Skip to main content

A Clustering Model for Uncertain Preferences Based on Belief Functions

  • Conference paper
  • First Online:
Big Data Analytics and Knowledge Discovery (DaWaK 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11031))

Included in the following conference series:

Abstract

Community detection is a popular topic in network science field. In social network analysis, preference is often applied as an attribute for individuals’ representation. In some cases, uncertain and imprecise preferences may appear. Moreover, conflicting preferences can arise from multiple sources. From a model for imperfect preferences we proposed earlier, we study the clustering quality in case of perfect preferences as well as imperfect ones based on weak orders (orders that are complete, reflexive and transitive). The model for uncertain preferences is based on the theory of belief functions with an appropriate dissimilarity measure when performing the clustering steps. To evaluate the quality of clustering results, we used Adjusted Rand Index (ARI) and silhouette score on synthetic data as well as on Sushi preference data set collected from real world. The results show that our model has an equivalent quality with traditional preference representations for certain cases while it has better quality confronting imperfect cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In decision making theory, different terms may refer to the same concepts. To avoid ambiguity, we unify the terminology concerning preferences. In this article, “agents” is used for individuals expressing their preferences, “alternatives” for items which are compared in preferences.

  2. 2.

    As \(a_i\succeq a_j\) is equivalent to \(a_j\preceq a_i\), to avoid repetitive comparisons between two alternatives, we assume \(i>j\) in this article.

  3. 3.

    In our work, we take \(p=0.5\).

  4. 4.

    Without special remark, we use term “silhouette coefficient” for “average” value on set of samples by default.

  5. 5.

    By saying neighbor size, we mean the number of samples in each cluster.

  6. 6.

    As different K in EKNN-clus algorithm returns different clustering results, we compare clustering result who returns relatively high silhouette coefficient.

References

  1. Belnap, N.D.: A useful four-valued logic. In: Dunn, J.M., Epstein, G. (eds.) Modern Uses of Multiple-valued Logic. EPIS, vol. 2, pp. 5–37. Springer, Dordrecht (1977). https://doi.org/10.1007/978-94-010-1161-7_2

    Chapter  Google Scholar 

  2. Dempster, A.P.: Upper and lower probabilities induced by a multivalued mapping. Ann. Math. Statist. 38(2), 325–339 (1967)

    Article  MathSciNet  Google Scholar 

  3. Denoeux, T., Kanjanatarakul, O., Sriboonchitta, S.: EK-NNclus. Know. Based Syst. 88(C), 57–69 (2015)

    Article  Google Scholar 

  4. Elarbi, F., Bouadi, T., Martin, A., Ben Yaghlane, B.: Preference fusion for community detection in social networks. In: 24ème Conférence sur la Logique Floue et ses Applications. Poitiers, France, November 2015

    Google Scholar 

  5. Essaid, A., Martin, A., Smits, G., Ben Yaghlane, B.: A Distance-based decision in the credal level. In: International Conference on Artificial Intelligence and Symbolic Computation (AISC2014), pp. 147–156. Sevilla, Spain, December 2014

    Google Scholar 

  6. Fagin, R., Kumar, R., Mahdian, M., Sivakumar, D., Vee, E.: Comparing and aggregating rankings with ties. In: Proceedings of the Twenty-third ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS 2004, pp. 47–58. ACM, New York (2004)

    Google Scholar 

  7. Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 2(1), 193–218 (1985)

    Article  Google Scholar 

  8. Jousselme, A.L., Maupin, P.: Distances in evidence theory: comprehensive survey and generalizations. Int. J. Approx. Reason. 53(2), 118–145 (2012)

    Article  MathSciNet  Google Scholar 

  9. Kamishima, T.: Nantonac collaborative filtering: recommendation based on order responses. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2003, pp. 583–588. ACM, New York (2003)

    Google Scholar 

  10. Kamishima, T., Akaho, S.: Efficient clustering for orders. In: Zighed, D.A., Tsumoto, S., Ras, Z.W., Hacid, H. (eds.) Mining Complex Data. Studies in Computational Intelligence, pp. 261–279. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-88067-7_15

    Chapter  Google Scholar 

  11. Masson, M.H., Destercke, S., Denoeux, T.: Modelling and predicting partial orders from pairwise belief functions. Soft Comput. 20(3), 939–950 (2016)

    Article  Google Scholar 

  12. Newman, M.E.J.: Modularity and community structure in networks. Proc. Natl. Acad. Sci. 103(23), 8577–8582 (2006)

    Article  Google Scholar 

  13. Öztürké, M., Tsoukiàs, A., Vincke, P.: Preference Modelling, pp. 27–59. Springer, New York (2005). https://doi.org/10.1007/978-3-642-46550-5

    Book  Google Scholar 

  14. Qin, M., Jin, D., He, D., Gabrys, B., Musial, K.: Adaptive community detection incorporating topology and content in social networks. In: Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2017, pp. 675–682. ACM (2017)

    Google Scholar 

  15. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)

    Article  Google Scholar 

  16. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)

    MATH  Google Scholar 

  17. Tasgin, M., Bingol, H.O.: Community detection using preference networks. Phys. A: Stat. Mech. Appl. 495, 126–136 (2018)

    Article  Google Scholar 

  18. Yang, J., McAuley, J., Leskovec, J.: Community detection in networks with node attributes. In: 13th International Conference on Data Mining (ICDM 2013), pp. 1151–1156. IEEE (2013)

    Google Scholar 

  19. Zhang, Y., Bouadi, T., Martin, A.: Preference fusion and Condorcet’s paradox under uncertainty. In: 20th International Conference on Information Fusion, FUSION 2017, pp. 1–8. Xi’an, China (2017)

    Google Scholar 

  20. Zhang, Y., Bouadi, T., Martin, A.: An empirical study to determine the optimal \(k\) in EK-NNclus method. In: 5th International Conference on Belief Functions, BELIEF 2018. Compiègne, France (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiru Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Y., Bouadi, T., Martin, A. (2018). A Clustering Model for Uncertain Preferences Based on Belief Functions. In: Ordonez, C., Bellatreche, L. (eds) Big Data Analytics and Knowledge Discovery. DaWaK 2018. Lecture Notes in Computer Science(), vol 11031. Springer, Cham. https://doi.org/10.1007/978-3-319-98539-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98539-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98538-1

  • Online ISBN: 978-3-319-98539-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics