Skip to main content

Effective Classification of Ground Transportation Modes for Urban Data Mining in Smart Cities

  • Conference paper
  • First Online:
Big Data Analytics and Knowledge Discovery (DaWaK 2018)

Abstract

The increasing amount of digital data in urban research has drawn attention in urban data mining. In urban research (e.g., travel studies in urban areas), researchers who conduct paper-based or telephone-based travel surveys often collect biased and inaccurate data about movements of their participants. Although the use of global positioning system (GPS) trackers in travel studies improves the accuracy of exact participant trip tracking, the challenge of labelling trip purpose and transportation mode still persists. The automation of such a task would be beneficial to travel studies and other applications that rely on contextual knowledge (e.g., current travel mode of a person). In this paper, we focus on transportation mode classification. In particular, we develop a system that improves classification accuracy of ground transportation modes (e.g., bus, car, bike, or walk). When compared with related works, our system increases the classification accuracy by uniquely using GPS and accelerometer data together with a window history queue (which uses previously encountered data). Evaluation results show that our system achieves a high classification accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Braun, P., Cuzzocrea, A., Jiang, F., Leung, C.K.-S., Pazdor, A.G.M.: MapReduce-based complex big data analytics over uncertain and imprecise social networks. In: Bellatreche, L., Chakravarthy, S. (eds.) DaWaK 2017. LNCS, vol. 10440, pp. 130–145. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-64283-3_10

    Chapter  Google Scholar 

  2. Chen, Y.C., Wang, E.T., Chen, A.L.P.: Mining user trajectories from smartphone data considering data uncertainty. In: Madria, S., Hara, T. (eds.) DaWaK 2016. LNCS, vol. 9829, pp. 51–67. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-43946-4_4

    Chapter  Google Scholar 

  3. Hoi, C.S.H., et al.: Supporting social information discovery from big uncertain social key-value data via graph-like metaphors. In: Xiao, J., Mao, Z.-H., Suzumura, T., Zhang, L.-J. (eds.) ICCC 2018. LNCS, vol. 10971, pp. 102–116. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94307-7_8

    Chapter  Google Scholar 

  4. Egho, E., et al.: MiSeRe-Hadoop: a large-scale robust sequential classification rules mining framework. In: Bellatreche, L., Chakravarthy, S. (eds.) DaWaK 2017. LNCS, vol. 10440, pp. 105–119. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-64283-3_8

    Chapter  Google Scholar 

  5. Leung, C.K.: Big data analysis and mining. In: Encyclopedia of Information Science and Technology, 4th edn., pp. 338–348 (2018)

    Google Scholar 

  6. Leung, C.K., Jiang, F., Pazdor, A.G.M., Peddle, A.M.: Parallel social network mining for interesting ‘following’ patterns. Concurr. Comput. Pract. Exp. 28(15), 3994–4012 (2016)

    Article  Google Scholar 

  7. Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P.: From data mining to knowledge discovery: an overview. In: Advances in Knowledge Discovery and Data Mining, pp. 1–34 (1996)

    Google Scholar 

  8. Behnisch, M., Ultsch, A.: Urban data mining using emergent SOM. In: Preisach, C., Burkhardt, H., Schmidt-Thieme, L., Decker, R. (eds.) Data Analysis, Machine Learning and Applications. Studies in Classification, Data Analysis, and Knowledge Organization, pp. 311–318. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78246-9_37

    Chapter  Google Scholar 

  9. Andrienko, G., et al.: Mining urban data (Part A). Inf. Syst. 54, 113–114 (2015)

    Article  Google Scholar 

  10. Andrienko, G., et al.: Mining urban data (Part B). Inf. Syst. 57, 75–76 (2016)

    Article  Google Scholar 

  11. Andrienko, G., et al.: Mining urban data (Part C). Inf. Syst. 64, 219–220 (2017)

    Article  Google Scholar 

  12. Sokmenoglu, A., Cagdas, G., Sariyildiz, S.: Exploring the patterns and relationships of urban attributes by data mining. In: eCAADe 2010, pp. 873–881 (2010)

    Google Scholar 

  13. Murakami, E., Wagner, D.P., Neumeister, D.M.: Using global positioning systems and personal digital assistants for personal travel surveys in the United States. In: Transport Surveys: Raising the Standard, art. III-B (2000)

    Google Scholar 

  14. Ettema, D., Timmermans, H., van Veghel, L.: Effects of Data Collection Methods in Travel and Activity Research (1996)

    Google Scholar 

  15. Stopher, P.R..: Household travel surveys: cutting-edge concepts for the next century. In: Conference on Household Travel Surveys, pp. 11–23 (1995)

    Google Scholar 

  16. Maat, K., Timmermans, H.J.P., Molin, E.: A model of spatial structure, activity participation and travel behavior. In: WCTR 2004 (2004)

    Google Scholar 

  17. Stopher, P.R.: Use of an activity-based diary to collect household travel data. Transportation 19(2), 159–176 (1992)

    Article  Google Scholar 

  18. Schlich, R., Axhausen, K.W.: Habitual travel behaviour: evidence from a six-week travel diary. Transportation 30(1), 13–36 (2003)

    Article  Google Scholar 

  19. Arentze, T., et al.: New activity diary format: design and limited empirical evidence. TRR 1768, 79–88 (2001)

    Google Scholar 

  20. Forrest, T., Pearson, D.: Comparison of trip determination methods in household travel surveys enhanced by a global positioning system. TRR 1917, 63–71 (2005)

    Google Scholar 

  21. Wolf, J., Guensler, R., Bachman, W.: Elimination of the travel diary: experiment to derive trip purpose from global positioning system travel data. TRR 1768, 125–134 (2001)

    Google Scholar 

  22. Biljecki, F., Ledoux, H., van Oosterom, P.: Transportation mode-based segmentation and classification of movement trajectories. IJGIS 27(2), 385–407 (2013)

    Google Scholar 

  23. Zheng, Y., Chen, Y., Li, Q., Xie, X., Ma, W.: Understanding transportation modes based on GPS data for web applications. ACM TWeb 4(1), art. 1 (2010)

    Google Scholar 

  24. Hemminki, S., Nurmi, P., Tarkoma, S.: Accelerometer-based transportation mode detection on smartphones. In: SenSys 2013, art. 13 (2013)

    Google Scholar 

  25. Shaque, M.A., Hato, E.: Use of acceleration data for transportation mode prediction. Transportation 42(1), 163–188 (2015)

    Article  Google Scholar 

  26. Ellis, K., et al.: Identifying active travel behaviors in challenging environments using GPS, accelerometers, and machine learning algorithms. Front. Pub. Health 2, art. 36 (2014)

    Google Scholar 

  27. Chung, E., Shalaby, A.: A trip reconstruction tool for GPS-based personal travel surveys. Transp. Plann. Technol. 28(5), 381–401 (2005)

    Article  Google Scholar 

  28. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

  29. Greenfeld, J.: Matching GPS observations to locations on a digital map. In: TRB 81st Annual Meeting (2002)

    Google Scholar 

  30. Stenneth, L., Wolfson, O., Yu, P.S., Xu, B.: Transportation mode detection using mobile phones and GIS information. In: ACM SIGSPATIAL GIS 2011, pp. 54–63 (2011)

    Google Scholar 

Download references

Acknowledgements

This project is partially supported by NSERC (Canada) and University of Manitoba. Thanks F. Franczyk—President of Presen Technologies Inc. (PERSENTECH)—for his introduction of OttoFleet MobileTM (an application for GPS-enabled iPhones®), which inspired the design of the dataset collection module of our classification system.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carson K. Leung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Leung, C.K., Braun, P., Pazdor, A.G.M. (2018). Effective Classification of Ground Transportation Modes for Urban Data Mining in Smart Cities. In: Ordonez, C., Bellatreche, L. (eds) Big Data Analytics and Knowledge Discovery. DaWaK 2018. Lecture Notes in Computer Science(), vol 11031. Springer, Cham. https://doi.org/10.1007/978-3-319-98539-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98539-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98538-1

  • Online ISBN: 978-3-319-98539-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics