google Scholar 

  • Mason TJ, Lorimer JP (2002) Applied sonochemistry. The uses of power ultrasound in chemistry and processing, ch 3. Wiley-VCH, Weinheim, pp 79–81

    Google Scholar 

  • Mason TJ, Cobley AJ, Graves JE, Morgan D (2011) New evidence for the inverse dependence of mechanical and chemical effects on the frequency of ultrasound. Ultrason Sonochem 18:226–230

    Article  CAS  Google Scholar 

  • May PA, Munaretto NF, Hamoy MB, Robb MJ, Moore JS (2016) Is molecular weight or degree of polymerization a better descriptor of ultrasound-induced mechanochemical transduction? ACS Macro Lett 5:177–180

    Article  CAS  Google Scholar 

  • Melville HW, Murray AJR (1950) The ultrasonic degradation of polymers. Trans Faraday Soc 46:996–1009

    Article  CAS  Google Scholar 

  • Nguyen TQ, Liang OZ, Kausch HH (1997) Kinetics of ultrasonic and transient elongational flow degradation: a comparative study. Polymer 38:3783–3793

    Article  CAS  Google Scholar 

  • Nguyen TT, Asakura Y, Koda S, Yasuda K (2017) Dependence of cavitation, chemical effect and mechanical effect thresholds on ultrasonic frequency. Ultrason Sonochem 39:301–306

    Article  Google Scholar 

  • Piermattei A, Karthikeyan S, Sijbesma RP (2009) Activating catalysts with mechanical force. Nat Chem 1:133–137

    Article  CAS  Google Scholar 

  • Price GJ, Smith PF (1993) Ultrasonic degradation of polymer solutions: 2. The effect of temperature, ultrasound intensity and dissolved gases on polystyrene in toluene. Polymer 34:4111–4117

    Article  CAS  Google Scholar 

  • Ribas-Arino J, Marx D (2012) Covalent mechanochemistry: theoretical concepts and computational tools with applications to molecular nanomechanics. Chem Rev 112:5412–5487

    Article  CAS  Google Scholar 

  • Sohma J (1989) Mechanochemistry of polymers. Prog Polym Sci 14:451–596

    Article  CAS  Google Scholar 

  • Stauch T, Dreuw A (2016) Advances in quantum mechanochemistry: electronic structure methods and force analysis. Chem Rev 116:14137–14180

    Article  CAS  Google Scholar 

  • Teo BM, Grieser F, Ashokkumar M (2012) Applications of ultrasound to polymer synthesis. In: Chen D, Sharma SK, Mudhoo A (eds) Handbook on applications of ultrasound. Sonochemistry for sustainability, ch 19. CRC Press-Taylor & Francis Group, Boca Raton, pp 475–500

    Google Scholar 

  • Thomas JR (1959) Sonic degradation of high polymers in solution. J Phys Chem 63:1725–1729

    Article  CAS  Google Scholar 

  • Zhang H, Lin Y, Xu Y, Weng W (2015) Mechanochemistry of topological complex polymer systems. In: Boulatov R (ed) Polymer mechanochemistry, Top Curr Chem, vol 369. Springer, Heidelberg, pp 135–208

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Marc Lévêque .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s), under exclusive licence to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lévêque, JM., Cravotto, G., Delattre, F., Cintas, P. (2018). Ultrasound as Mechanical Force. In: Organic Sonochemistry. SpringerBriefs in Molecular Science(). Springer, Cham. https://doi.org/10.1007/978-3-319-98554-1_6

Download citation

Publish with us

Policies and ethics